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Abstract. Established complexity measures typically operate at a single scale and thus fail to quantify inherent long-range correlations

in real-world data, a key feature of complex systems. The recently introduced multiscale entropy (MSE) method has the ability to detect

fractal correlations and has been used successfully to assess the complexity of univariate data. However, multivariate observations are

common in many real-world scenarios and a simultaneous analysis of their structural complexity is a prerequisite for the understanding

of the underlying signal-generating mechanism. For this purpose, based on the notion of multivariate sample entropy, the standard MSE

method is extended to the multivariate case, whereby for rigor, the intrinsic multivariate scales of the input data are generated adaptively via

the multivariate empirical mode decomposition (MEMD) algorithm. This allows us to gain better understanding of the complexity of the

underlying multivariate real-world process, together with more degrees of freedom and physical interpretation in the analysis. Simulations

on both synthetic and real-world biological multivariate data sets support the analysis.
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1. Introduction

Real-world phenomena typically exhibit complex dynamical

behavior, and a number of criteria have been proposed to char-

acterize the underlying signal-generating mechanisms from

the observed univariate or multivariate time series. These di-

verse descriptors include complexity, local predictability, ir-

regularity, self-similarity, and synchrony [1], and operate on

a single time scale – that defined through the data acquisi-

tion. However, the very essence of complex dynamical behav-

ior are intrinsic correlations (of different natures), not only

within single data channels, but even more importantly across

data channels and over a range of temporal scales defining

system dynamics. Entropy is particularly useful as a measure

of the structure of time series, as it reflects the degree of

regularity/irregularity of a sequence of data. Despite a num-

ber of established entropy measures and the fact that they

are well understood, the problem in using entropies in their

original form is that they achieve their maximum for sig-

nals with no structure (random) and are defined only for a

single scale. To assess the structural dynamics of a system

across the different time-scales, Costa et al. introduced the

multiscale entropy (MSE) measure which performs multiple

coarse-graining operations on the data (thus defining tempo-

ral scales) and calculates sample entropy for each so-defined

scale [2, 3]. This way, the MSE method quantifies signal com-

plexity, which remains hidden when using standard methods

where temporal scales of a signal are not processed separa-

tely.

While the MSE measure has been successfully applied

to distinguish between different real-world physiological time

series based on their dynamical complexity [4–7], it also has

some limitations stemming from the deterministic way of gen-

erating multiple scales of input data. The method uses the so-

called coarse graining process which, owing to its low-pass

filtering characteristics, is unsuitable for the extraction of high

frequency components and also results in aliasing (see also

Fig. 1), causing potential systemic artifacts which inhibit the

analysis. More critically, the coarse graining process reduces

the input data length to half its original size for each succes-

sive data scale and the ‘deterministic’ temporal scales do not

necessarily match the intrinsic dynamical scales defined by the

signal-generating system. As a result, only input data of ‘suf-

ficient’ length and ‘regular’ scales can be reliably processed

by the MSE method; in turn, for real-world data we can eval-

uate the MSE only over a limited range of temporal scales. To

alleviate these problems, a class of Butterworth filters were

used to circumvent the aliasing observed in the original coarse

graining process of MSE [8]. However, this does not circum-

vent the need for data driven scales, over which to perform

the analysis.

It was recently proposed to employ a data-driven method,

the empirical mode decomposition (EMD) [9], to generate

intrinsic multiple data scales from input data, to be used for

the subsequent MSE analysis [10, 11]. The resulting EMD-

based MSE method produced improved results owing to the

fully data-driven nature of EMD and also due to the fact that

it operates locally based on the extrema of the (univariate) in-
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Fig. 1. Magnitude response of the equivalent FIR filter in the coarse

graining process for different scale factor ǫ

put signal, yielding well defined narrowband scales intrinsic

to the input data. Another benefit of using EMD in conjunc-

tion with the MSE method is that the standard MSE fails to

cater for nonstationary signals, that is, if a signal contains

one or more pronounced trends, little can be inferred from

sample entropy – trends tend to dominate other interesting

features. From the statistical perspective, it is therefore im-

perative to remove any trend before meaningful interpretation

can be made from MSE analysis. Since EMD decomposes da-

ta into narrow-band quasi-stationary signals [9], subsequent

MSE analysis on each EMD output component promises to

facilitate MSE based complexity analysis. For instance, EMD

naturally captures a trend in the input data in its residue (last

extracted component) which can be removed prior to the MSE

analysis.

Recently, advances in sensor and data acquisition tech-

nologies have made it possible to record in a coherent way

real-world signals containing multiple data channels, with

possibly large differences in the dynamics across the chan-

nels. For such signals, assessment of cross-statistical prop-

erties between multiple input channels is vital for a com-

plete understanding of the underlying signal-generating sys-

tem. This calls both for the development of multivariate ex-

tensions of existing signal processing algorithms in order to

directly process multiple channels of input data and, in the

process, employ both within- and cross-channel information,

and to design data-adaptive algorithms which define multiple

intrinsic time scales in multivariate data, both subject of this

work.

Recent multichannel extensions of both EMD [12] and

MSE algorithm [13–15] have been shown to outperform their

standard, univariate, counterparts in the analysis of real-world

multivariate signals. The availability of these extensions pro-

vides an opportunity to develop a robust framework for the

complexity analysis of multivariate data. More specifically,

we propose to employ our recently developed multivariate

EMD (MEMD) to generate intrinsic data scales for the subse-

quent multivariate MSE (MMSE) analysis of input multichan-

nel data, and to benefit from the mode alignment property of

MEMD, yielding the following advantages:

• This ensures that the scales generated for each data chan-

nel are same in number and belong to the same frequen-

cy band (monocomponent), which makes their comparison

meaningful;

• This way, the limitation of sufficient input data length due

to coarse graining process is alleviated since EMD/MEMD

generates temporal data scales of same length as the length

of the input signal;

• The so-generated time scales are data adaptive and fully

suited to the dynamics of the signal in hand, unlike the

currently used coarse graining techniques;

• The proposed multivariate MSE complexity assessment

method operates on nonstationary data thus bypassing the

main limitations of current methods - requirement of sta-

tionary data sources.

