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Abstract. Linear regression analysis has become a fundamental tool in experimental sciences. We propose a new method for parameter

estimation in linear models. The ’Generalized Ordered Linear Regression with Regularization’ (GOLRR) uses various loss functions (in-

cluding the ǫ-insensitive ones), ordered weighted averaging of the residuals, and regularization. The algorithm consists in solving a sequence

of weighted quadratic minimization problems where the weights used for the next iteration depend not only on the values but also on the

order of the model residuals obtained for the current iteration. Such regression problem may be transformed into the iterative reweighted

least squares scenario. The conjugate gradient algorithm is used to minimize the proposed criterion function. Finally, numerical examples

are given to demonstrate the validity of the method proposed.
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1. Introduction

From the times of A. Legendre [1] and K. Gauss [2] the least

sum of squares (least squares in short) method has been an

essential tool in the experimental sciences such as astronomy,

biology, physics, sociology, psychology, naming just a few

of them. The method had also a major impact on the devel-

opment of the estimation theory [3]. Currently, the method

is routinely applied in signal processing, pattern recognition,

machine learning, system identification, fuzzy systems, neural

networks and elsewhere where we analyze distorted data

[4–9]. Despite the fact that more than 200 years have passed,

the least squares criterion is still the most widely used one

due to its elegant analytical solution that requires low compu-

tational effort. However, it is well known that this method

is optimal only for normal (Gaussian) density function of

model residuals. In general, for nongaussian noise the maxi-

mum likelihood estimator is optimal when the squared resid-

uals are replaced by another function of the residuals, that

is, the negative logarithm of the probability density func-

tion of the residuals. The Laplacian density function, which

is more heavy-tailed than the Gaussian density function,

leads to the very popular Least sum of Absolute Deviation

method (LAD).

Usually, the density function of the residuals is unknown.

To overcome this problem, we need the so-called robust esti-

mator. According to Huber [10, 11], a robust method should

have the following properties: (i) it should have a reasonably

good accuracy at the assumed model, (ii) small deviations

from the model assumptions should impair the performance

only by a small amount, (iii) larger deviations from the model

assumptions should not cause a catastrophe. Huber propos-

es to approximate the unknown density function by a linear

combination of a certain fixed density and an arbitrary densi-

ty. If we choose the normal density for a fixed density, then

the Huber loss function is obtained (smooth combination of

quadratic and linear functions).

Another disadvantage of the least square estimator is its

sensitivity to the presence of outliers, that is, atypical, impos-

sibly large for a model, erroneous observations. Up to now,

a lot of methods immune to outliers have been proposed.

An overview of these methods can be found in [12]. Among

these methods, the Least Median of Squares (LMS), the Least

Trimmed Squares (LTS) are the most successful ones. These

methods fit the model to the majority of the data, by working

on the ordered squared residuals. Outliers may be detected as

points that lie far away from the robust fit [12]. For the last

few years, there has been an increasing interest in incorporat-

ing the main result of the statistical learning theory, i.e. the

fact that the generalization ability of a model depends both on

the empirical risk on a training set and on the complexity of

this model [7, 13], to the pattern recognition and regression

analysis. The support vector regression uses an ǫ-insensitive

loss function and ℓ2 regularization to control the complexity

of a model. The idea of tolerant learning has also been used

to introduce the ǫ-insensitive fuzzy modeling [4, 5].

The traditional least sum of squares criterion may also be

viewed as a scalar quality of the fit, with the arithmetic mean

(after dividing by the number of the data samples) used to

aggregate the fit measure for all data samples. If the gener-

alized mean is used as an aggregation operator, then a wide

class of the mean operators is embraced, including: arith-

metic, harmonic, geometric and more generally root-power

mean. In 1988 R. Yager proposed Ordered Weighted Averag-

ing (OWA)[14]. In this case, the importance of the aggregated

sample depends on its position after the ordering operation.