The presented MEMD-enhanced MMSE method is fully mul-

tivariate, unlike e.g. the method given in [11] where MEMD

was used to generate multiple scales from the input data and

univariate sample entropy was subsequently applied for com-

plexity analysis. The implication of employing univariate sam-

ple entropy was that MEMD had to be operated across mul-

tiple trials rather than multiple channels, thus, not making

use of the full potential of MEMD. Owing to the multivari-

ate nature of the introduced multivariate multiscale entropy

measure in conjunction with MEMD, our proposed approach

is fully multivariate – it analyzes both the within- and cross-

channel information simultaneously and uniquely, it operates

on nonstationary multivariate data with large discrepancies in

channel dynamics, as demonstrated on the complexity analysis

of real-world multivariate biological data.

2. Multivariate empirical mode decomposition

In its original formulation, the empirical mode decomposi-

tion (EMD) algorithm decomposes an arbitrary nonlinear and

nonstationary signal into a set of simpler monocomponent

(narrow-band) functions, and is univariate, that is, it oper-

ates only on single channel data. To obtain monocomponent

bases common for all the data channels within multivariate

signals in a data-adaptive manner, a generalized multivariate

extension of EMD (MEMD) has been developed recently [16],

which operate directly on multivariate signals, containing any

number of data channels.

The operation of the MEMD algorithm rests on the esti-

mation of the local mean of multivariate signals, a key step in

EMD-based algorithms which is achieved in single-channel

EMD by taking the average of the upper and lower envelopes

of the signal in hand, obtained by interpolating the local max-

ima (upper envelope) and the local minima (lower envelope).

For multivariate signals, however, the notion and locations of

local maxima and minima cannot be defined directly (espe-

cially for complex- and quaternion-valued data). To this end,

MEMD operates by taking multiple univariate signal pro-

jections, along different directions in p-dimensional spaces,
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which are then averaged to obtain the local mean. For this

purpose, projection direction vectors are most conveniently

generated by uniformly sampling a p−sphere1, for instance,

by quasi-Monte Carlo sequences. A suitable set of direction

vectors on a (p − 1)-sphere is typically generated using the

low-discrepancy Hammersley sequence, and univariate pro-

jections of the multivariate input signal are calculated along

this set. The extrema of such projected signals are then inter-

polated component-wise to yield multidimensional envelopes

of a multivariate signal. The multiple envelope curves, each

corresponding to a particular direction vector, are then aver-

aged to obtain the multivariate signal mean.

More specifically, consider a sequence of p-dimensional

vectors s(t) = {s1(t), s2(t), . . . , sp(t)}, representing a mul-

tivariate signal with p components (data channels), and the

symbol xθv
= {xv

1, x
v
2 , . . . , x

v
p} denoting a set of v =

1, 2, . . . , V direction vectors along the directions given by an-

gles θv = {θv1
, θv2

, . . . θvp−1
} in R

p. Then, the multivariate

extension of EMD (MEMD), suitable for operating on gen-

eral nonlinear and nonstationary multivariate time series, is

summarized in Algorithm 1.

Algorithm 1 . Multivariate EMD

1: Sampling criterion: Choose a suitable point set for sam-

pling a (p − 1)-sphere (uniform, equiangular, etc.);

2: Univariate spatial projections: Calculate a multidimen-

sional projection, denoted by qθv
(t), of the p-variate input

signal s(t) along the direction vector xθv
for all v ∈ θv

(the whole set of direction vectors), giving the set of pro-

jections qθv
(t)}V

v=1;

3: Extrema finding: Find the time instants {tiθv
}V

v=1 corre-

sponding to the maxima for every member of the set of

projected signals qθv
(t)}V

v=1;

4: Envelope detection: Interpolate [tiθv
, s(tiθv

)] to obtain mul-

tivariate envelope curves eθv
(t)}V

v=1;

5: Local mean calculation: For a set of V direction vectors,

the mean m(t) of the envelope curves is calculated as:

m(t) =
1

V

V
∑

v=1

eθv
(t) (1)

6: Sifting process: Extract ‘detail’ d(t) using d(t) = s(t)−
m(t). If d(t) fulfills the stoppage criterion for a multi-

variate IMF, apply the above procedure to s(t) − d(t),
otherwise apply it to d(t).

Once the first IMF is extracted, it is subtracted from the

input signal and the same process (steps 1–5 in Algorithm 1)

is applied to the resulting signal yielding the second IMF

and so on; the process is repeated until all the IMFs are ex-

tracted and only the residual is left; in the multivariate case,

the residual corresponds to a signal whose projections do not

contain enough extrema to form a meaningful multivariate

envelope. The sifting process for a multivariate IMF can be

stopped when all the projected signals fulfill any of the stop-

page criteria adopted in standard EMD. One popular stopping

criterion used in EMD is to stop the sifting process when the

number of extrema and the zero crossings differ at most by

one for S consecutive iterations of the sifting algorithm [17].

Since the multichannel algorithm, MEMD, operates di-

rectly on multivariate signals with scales defined by the data,

it provides intrinsic information regarding interaction between

multiple data channels. This offers us physical insight into the

structure of the real-world data and a convenient interpreta-

tion:

• The first extracted IMF is the highest frequency component

in a signal, containing plenty of detail;

• The subsequent IMFs are ideally narrowband and mono-

component, whereby the characteristic frequency decreases

with the IMF number;

• The last IMF – the trend – can often contain the signal

power and little signal detail, so that it is typically omitted

from analysis.

• Even if the original signal is non-stationary, the IMFs are

much better conditioned and are typically quasi-stationary;

• The IMFs are locally orthogonal, providing a parsimonious

representation with minimum artifacts in decomposition

and reconstruction; the local orthogonality facilitates the

‘processing’ of non-stationary signals.

Advantages offered by MEMD over the univariate (single-

channel) EMD include:

1. Direct processing of multichannel data gives the same num-

ber of IMFs for all data channels facilitating the analysis of

their properties at each (orthogonal) scale, independently;

2. MEMD automatically aligns common scales, present

across multiple channels, within its multivariate IMFs; a

desirable property that is hard to achieve by applying uni-

variate EMD channel-wise on multivariate data, as shown

later in Fig. 4.

Figure 2 demonstrates the advantages of MEMD, on the

bivariate decomposition of a complex real-world wind sig-

nal with the north-south velocity as its real component and

the east-west velocity as its imaginary component, sampled

at 50 Hz. Observe that the multivariate (bivariate) extension

of EMD generated an equal number of IMFs for the real and

imaginary parts of the data and therefore admits associating a

physical meaning to the components. Moreover, the residual

signal r clearly captures the overall ‘trend’ of the real and

imaginary components, the single most misleading feature in

traditional dynamical complexity analysis.

Similarly, the property of alignment of common scales in

multivariate data via MEMD can be illustrated by its quasi-

dyadic filter bank structure for multivariate white Gaussian

noise (WGN) inputs. For that purpose, simulations were car-

ried out on multiple independent realizations of an 8-channel

mutually independent WGN process. The average spectra of

the IMFs obtained from D = 500 realizations of 8-channel

WGN are plotted in Fig. 3, both for standard EMD (bottom

1A p-sphere, or equivalently a hypersphere, can be considered as an extension of the ordinary sphere to an arbitrary dimension.
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plot) and multivariate EMD (top plot). Observe that statisti-

cally, for a given number of noise realizations D, standard

EMD failed to accurately align the band-pass filters associ-

ated with the sequence of multivariate IMFs shared across

the eight noise channels. Although for univariate EMD this

alignment is expected to become better with an increase in the

number of noise realizations, MEMD-based spectra achieved

much better results with the same number of ensembles2.
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Fig. 2. Complex wind data (denoted by z in the first row) decomposed

by bivariate EMD (IMFs denoted by c1 − c4 in the lower subplots

and ‘trend’ denoted by r in the bottom subplot). Real and imaginary

components are depicted by solid and dashed lines, respectively

10
0

10
1

10
2

S
pe

ct
ru

m

Averaged spectra of white noise realizations from MEMD

10
0

10
1

10
2

Frequency

S
pe

ct
ru

m

Averaged spectra of white noise realizations from standard EMD

Fig. 3. Averaged spectra of IMFs obtained from D = 500 realiza-

tions of 8-channel independent white Gaussian noise via MEMD

(top) and the standard EMD (bottom). Overlapping of the frequen-

cy bands corresponding to the same-index IMFs is improved in both

cases after averaging, with MEMD bands showing much better align-
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Fig. 4. Normalized IMF cross-correlation from multiple channels

of WGN obtained via (a) MEMD and (b) EMD channel-wise. The

distribution of higher values of the cross-correlation measure along

the diagonal line in the case of MEMD (panel (a)) indicates the ex-

cellent mode-alignment between IMFs from multiple channels. The

IMF indices grow from left to right and from top to the bottom

A quantitative evaluation of the mode-alignment observed

for MEMD-based filter banks is shown in Fig. 4, which shows

the normalized intrinsic cross-correlation between IMFs ob-

tained from MEMD and standard EMD, applied on bivariate

WGN. In the simulation, D = 500 bivariate WGN realiza-

tions were used, each of length N = 1000. As expected,

due to an excellent alignment of the spectra of the corre-

sponding (same-indexed) IMFs from multiple data channels

and near-perfect local orthogonality of consecutive IMFs, ob-

tained using MEMD, the cross-correlation matrix across IMFs

had a pronounced diagonal (j = j′), in Fig. 4(a). In the

EMD-based decomposition, however, due to fluctuations in

the alignment and local orthogonality of IMFs, non-negligible

cross-correlation was observed off-diagonal for (j 6= j′), as

shown in Fig. 4(b)3

3. Multivariate sample entropy

Richman & Moorman [18] introduced sample entropy (Samp-

En) as a conditional probability that two sequences of mbreak

consecutive data points, which are similar to within a toler-

ance level r, will remain similar when the next data point

is included, provided that self-matches are not considered in

2Data alignment according to their temporal scales across multichannel data is a single most critical feature in multisensor data fusion.
3More detail and MATLAB code for MEMD can be found at http://www.commsp.ee.ic.ac.uk/∼mandic/research/emd.htm
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calculating the probability. This measure is very stable for

data lengths of over several hundred samples [15] and has

become a work horse in practical entropy estimation from

real-world data. Multivariate sample entropy enables entropy

calculation for multichannel data, by taking into account both

within- and cross-channel dependencies, and was introduced

only recently in [14]. To calculate multivariate sample entropy

(MSampEn), recall from multivariate embedding theory [19],

that for a p-variate time series {xk,i}
N
i=1, k = 1, 2, . . . , p,

observed through p measurement functions hk(yi), the mul-

tivariate embedded reconstruction is based on the composite

delay vector

Xm(i) = [x1,i, x1,i+τ1
, . . . , x1,i+(m1−1)τ1

, x2,i,

x2,i+τ2
, . . . , x2,i+(m2−1)τ2

, . . . , xp,i,

xp,i+τp
, . . . , xp,i+(mp−1)τp

],

(2)

where M = [m1, m2, . . . , mp] ∈ R
p is the embedding vector,

τ = [τ1, τ2, . . . , τp] the time lag vector, the composite delay

vector Xm(i) ∈ R
m (where m =

∑p

k=1 mk).