This class of operators includes for example: min, max and

median. An overview of the aggregation operators can be
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found in [15]. In 2005 OWA was used as a robust estima-

tor of a location parameter to determine the baseline drift of

biomedical signal in a moving window [16]. More recently,

Yager has proposed OWA-based regression using the power

function of the residuals [17].

The use of Iteratively Reweighted Least Squares (IRLS)

traces back several decades. In 1973, E.J. Schlossmacher [18]

proposed the use of the IRLS technique in the least sum of

absolute deviation method of curve fitting. In [19] and [10]

this technique was used for robust regression.

The main goal of this work is to show that the regres-

sion problems with various loss functions (including the ǫ-
insensitive ones), ordered weighted averaging of the residu-

als, and regularization may be transformed into the iterative

reweighted least squares scenario. The conjugate gradient al-

gorithm is used to minimize the proposed criterion function.

The second goal of this work is to investigate the performance

of the proposed regression method when applied to data in

the presence of noise and outliers. Some ideas from this paper

have been used in the previous work [6] to design a binary

classifier and here are extended to the ordered linear regres-

sion.

The remainder of this paper is organized as follows: Sec. 2

presents application of an iteratively reweighted least square

criterion function with regularization to estimation of a linear

model. Section 3 shows that this approach may be extended

to ǫ-insensitive loss functions. Section 4 presents the use of

the conjugate gradients for minimization of the criterion func-

tion. Section 5 presents simulation results and a discussion on

the estimation of a linear models for synthetic datasets in the

presence of outliers. Finally, conclusions are drawn in Sec. 6.

2. Problem formulation and initial considera-

tions

We consider the classical regression situation: we

have the data (the training set) T (N) = {(x1, y1),
(x2, y2) , · · · , (xN , yN)}, where N stands for data cardinal-

ity, and each independent input datum xi ∈ IRt (regressors)

has a corresponding dependent output datum yi ∈ IR. From

a set of linear models y = w⊤x + w0 parameterized by a

vector w and a scalar (bias) w0, we seek a vector w⋆ and a

scalar w⋆
0 such that corresponding model fits the data T (N)

best. In the Ordinary Least Squares (OLS) method the quality

of the fit is measured by the residual squared error. Defining

the augmented data vector x̃i =
[
x⊤i , 1

]⊤
and the augmented

vector of parameters w̃ =
[
w⊤, w0

]⊤
∈ IRt+1, the linear

model can be written as y = w̃
⊤

x̃. The residual for ith data

pair equals ei = w̃
⊤

x̃i − yi. In the OLS we seek a vector of

parameters w̃, by minimizing

J (w̃) =

N∑

i=1

(
w̃

⊤
x̃i − yi

)2

, (1)

Let X be the N × (t + 1) matrix

X⊤ , [x̃1, x̃2, · · · , x̃N ] . (2)

and y be N -dimensional vector y⊤ = [y1, y2, · · · , yN ]. Now,

criterion function (1) can be written as

J (w̃) = (Xw̃− y)
⊤

(Xw̃− y) . (3)

The traditional method to prevent over-fitting and make a so-

lution more stable for ill-conditioned (numerically unstable)

problems is Tikhonov (ℓ2) regularization [7]. From the sta-

tistical learning theory perspective, regularization is used to

improve generalization ability of a model [13]. Criterion func-

tion (3) with regularization takes the form

J (w̃) =
1

N
(Xw̃− y)

⊤
(Xw̃− y) + τw⊤w. (4)

Parameter τ ≥ 0 controls the trade-off between the complexi-

ty of a model and the amount up to which errors are tolerated.

Factor 1/N is used to make the value of the regularization

parameter independent from the cardinality of the dataset.

In the proposed method of linear regression, various loss

functions and the idea of regularization are used. We seek

vector w̃ by the following minimization

minew∈IRt+1
J (w̃) ,

1

N

N∑

i=1

hi L
(

w̃
⊤

x̃i − yi

)
+ τ w⊤w, (5)

where L (·) stands for a loss function used, and hi is a weight

corresponding to the ith datum (its role is explained later).