It is important to note that multivariate data do not neces-

sarily have the same range among the data channels, so that

the distances calculated on such embedded vectors are typi-

cally biased towards the variates with largest ranges. In our

proposed formulation of multivariate sample entropy (MSam-

pEn), we scale the data to the range [0, 1]. For a p-variate

time series {xk,i}
N
i=1, k = 1, 2, . . . , p, the multivariate sam-

ple entropy (MSampEn) is calculated in Algorithm 2.

3.1. Geometric interpretation of MSampEn. Figure 5 illus-

trates the principle behind multivariate sample entropy cal-

culation. Consider a real-world bivariate center of pressure

(COP) displacement time series in Fig. 5a, where the medi-

olateral (side-to-side) component is denoted by x(n) (dotted

red line) and the anteroposterior (front-to-back) component

by y(n) (solid blue line). For illustration, assume the time

lag vector τ = [1, 1] and the embedding vector M = [1, 1];
then the composite bivariate delay vectors are [x(n), y(n)] as

shown in Fig. 5b, where n denotes the sample index. In the

process of MSampEn calculation, for any such vector (e.g.

[x(64), y(64)]), we need to count the number of neighbors

which are within a distance r (tolerance level), illustrated by

a circle centered at [x(64), y(64)] with radius r in Fig. 5b.

For an m-dimensional space, the set of neighboring vectors

would be enclosed by an m-sphere if the distance is calcu-

lated using the Euclidean norm and by an m-cube if we use

a maximum distance norm. The average number of compos-

ite delay vectors that are within a fixed threshold r (so called

r-neighbors) in this two-dimensional space is next calculated,

which serves as an estimate of the local probability densi-

ty, and is also a measure of their joint probability, as all the

m-components of the neighboring vector (as maximum dis-

tance norm is used) have to be simultaneously similar to those

of the vector in hand. By increasing the embedding dimension

m, we therefore inherently involve joint probabilities covering

larger time spans.

Algorithm 2 . The Multivariate sample Entropy (MSampEn)

1: Form (N − δ) composite delay vectors Xm(i) ∈ R
m, where i = 1, 2, . . . , N − δ and δ = max{M} × max{τ}.

2: Define the distance between any two composite delay vectors Xm(i) and Xm(j) as the maximum norm, that is,

d[Xm(i), Xm(j)] = maxl=1,...,m{|x(i + l − 1) − x(j + l − 1)|}.

3: For a given composite delay vector Xm(i) and a threshold r, count the number of instances Pi for which

d[Xm(i), Xm(j)] ≤ r, j 6= i, then calculate the frequency of occurrence, Bm
i (r) = 1

N−δ−1Pi, and define

Bm(r) =
1

N − δ

N−δ
∑

i=1

Bm
i (r). (3)

4: Extend the dimensionality of the multivariate delay vector in (3) from m to (m+1). This can be performed in p different

ways, as from a space with the embedding vector M = [m1, m2, . . . , mk, . . . , mp] the system can evolve to any space

for which the embedding vector is [m1, m2, . . . , mk + 1, . . . , mp] (k=1, 2, . . . , p). Thus, a total of p × (N − δ) vectors

Xm+1(i) in R
m+1 are obtained, where Xm+1(i) denotes any embedded vector upon increasing the embedding dimension

from mk to (mk + 1) for a specific variable k. In the process, the embedding dimension of the other data channels ( 6= k)

is kept unchanged, so that the overall embedding dimension of the system undergoes the change from m to (m + 1).
5: For a given Xm+1(i), calculate the number of vectors Qi, such that d[Xm+1(i), Xm+1(j)] ≤ r, where j 6= i, then calculate

the frequency of occurrence, Bm+1
i (r) = 1

p(N−δ)−1Qi, and define

Bm+1(r) =
1

p(N − δ)

p(N−δ)
∑

i=1

Bm+1
i (r). (4)

6: Finally, for a tolerance level r, estimate MSampEn as

MSampEn(M, τ , r, N) = −ln

[

Bm+1(r)

Bm(r)

]

. (5)
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Fig. 5. Geometry behind the calculation of MSampEn

For the example in Fig. 5, upon increasing the embed-

ding dimension from two to three, we have two possible sub-

spaces of dimension three: (i) the subspace of all the vectors

[x(n), x(n + 1), y(n)] shown in Fig. 5c, and (ii) the subspace

of all the vectors [x(n), y(n), y(n + 1)] shown in Fig. 5d.

A naive approach would be to calculate the number of vectors

that are within a fixed threshold r in each three-dimensional

subspace and then average over both subspaces [13]. Instead,

we employ a rigorous approach and compare composite delay

vectors (to find the neighbors) not only within each subspace

but also across all the subspaces, thus fully catering for both

within- and cross-channel correlations. This allows us to cal-

culate the conditional probability that two sequences of m

data points (or two composite delay vectors in m-dimensional

space), which are similar to within a tolerance level r, will

remain similar in the same sense, when the next data point is

included (or equivalently the dimension of the composite de-

lay vector is increased by one), provided that self-matches are

not considered. A negative logarithm of this conditional prob-

ability defines the multivariate sample entropy (see Eq. (5) in

Algorithm 2)4.