If we choose the quadratic loss function then in matrix nota-

tion (5) takes the form

minew∈IRt+1
J (w̃) ,

1

N
(Xw̃− y)

⊤
H (Xw̃− y) + τw̃

⊤
Ĩw̃, (6)

where H = diag (h1, h2, · · · , hN) and Ĩ is the identity matrix

with the last element on the main diagonal set to zero (to

make a bias term unregularized). The role of his parameters

may be threefold: (i) they may correspond to our confidence

to the ith datum (chi ∈ [0, 1]), (ii) through the proper selec-

tion of the parameters values we may change different loss

functions to the quadratic loss (lhi ∈ IR+ ∪ {0}), (iii) the

values of these parameters may depend on the order of the

model residuals (ohi ∈ [0, 1]). In the last two cases, the values

of the parameters depend on the obtained residuals. In turn,

the residuals depend on w̃. Thus, criterion function (6) should

only be minimized by iteratively reweighting scenario. Let us

denote w, H and e in the kth iteration as w(k), H(k) and e(k),

respectively. Criterion function (6) for the kth iteration takes

the form

J (k)
(

w̃
(k)

)
,

1

N

(
Xw̃

(k)
− y

)⊤

H(k)
(

Xw̃
(k)
− y

)

+τ
(

w̃
(k)

)⊤

Ĩw̃
(k)

,

(7)

where the elements on the main diagonal of H(k) =

diag
(
h

(k)
1 , h

(k)
2 , · · · , h

(k)
N

)
depend on the residuals from the

previous iteration

e(k−1) = Xw̃
(k−1)

− y. (8)

and take the form

h
(k)
i = chi ·

lh
(k)
i · oh

(k)
i . (9)
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The parameter chi, representing a priori confidence to the ith
data pair (xi, yi) does not depend on the iteration index k. In

contrast, parameter lh
(k)
i depends on the ith residual from the

previous iteration, (k − 1)th. The following form of lh
(k)
i is

proposed

lh
(k)
i =





0, e
(k−1)
i = 0,

L
(
e
(k−1)
i

)/(
e
(k−1)
i

)2

, e
(k−1)
i 6= 0.

(10)

Indeed, for the quadratic loss function, we obtain lh
(k)
i = 1,

for all i = 1, 2, · · · , N ; k = 1, 2, 3, · · · . It is well-known

from literature [11] that the quadratic (or squared error) loss

function does not lead to robustness against noisy data and

outliers. A better solution is to use the absolute error function.

This loss function is easy to obtain by taking

lh
(k)
i =

{
0, e

(k−1)
i = 0,

1
/∣∣∣e(k−1)

i

∣∣∣ , e
(k−1)
i 6= 0.

(11)

Many other loss functions may easily be obtained:

• HUBer (HUB) with parameter δ > 0

lh
(k)
i =





1/δ2,
∣∣∣e(k−1)

i

∣∣∣ ≤ δ,

1
/(

δ
∣∣∣e(k−1)

i

∣∣∣
)

,
∣∣∣e(k−1)

i

∣∣∣ > δ.
(12)

• SIGmoidal (SIG) with parameters α, β > 0

lh
(k)
i =





0, e
(k−1)
i = 0,

1

/((
e
(k−1)
i

)2(
1+exp

(
−α

(∣∣∣e(k−1)
i

∣∣∣−β
))))

,

e
(k−1)
i 6= 0.

(13)

• SIGmoidal-Linear (SIGL) with parameters α, β > 0

lh
(k)
i =






0, e
(k−1)
i = 0,

1
/(∣∣∣e(k−1)

i

∣∣∣
(
1+exp

(
−α

(∣∣∣e(k−1)
i

∣∣∣−β
))))

,

e
(k−1)
i 6= 0.

(14)

• LOGarithmic (LOG)

lh
(k)
i =





0, e
(k−1)
i = 0,

log

(
1 +

(
e
(k−1)
i

)2
) /(

e
(k−1)
i

)2

,

e
(k−1)
i 6= 0.