3.2. Effect of data length and parameters on MSampEn.

It has been suggested in [20] that 10m − 20m data samples

are sufficient to robustly estimate univariate approximate en-

tropy or sample entropy. To assess the sensitivity of the pro-

posed multivariate sample entropy to the data length parame-

ter, we evaluated multivariate sample entropy of a 5-channel

white as well as 1/f noise as a function of sample size N ,

where for each channel the embedding dimension mk = 2
and the threshold r = 0.20 was taken. Figure 6a shows that

for both the white and 1/f 5-channel noise, MSampEn es-

timates were consistent for data length N ≥ 300. Note that,

the greater the value of N, the more robust the MSampEn es-

timates as seen from the errorbars in Fig. 6a. MMSE (MSE)

calculates MSampEn (SampEn) for different scales generated

by the coarse-graining process and the length of each coarse-

grained time series is equal to the length of the original time

series divided by the scale factor, ǫ. The coarse graining pro-

cedure of the standard MMSE approach thus imposes the con-

straint that the highest scale should have enough data points

(at least 300 points) to be able to calculate a valid entropy es-

timate. This somewhat limits the applicability of coarse grain-

ing based MMSE for very short real-world data. Our proposed

MEMD-enhanced MMSE overcomes this limitation as the de-

composed IMFs have the same lengths as that of the original

signal.

Physically, for the standard univariate sample entropy, the

increase in sample entropy values with an increase in embed-

ding dimension m is due to progressively fewer delay vectors

to compare as m increases. On the contrary, for MSampEn

the increase in m does not reduce the number of the available

delay vectors, as the composite multivariate embedded vectors

are constructed in parallel. Figure 6b presents an MSampEn

vs mk plot for a 5-channel white and 1/f noise with 40,000

4The MATLAB code for MMSE can be found at http://www.commsp.ee.ic.ac.uk/∼mandic/research/Complexity Stuff.htm
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points in each channel, and illustrates that the result does not

depend on mk (where the number of channels, p, is 5 and

mk is taken up to 4, resulting in a maximum total embedding

dimension of 20). For large mk, the length of the time series

required for a valid entropy estimate would be prohibitively

large (for mk = 5, we need at least 105 data points in each

channel), and therefore for practical purposes, mk = 1 or 2

is usually used in the literature. In SampEn calculation, the

threshold parameter r is set to some percentage of the standard

deviation; for MSampEn, we used its multivariate generaliza-

tion - the total variation, tr(S), where S is the covariance

matrix. To maintain the same total variation for all the mul-

tivariate series, the individual data channels were normalized

to unit variance so that the total variation equals the number

of channels/variables. This way, we take r as a percentage

(say 20%) of tr(S), which is similar to taking r = 0.20 in

each channel.
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Fig. 6. Multivariate sample entropy as a function of: (a) data length

N where r = 0.20 and mk = 2 in each data channel and (b) em-

bedding parameter mk, where each channel has 40,000 samples and

r = 0.20 in each data channel. Shown are the mean values for 30

simulated 5-channel time series containing white and 1/f noise

4. Multivariate complexity analysis

In this section, the standard coarse graining based multivari-

ate multiscale entropy is described first, followed by the pro-

posed MEMD-enhanced multivariate multiscale entropy. The

MMSE curves generated by both these methods for multichan-

nel white Gaussian noise as well as 1/f noise are compared

and their interpretation is illuminated.

4.1. Standard multivariate multiscale entropy. The coarse

graining based multivariate MSE (MMSE) method assesses

relative complexity of normalized multi-channel temporal da-

ta by plotting multivariate sample entropy as a function of the

scale whereby:

• A multivariate time series is considered more structurally

complex than another if, for the majority of time scales,

its multivariate entropy values are higher than those of the

other time series;

• A monotonic decrease in multivariate entropy values with

the scale factor reveals that the signal in hand only contains

information at the smallest scale, and is thus not dynami-

cally complex;

• A constant MSE curve over all the scales indicates long

term correlations in the data, a signature of truly complex

systems.

For instance, Fig. 7a shows the standard multivariate MSE

analysis [14, 15] for bivariate random white noise (uncorre-

lated), conforming with the interpretation that the MSampEn

values monotonically decrease with scale, whereas for 1/f
noise (long-range correlated) the MSampEn remains constant

over multiple scales. This has a physical justification, as by

design 1/f noise is structurally more complex than uncorre-

lated white noise.
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Fig. 7. Multivariate multiscale entropy (MMSE) analysis for bivari-

ate white and 1/f noise, each with 5,000 data points using: a) coarse

graining based standard multivariate MSE, and b) MEMD-enhanced

multivariate MSE. The curves represent an average of 20 indepen-

dent realizations and error bars the standard deviation (SD)
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4.2. A note on complexity of biological data. Tradi-

tional entropy measures, such as Shannon entropy [21],

Kolmogorov-Sinai (KS) entropy [22], approximate entropy

(ApEn) [23] and sample entropy (SampEn) [18], are maxi-

mized for completely random processes, and are frequently

used to quantify the regularity (predictability) of time series

on a single scale, by e.g. evaluating repetitive patterns [2].

This, in turn, makes it difficult to use standard entropies as

complexity measures, since:

• Physiological data, which exhibit a high degree of struc-

tural richness, have lower entropy than their randomized

surrogates, formed by shuffling the original data;

• The greater entropy of the so-generated surrogate series

(which are less complex) also signifies a lack of simple

correspondence between regularity and complexity;

• Neither completely predictable (e.g. periodic) signals nor

completely unpredictable (e.g. uncorrelated random) sig-

nals are truly complex, since at a global level they do admit

a simple description.

The behavior of truly complex systems is far from perfect

regularity or complete randomness, and instead time series

coming from dynamical physical and physiological systems

generally exhibit long-range correlations on multiple spatial

and temporal scales. To that end, multiscale entropy analy-

sis aims at quantifying the interdependence between entropy

and scale, achieved by evaluating sample entropy of univari-

ate time series coarse grained at multiple temporal scales.