(15)

• LOG-Linear (LOGL)

lh
(k)
i =





0, e
(k−1)
i = 0,

log

(
1 +

(
e
(k−1)
i

)2
) /∣∣∣e(k−1)

i

∣∣∣ ,

e
(k−1)
i 6= 0.

(16)

Thus, to minimize the criterion function for the kth itera-

tion the weights are obtained using one of the above equations

and the result of optimization of the criterion function from

the previous iteration. To start this sequential optimizations,

we set the weights in the 0th iteration as lh
(0)
i = 1 for all i.

The above minimization problem may be viewed as Iteratively

Reweighted Least Square (IRLS) method with the complexity

control of the solution.

Let us now explain the meaning of oh
(k)
i parameters.

These parameters depend on the order of the residuals in

(k−1)th iteration. Let π : {1, 2, · · · , N} → {1, 2, · · · , N} be

the permutation function. The rank-ordered residuals satisfy

the following conditions:

e
(k−1)
π(1) ≤ e

(k−1)
π(2) ≤ e

(k−1)
π(3) ≤ · · · ≤ e

(k−1)
π(N) . (17)

For the sake of simplicity, the index of iteration k at the

permutation function is temporarily omitted. Now, if oh
(k)
i

parameters fulfill oh
(k)
1 > oh

(k)
2 > · · · > oh

(k)
N , then it is

clear that the impact of outliers is reduced by down-weighting

the respective residuals. The disadvantage of this approach is

necessity to exchange in each iteration the rows of X and ele-

ments of y what is a time consuming operation. If we denote

the inverse function of π(i) as π−1(i) then the first term of (7)

may be written as

1

N

∑

i

chπ(i) ·
lh

(k)
π(i) ·

oh
(k)
i

(
e
(k)
π(i)

)2

=
1

N

∑

i

chπ−1(π(i)) ·
lh

(k)
π−1(π(i)) ·

oh
(k)
π−1(i)

(
e
(k)
π−1(π(i))

)2

.

(18)

Using the identity π−1(π(i)) = i the above sum equals

1

N

∑

i

chi ·
lh

(k)
i · oh

(k)
π−1(i)

(
e
(k)
i

)2

=
1

N

∑

i

chi ·
lh

(k)
i · oh̆

(k)
i

(
e
(k)
i

)2
(19)

where oh̆
(k)
i = oh

(k)
π−1(i). In sequel, we obtain

oh̆
(k)
π(i) = oh

(k)
π(π−1(i)) = oh

(k)
i . (20)

Finally, if we denote the permutation function for kth iteration

as π(k)(i), then according to the above result, (9) should be

replaced by

h
(k)
i = chi ·

lh
(k)
i · oh̆

(k)

π(k−1)(i)
. (21)

The form of parameters oh
(k)
i is proposed to be piecewise-

linear
oh

(k)
i = {[(c− i)/(2ξ) + 1/2] ∧ 1} ∨ 0 (22)

or sigmoidal

oh
(k)
i = 1/(1 + exp(a(i− c))), (23)

where ∧ and ∨ denotes min and max operations, respectively.

Both functions, which may be called the weighting functions,

are nonincreasing with respect to argument i ∈ {1, 2, · · · , N}.
For i = c these functions are equal to 0.5. Parameters ξ > 0
and a > 0 influence a slope. In the case of piecewise-linear

function, for i ∈ [c−ξ, c+ξ] its value linearly decreases from 1

to 0. For sigmoidal function, for i ∈ [c−2.944/a, c+2.944/a]
its value decreases from 0.95 to 0.05. In the rest of the

work, the functions defined by (22) and (23) are called
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Sigmoidally-weighted OWA (SOWA) and Piecewise-Linearly-

weighted OWA (PLOWA), respectively. If ordering of residu-

als is not used, which is equivalent to using uniformly weight-

ing function for OWA (for all i, k: oh
(k)
i = 1), then we call

this case regression without ordering (or with none weighting

function).

3. ǫ-insensitive loss functions

It is well known in machine learning that too precise learn-

ing on a training set can lead to the so-called overfitting, and

in consequence to poor generalization ability on data point

previously unseen [7]. Tolerating a small errors in fitting on

a given dataset, can improve correctness on the test dataset

[13]. Motivated by the results of statistical learning theory,

Vapnik introduced the ǫ-insensitive loss function. This func-

tion disregards errors below some ǫ > 0, chosen a priori:

L (ζ) =

{
0, |ζ| ≤ ǫ,

|ζ| − ǫ, |ζ| > ǫ.
(24)

Various ǫ-insensitive loss functions may be considered, in-

cluding ǫ-insensitive quadratic, ǫ-insensitive Huber, and so on.

Let us start our consideration from the ǫ-insensitive quadratic

loss

L (ζ) =






0, |ζ| − ǫ ≤ 0,

(ǫ− ζ)2, ǫ− ζ < 0,

(ǫ + ζ)2, ǫ + ζ < 0.

(25)

Taking into account the above equation, the first term of (5),

assuming hi = 1 for all i = 1, 2, · · · , N , may be written as

N∑

i=1

L
(

w̃
⊤

x̃i − yi

)
=

N∑

i=1

h+
i

(
−w̃

⊤
x̃i + yi + ǫ

)2

+

N∑

i=1

h−

i

(
w̃

⊤
x̃i − yi + ǫ

)2

,

(26)

where h+
i (h−

i ) are equal to zero for −w̃
⊤

x̃i + yi + ǫ ≥ 0

(w̃
⊤

x̃i − yi + ǫ ≥ 0) and 1 otherwise. Thus, the ǫ-insensitive

quadratic loss function may be decomposed into two asym-

metric quadratic loss functions. Let Xe be the 2N × (t + 1)
matrix

X⊤

e ,
[
X⊤,−X⊤

]
(27)

and ye be the 2N -dimensional vector y⊤
e =[

y⊤ − ǫ1⊤,−y⊤ − ǫ1⊤
]
. Vector 1 denotes the vector with

all entries equal to 1. Using the above mentioned notation,

criterion function (7) for kth iteration takes the form

J (k)
(

w̃
(k)

)
,

1

N

(
Xew̃

(k)
− ye

)⊤

H(k)
(

Xew̃
(k)
−ye

)

+τ
(

w̃
(k)

)⊤

Ĩw̃
(k)

,

(28)

where the elements on the main diagonal of H(k) (now,

(2N) × (2N) matrix) depend on residuals from the previ-

ous iteration

e(k−1) = Xew̃
(k−1)

− ye. (29)

The fitting of the ith data pair is represented by the ith and the

(i+N)th element of e. If both e
(k)
i and e

(k)
i+N are greater than

or equal to zero, then the ith datum falls in the kth iteration

into the insensibility zone. If e
(k)
i (e

(k)
i+N ) is less than zero,

then the ith datum is below (above) the insensibility zone in

the kth iteration and should be penalized. For the ǫ-insensitive

quadratic loss we have

lh
(k)
i =

{
0, e

(k−1)
i ≥ 0,

1, e
(k−1)
i < 0.

(30)

Many other ǫ-insensitive loss functions may easily be ob-

tained:

• VAPnik (VAP)

lh
(k)
i =

{
0, e

(k−1)
i ≥ 0,

−1
/

e
(k−1)
i , e

(k−1)
i < 0.

(31)

• HUBer (ǫHUB) with parameter δ > 0

lh
(k)
i =





0, e
(k−1)
i ≥ 0,

1/δ2, 0 > e
(k−1)
i ≥ −δ,

−1
/(

δ
∣∣∣e(k−1)

i

∣∣∣
)

, e
(k−1)
i < −δ.

(32)

• SIGmoidal (ǫSIG) with parameters α, β > 0

lh
(k)
i =





0, e
(k−1)
i ≥ 0,

1

/((
e
(k−1)
i

)2 (
1+exp

(
α

(
e
(k−1)
i +β

))))
,

e
(k−1)
i < 0.