This facilitates the assessment of the dynamical complexity

of a system; in biology this is associated with the ability of

living systems to adjust to a changing environment. The un-

derlying integrative multiscale functionality is interpreted by

non-diminishing entropy values across increasing time scales.

4.3. MEMD-enhanced multivariate multiscale entropy. To

alleviate the problems of trend and shortening of available

data with the temporal scale, we propose to use MEMD to

generate multiple scales of a given multivariate data, adaptive-

ly, and subsequently perform multivariate entropy analysis on

separate or cumulative5 IMFs (scales). For this cause, fully

aligned scales from input multivariate data are first obtained

by applying MEMD both across multiple channels and mul-

tiple conditions of the input data. Next, multivariate sample

entropy estimates are calculated for the so-defined ‘scales’ of

the multivariate input data to reveal its long-range correlation

structure; the algorithm is listed in Algorithm 3.

To illustrate the performance of the proposed method, it

was applied to a synthetically generated bivariate white noise

and bivariate 1/f noise. The 1/f noise possesses long-range

correlations and its standard entropy (at scale 1) is lower than

that of white noise, however, the 1/f noise is structurally com-

plex whereas the bivariate white noise is not, and any com-

plexity measure should be higher for 1/f noise at increasing

scales. Observe from Fig. 7b that though bivariate white noise

has higher complexity than 1/f noise for the first scale, the

complexity becomes lower than 1/f noise for higher scales.

This example on synthetic data illustrates, that by design, 1/f
noise is structurally more complex than uncorrelated random

noise, a result consistent with standard MSE/MMSE [2, 14,

15] as shown in Fig. 7a.

Algorithm 3. MEMD-enhanced multivariate multiscale en-

tropy

1: Generate multiple scales from J IMFs obtained by

applying MEMD to a given multivariate time series

{xk,i}
N
i=1for k = 1, 2, . . . , p, where p denotes the total

number of variates (channels) and N represents the total

number of samples in each variate which does not change

across MEMD-based scales.

2: Define data-driven ‘scales’ of x as the cumulative sum

of IMFs either by cn =
∑J

j=n cj (Approach 1) or by

cn =
∑J−n+1

j=1 cj (Approach 2), where n ∈ [1, J ] de-

notes the cumulative IMF index, and cj denotes the j-th

IMF. Only Approach 1 is used in the sequel.

3: Calculate and plot multivariate sample entropy measure,

given in (5), for each scale n.

Remark 1. A direct comparison is often not possible between

the scales of MEMD-enhanced MSE and those of standard

MSE as, by design, the frequency ranges of the cumulative

IMFs adapts to the data. In the case of white noise, however,

the dyadic filter bank property of MEMD is well known [12].

Disregarding elements of coarse graining6, the averaging op-

eration at scale ǫ is equivalent to low pass filtering with a

cutoff frequency (normalized) of fc = 0.5/ǫ. Thus for the

nth cumulative IMF index (Approach 1) of white noise, the

equivalent coarse grained scale factor is given by ǫ ≈ 2n−1.

For insight, the equivalent scale factors for white noise are

shown for cumulative IMF indexes in Fig. 7b.

To further illustrate this behavior for the multicahannel

scenario where different channels contain different noise re-

alizations, we next generated a trivariate time series, where

originally all the data channels were realizations of mutual-

ly independent white noise. We then gradually decreased the

number of variates that represent white noise (from 3 to 0)

and simultaneously increased the number of data channels

that represent independent 1/f noise (from 0 to 3), so that

the total number of variates was always three. Figure 8a shows

the standard coarse graining based MMSE curves and Fig. 8b

shows MEMD-enhanced MMSE curves for the cases consid-

ered; notice that as the number of variates representing 1/f
noises increased, MSampEn at higher scales also increased,

and when all the three data channels contained 1/f noise,

the complexity at larger scales was the highest. The analysis

5Due to their narrowband nature, an alternative option is to additionally apply coarse graining to the IMF-scales themselves with minimal risk of aliasing.
6The filtering operation equivalent to coarse graining is characterized by a very slow roll-off as well as large sidelobes which introduce aliasing artifacts [8].

The equivalent relationship between scale factor and cumulative IMF index given in the paper assumes a considerably faster roll-off as well as the absence

sidelobes.
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in Fig. 8 therefore confirms that, as desired, the more vari-

ables/channels within a multivariate time series exhibit long

range correlations, the higher the overall complexity of the

underlying multivariate system.
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Fig. 8. Multivariate multiscale entropy (MMSE) analysis for 3-

channel data containing white and 1/f noise, each with 10,000 data

points using: a) coarse graining based standard multivariate MSE,

and b) MEMD-enhanced multivariate MSE. The curves represent an

average of 20 independent realizations and error bars the standard

deviation (SD)

Remark 2. Unlike EMD/MEMD based sample entropy meth-

ods given in [10] and [11] which employ univariate sample

entropy, the proposed method is fully multivariate as it calcu-

lates directly multivariate sample entropy estimates, thereby

catering for linear/nonlinear correlations both within and be-

tween the data channels.

Remark 3. Standard MMSE calculates MSampEn for dif-

ferent scales generated by the coarse-graining process and

the length of each coarse-grained time series is equal to the

length of the original time series divided by the scale fac-

tor, ǫ. Thus, one needs to ensure that the highest scale has

enough data points to be able to calculate a valid entropy

estimate. In practical cases, if the data length is very short,

applying coarse graining-based MMSE is not feasible. On the

contrary, MEMD-enhanced MMSE can be applied for input

signals having very short data lengths.

5. Experimental results

The multivariate multiscale entropy analysis is next evalu-

ated for several multivariate real-world recordings: human

postural sway analysis, stride interval time series analysis,

alpha-attenuated EEG data analysis and brain consciousness

analysis.

5.1. Postural sway analysis. Multivariate complexity analy-

sis of real-world postural sway dynamics time series, mea-

suring center of pressure (COP) displacement, was performed

for young and elderly subjects during quiet standing. It is

expected that young healthy subjects exhibit unconstrained

movement with high complexity, whereas the postural sway

of the elderly is expected to be constrained, thus having lower

complexity, as compared to the young subjects. This conforms

with the analysis in Subsec. 4.2.

The data used in the simulations was the measured COP

displacement from 12 young and 12 elderly, all healthy, vol-

unteers at 60 Hz; it was recorded simultaneously for the medi-

olateral (side-to-side) and anteroposterior (front-to-back) di-

rection [24] to form a bivariate time series. Since the postural

sway time series exhibits high frequency fluctuations super-

imposed on low frequency trends, the data need first to be

detrended using methods such as wavelet transform and/or

empirical mode decomposition [9]. It was shown in the liter-

ature [15, 25] that only after detrending (removing last few

IMFs), a valid complexity analysis could be performed using

multivariate multiscale entropy method.

To illustrate this point, we first present the multivari-

ate complexity analysis of the COP data by applying coarse

graining-based MMSE without any detrending, as shown in

Fig. 9a. Unless otherwise stated, the values of the parame-

ters used to calculate MSampEn were mk = 2, τk = 1, and

r = 0.15×(standard deviation of the normalized time series)

for each data channel for all the experimental results. The

parameters were chosen on the basis of previous studies indi-

cating good statistical reproducibility for the univariate Sam-

pEn [18, 25]. Since the original time series had 1.8×103 data

points, the highest achievable scale factor (ǫ = 6) in standard

coarse graining-based MMSE contained 300 data points; this

was sufficient for accurate analysis, as shown in [15].

It is evident from Fig. 9a that the standard coarse graining-

based MMSE, without detrending, was not able to discrim-

inate between young and elderly subjects as the error bars

overlapped. Moreover, the mean MMSE curve was lower for

healthy young subjects than for their elderly counterparts,

which is contrary to the intuition and the underlying physics7,

and is attributed to the shortcomings of the scale generation

method (coarse graining) of standard MMSE.

Next, Fig. 9b shows the complexity analysis results ob-

tained by applying MEMD-enhanced MMSE method taking

only the first five IMFs. From the figure, it is evident that

MEMD-enhanced MMSE was able to discriminate between

young and elderly subjects more effectively, as indicated by

a better separation of their MMSE curves. Moreover, the com-

7Due to ageing and the associated constraints, the complexity of postural sway for the elderly should be lower than for the young.
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plexity was higher for healthy young subjects than for their

elderly counterparts which is physically intuitive, as for young

subjects there exist correlation between mediolateral and an-

teroposterior components of COP time series which degrades

in elderly subjects. Moreover, the difference in complexity be-

tween the young and elderly subjects was found to be statis-

tically significant (p < 0.01) over scales 1–4 using one-tailed

t-test with unequal variances. This illustrates significant ad-

vantages of using MEMD-enhanced MMSE when assessing

relative complexity of real-world multivariate data, and sup-

ports the more general concept of multiscale complexity loss

with ageing and disease or when a system is under constraints,

as those factors reduce the adaptive capacity of biological or-

ganization at all levels [26].
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Fig. 9. Bivariate multiscale entropy analysis of COP time series for

young (red square) and elderly (green circle) subjects using: a) coarse

graining based standard multivariate MSE, and b) MEMD-enhanced

multivariate MSE. The plots represent mean values of MSampEn

for all subjects across all the trials and error bars represent standard

error

5.2. Stride interval analysis. In order to reveal long-range

correlations in stride interval dynamics, a signature that sug-

gests cooperation within the different bodily subsystems at

different time scales, stride intervals from human gait [27]

data were analyzed next. Stride interval fluctuations were

recorded from ten healthy subjects who walked for 1 hour

at normal, slow, and fast paces and also walked follow-

ing a metronome set to each participant’s mean stride in-

terval [27]. Three walking conditions (from the data avail-

able from [27]) were considered as different variables from

the same system, and MSampEn values were calculated for

different scales (cumulative IMFs) generated using MEMD

and in this way we were able to discriminate between the

‘self-paced’ and ‘metronomically-paced’ walk. Figure 10a

shows the results obtained by the standard coarse-graining

based MMSE method and Fig. 10b for the proposed MEMD-

enhanced method. Both methods found that self-paced ‘un-

constrained’ walk has higher complexity, and thereby ex-

hibits greater long-range correlations compared to constrained

‘metronomically-paced’ walk.
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Fig. 10. MMSE analysis for self-paced (red square) vs

metronomically-paced (green circle) stride interval time series: us-

ing: a) coarse graining based standard multivariate MSE, and

b) MEMD-enhanced multivariate MSE. The curves represent an av-

erage over 10 subjects, and the error bars the SD

The statistical difference of the entropy statistics of self-

paced and metronomically-paced sets were evaluated using

the Student’s t-test and the Mann-Whitney U test. Both these

tests revealed significant differences (p < 0.01) at all IMF-

defined scales except the first two for standard coarse grain-

ing as well as MEMD-enhanced MMSE method. Observe

that the first scale corresponds to the raw signal and MSam-

pEn measures cannot discriminate between self-paced and

metronomically-paced walk in either method. Moreover, as

desired the separation between the MMSE curves of uncon-

strained and metronomically-paced walk was higher for the

MEMD-enhanced method (Fig. 10b), as indicated by much

smaller error bars. Thus, using cumulative IMFs as data-

adaptive scales offers a significant improvement over the

coarse-graining based MMSE. These results also agree with
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the more general concept of multiscale complexity loss with

ageing and disease or when a system is under constraints

(metronomically-paced walk), which all reduce the adaptive

capacity of biological organization at all levels [26].