(33)

• SIGmoidal-Linear (ǫSIGL) with parameters α, β > 0

lh
(k)
i =





0, e
(k−1)
i ≥ 0,

−1
/(

e
(k−1)
i

(
1+exp

(
α

(
e
(k−1)
i +β

))))
,

e
(k−1)
i < 0.

(34)

• LOGarithmic (ǫLOG)

lh
(k)
i =






0, e
(k−1)
i ≥ 0,

log

(
1+

(
e
(k−1)
i

)2
) /(

e
(k−1)
i

)2

,

e
(k−1)
i < 0.

(35)

• LOG-Linear (ǫLOGL)

lh
(k)
i =





0, e
(k−1)
i ≥ 0,

− log

(
1+

(
e
(k−1)
i

)2
) /

e
(k−1)
i ,

e
(k−1)
i < 0.

(36)

Our a priori confidence to the ith datum (chi ∈ [0, 1]) should

be ’doubled’, i.e., chi+N = chi, for i = 1, 2, · · · , N , be-

cause every datum in criterion function (28) is also dou-

bled. Moreover, ohi parameters should be obtained in a dif-

ferent way. Let a distance from the insensibility zone be
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s
(k−1)
i = −(e

(k−1)
i ∧ e

(k−1)
i+N ∧ 0) for i = 1, 2, · · · , N and the

permutation function for the rank-ordered sis be π(k−1) for

(k−1)th iteration. Let N
(k−1)
γ denotes the number of sis equal

to zero, i.e., sπ(k−1)(i) = 0 for i = 1, 2, · · · , N
(k−1)
γ . Finally,

for the kth iteration oh̆
(k)

π(k−1)(i)
= 1 for i = 1, 2, · · · , N

(k−1)
γ

and takes a form of piecewise-linear (22) or sigmoidal (23)

function for i = N
(k−1)
γ + 1, N

(k−1)
γ + 2, · · · , N .

4. A method of solution

In the previous two sections it has been shown that linear

regression problems with various loss functions (including

the ǫ-insensitive ones), regularization, and ordered weighted

averaging of the residuals may be formulated as an iteratively

reweighted least square scenario. For the kth iteration, we

need to minimize criterion function (7) or in the case of an

ǫ-insensitive loss function (28). In this section, we focus on

minimization of (7). Criterion (28) has the same form after

replacing X by Xe and y by ye.

The optimality condition for the kth iteration is obtained

by differentiating (7) with respect to w̃ and setting the result

equals to zero

w̃
(k)

=
(

X⊤H(k)X + τN Ĩ
)−1

X⊤H(k)y. (37)

The procedure of iteratively reweighted least square error

minimization for linear regression can be summarized in the

following steps:

1. Fix τ > 0 and H(0) = I. Set the iteration index k = 0.

2. w̃
(k)

=
(

X⊤H(k)X + τN Ĩ
)−1

X⊤H(k)y.

3. e(k) = Xw̃
(k)
− y.

4. H(k+1) = diag
(
h

(k+1)
1 , h

(k+1)
2 , · · · , h

(k+1)
N

)
, where each

h
(k+1)
i , for i = 1, 2, · · · , N is obtained by (21) and de-

pends on the selected loss function and the type of weight-

ing function: (22) or (23).

5. if k > 1 and

∥∥∥w̃
(k)
− w̃

(k−1)
∥∥∥

2
< ξ, then stop

else k← k + 1, go to (2).

Remarks. The iterations are stopped as soon as the

Euclidean norm in a successive pair of w̃ vectors is less than

ξ. The quantity ξ is a pre-set small positive value. In all ex-

periments ξ = 10−3 is used. The above algorithm requires the

inversion of an (t+1)× (t+1) matrix that leads to a running

time of O
(
(t + 1)

3
)

where t stands for the dimensionality of

input data. Thus, this algorithm is computationally infeasible

for large dimensionality of the data.