5.3. Structural complexity of different brain states. The

proposed algorithm was applied to multivariate electroen-

cephalogram (EEG) signals to detect changes in brain states.

The alpha component in EEG (8–12 Hz) increases with the

closing of the eyes and is closely linked to the state of alert-

ness. Correlations are introduced by the alpha response, there-

fore destroying the 1/f nature of the standard EEG response

and causing an increase in complexity at the corresponding

scales. Several EEG recordings were made on the same sub-

ject for the states of ‘eyes open’ and ‘eyes closed’ at a sam-

pling frequency of 512 Hz from electrodes Cz and POz based

on the 10–20 system8. Recording trials for both states can be

represented as a composite 2×Ne×Ntr-variate vector where

Ne = 2 denotes the number of electrode channels, Ntr = 7
denotes the number of trials, and the length of the vector

equals the sample length of each recording. A single MEMD

operation was performed on the composite delay vector, en-

suring aligned scales across: trials; electrode channels; and

different brain states.

The average complexity analysis over all the trials is

shown in Fig. 11a using standard coarse graining-based
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Fig. 11. MMSE analysis for ‘eyes open’ and ‘eyes closed’ EEG using:

a) coarse graining based standard multivariate MSE, and b) MEMD-

enhanced multivariate MSE. The curves represent an average of 7
trials and the error bars the SD

MMSE and in Fig. 11b using MEMD-enhanced MMSE. Note

that while separation between the ‘eyes closed’ and ‘eyes

open’ states of alertness was not possible using standard

MMSE (the error bars overlap for every scale in Fig. 11a),

the adaptive nature of MEMD-enhanced MMSE enabled a

clear separation between the states. Conforming with theory,

in Fig. 11b the alpha response caused a significant increase

in complexity at scales corresponding to the alpha frequency

range (2 and 3), such that the error bars do not overlap.

5.4. Brain consciousness analysis. Next, we evaluated stan-

dard as well as MEMD-enhanced multivariate multiscale en-

tropy (MMSE) for the characterization of brain consciousness,

particularly, the coma and quasi-brain-death state. The legal

definition of brain death is an irreversible loss of forebrain

and brainstem functions [28], however, brain death diagnosis

procedures are complicated, and some tests require tempo-

rary disconnection from medical support. An initial prognosis

of quasi-brain-death (QBD) is given based on various meth-

ods used for studying brain states using electroencephalogram

(EEG) [29]. Studies have shown that large activity in the alpha

band reflects the alertness of a patient [30], however, standard

spectral analyzes are unable to yield information of the brain’s

inherent nonlinear complex dynamics [31], an important fea-

ture for brain states diagnosis. It is natural to assume that a

brain in the states of coma and quasi-brain-death would have

different degrees of complexity, and that the more stressed the

system (QBD) the lower the complexity. As a result, methods

from nonlinear dynamics theory such as MMSE are a natural

choice in this context [32].

The EEG data were recorded in the intensive care unit in

Hua Shan Hospital, Shanghai, China using a standardized 10–

20 system. The measured voltage signal was digitized via a

portable EEG recording instrument with a sampling frequency

of 1000 Hz. The data was then bandpass filtered (FIR filter) to

retain frequencies within the range 1–40 Hz and then down-

sampled by a factor of 10. Experimental data were obtained

from 10 patients in coma, and 10 in the quasi-brain-death

(QBD) state. For each patients, 50s segment are taken from

the EEG signal.

The coarse graining based multivariate multiscale entropy

(MMSE) method was first applied over all the six electrodes

(FP1, FP2, F3, F4, F7, F8) from both coma and quasi-brain-

death patients. Figure 12a shows the coarse graining based

standard MMSE results for EEG signals from both coma and

quasi-brain-death patients. Observe that, although the coma

patients had higher complexity in EEG than the quasi-brain-

death patients, the error bars overlapped. Figure 12b shows the

result for the MEMD-enhanced MMSE method considering

only first seven IMFs. In this case, separation in error bars are

observed in cumulative IMF index 4, 5 and 6. In both cases,

this indicates a reduction in the intra-cortical information flow

and lower neuronal process in the brain for the QBD patients.

This also shows inhibition of previously active networks or a

loss of dynamical brain responsiveness to the environmental

8The data was recorded using a g.tec g.USBamp biosignal amplifier and then bandpass filtered to retain frequencies within the range 1–45 Hz.
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conditions and supports the more general concept of multi-

scale complexity loss with aging and disease [26].
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Fig. 12. MMSE analysis for EEG signals from coma (red square) vs

QBD (green circle) patients: using: a) coarse graining based stan-

dard multivariate MSE, and b) MEMD-enhanced multivariate MSE.

The curves represent an average over 10 subjects, and the error bars

represent standard error

6. Conclusions

By introducing two critical algorithm enhancements – multi-

variate sample entropy and rigorous account of data adaptive

scales, a robust framework for complexity analysis of multi-

variate time series has been developed. The proposed algo-

rithm has been shown to be both suitable to alleviate problems

arising from data nonstationarity and to detect and quantify

complex dynamics within the multiple data channels, prereq-

uisites for complexity analysis of real-world systems which

are typically of multivariate, coupled and noisy natures. Sim-

ulations on different multivariate physiological signals have

shown the effectiveness of the proposed approach in reveal-

ing long-range spatio-temporal correlations.
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