In the above algorithm, to solve unconstrained quadratic

optimization problem (7) the well-known conjugate gradient

approach can be used [20]. In contrast to solution (37), this

algorithm produces a minimizing sequence w̃
(k),[n]

, where

n = 0, 1, · · · . For the sake of simplicity superscript (k) is

omitted

w̃
[n+1]

= w̃
[n]

+ ν[n]d[n], (38)

where ν[n], d[n] denote the step size and the search direction

for the nth iteration of the conjugate gradient, respectively.

After some simple algebra, the criterion function (7) may be

expressed as

J (w̃) =
1

2
w̃

⊤
Gw− b⊤w̃ + c, (39)

where G = 2
N

X⊤H X + 2τ Ĩ, b = 2
N

X⊤Hy and c =
1
N

y⊤Hy. Let us assume that the search direction is known,

then the step size is chosen to minimize J
(

w̃
[n+1]

)
=

J
(

w̃
[n]

+ ν[n]d[n]
)

. Differentiating above with respect to ν[n]

and setting the result equals to zero, we have

ν[n] = −
2τ

(
d[n]

)⊤

Ĩw̃
[n]

+ 2
N

(
d[n]

)⊤

X⊤H e[n]

(
d[n]

)⊤

Gd[n]
, (40)

where e[n] = Xw̃
[n]
− y.

In the conjugate gradient method, the current search di-

rection should be G-conjugate to the previously chosen di-

rections, i.e.
(

d[n1]
)⊤

Gd[n2] = 0 for all n1 6= n2. A new

search direction is obtained as a combination of the previous

one and the current gradient vector g[n]

d[n] = g[n] + β[n]d[n−1], (41)

where β[n] is chosen to obtain G-conjugacy with the previous

direction.

Thus,
(

d[n−1]
)⊤

G
(

g[n] + β[n]d[n−1]
)

= 0. After some sim-

ple algebra, we have

β[n] = −

(
d[n−1]

)⊤

Gg[n]

(
d[n−1]

)⊤

Gd[n−1]
. (42)

The gradient vector is obtained using (7)

g[n] =
∂J (w̃)

∂w

∣∣∣∣ew=ew[n]

= 2τ Ĩw̃
[n]

+
2

N
X⊤H

(
Xw̃

[n]
− y

)
.

(43)

Comparing (40) and (43), a simpler form of the step size is

obtained

ν[n] = −

(
d[n]

)⊤

g[n]

(
d[n]

)⊤

Gd[n]
. (44)

The minimization of (7) using the conjugate gradient method

may be summarized in the following steps

1. Set the iteration index n = 0 and w̃
[0]

= 0.

2. Calculate gradient vector g[n] using (43).

3. if n = 0, then β[0] = 0, else calculate β[n] using (42).

4. Calculate search direction d[n] using (41).

5. Calculate step size ν[n] using (44).

6. Update w̃ using (38).

7. if
∥∥∥w̃

[n+1]
− w̃

[n]
∥∥∥

2
< ζ, then stop,

else n← n + 1, go to (2).
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Remarks. The iterations are stopped as soon as the Euclidean

norm in a successive pair of w̃ vectors is less than ζ where ζ is

a pre-set small positive value. In all experiments ζ = 10−5 is

used. The conjugate gradient algorithm converges theoretical-

ly in p+1 steps where p is rank of matrix G. If G is full rank

then the algorithm converges in t+1 steps where t denotes the

dimensionality of input data. This algorithm replaces step (2)

in the previous algorithm. The quantity
(

d[n]
)⊤

Gd[n] calcu-

lated in step (5) may be saved and used in step (3) of the next

iteration. If the above algorithm replaces step (2) from the

algorithm presented at the beginning of this section, then the

Generalized Ordered Linear Regression with Regularization

(GOLRR) method is obtained.

5. Numerical experiments and discussion

All experiments were done on Hewlett-Packard HP Compaq

dx7300 Intel Core 2 CPU 6300 @ 1.86 GHz with 1GB RAM,

running Windows XP (Service Pack 2) and MATLAB 6.5 en-

vironment. The following values of coefficients were used for

loss functions: α = 8, β = 1, δ = 0.5, and for weighting

functions (22), (23): c = 0.6, ξ = 0.2, a = 0.2. In all experi-

ments we assume no a priori knowledge about data pairs, i.e.
chi = 1, i = 1, 2, · · · , N.

5.1. Simple linear regression for data with outliers. The

purpose of experiments in this subsection was to evaluate the

performance of the proposed method when applied with var-

ious loss functions and types of weighting function to simple

linear data with noise and outliers. The dataset used in those

experiments was generated in the following way. We simulat-

ed 100 datasets, each having 100 observations. First, for each

dataset, 100 random uniformly distributed input data (in the

range from 0.0 to 50.0) were generated, xi; i = 1, 2, · · · , 100.

After sorting these observations, the output data were gener-

ated as yi = 1.5xi + ςi for i = 1, 2, · · · , 49, 81, · · · , 100 (69
true observations) and yi = 1.0xi + ςi for i = 50, · · · , 80
(31 outliers). Each ςi (noise) was generated as a sum of 4 in-

dependent random uniformly distributed variables in [−1, 1].
Thus, the true vector of the model coefficients was w⊤ =
[w1, w0] = [1.5, 0].

Table 1 shows the results obtained for each combination of

the loss function and the weighting function: the mean value

± standard deviation of the coefficients and the computation

time in seconds.

The obtained results show that for all loss function used,

the mean values of parameter w1 are closer to the real value if

a weighting function is used. In four cases (SQR, HUB, LOG,

LOGL), the PLOWA performs better than the SOWA. In two

cases (LIN, SIGL), the same mean values of w1 were obtained

for the SOWA and the PLOWA, and in the case of SIG loss

function the results were better for the SOWA. The values of

the standard deviation for parameter w1 were very similar for

almost all loss functions and all weighting functions (except

SQR and LOGL with no weighting function used). In these

cases the value of the standard deviation for parameter w1

was twice as big as for all other combinations of loss and

weighting functions. The best results, with respect to parame-

ter w1, were obtained for LOG loss function with the PLOWA

and the worst ones for SQR loss function without weighting

function (the traditional OLS).

Table 1

The influence of the loss and the weighting functions on the proposed

method performance on the first dataset. The true values of the coefficients

are w1 = 1.5 and w0 = 0

Loss function Weighting function

None SOWA PLOWA

SQR w1 1.305 ± 0.025 1.482 ± 0.011 1.488 ± 0.010

w0 −0.085 ± 0.610 −0.116 ± 0.301 −0.164 ± 0.294

Time 0.125 0.219 0.188

LIN w1 1.452 ± 0.017 1.496 ± 0.014 1.496 ± 0.013

w0 0.093 ± 0.378 −0.150 ± 0.389 −0.136 ± 0.385

Time 0.359 0.375 0.375

HUB w1 1.456 ± 0.013 1.496 ± 0.013 1.497 ± 0.013

w0 0.110 ± 0.341 0.009 ± 0.356 0.008 ± 0.354

Time 0.359 0.328 0.313

SIG w1 1.495 ± 0.012 1.498 ± 0.013 1.497 ± 0.012

w0 0.025 ± 0.288 0.008 ± 0.352 0.013 ± 0.344

Time 0.219 1.562 0.234

SIGL w1 1.444 ± 0.013 1.497 ± 0.012 1.497 ± 0.012

w0 0.111 ± 0.331 0.011 ± 0.348 0.003 ± 0.334

Time 0.656 1.562 1.281

LOG w1 1.483 ± 0.010 1.497 ± 0.011 1.498 ± 0.011

w0 0.026 ± 0.287 0.011 ± 0.320 0.007 ± 0.317

Time 0.250 0.256 0.266

LOGL w1 1.316 ± 0.026 1.490 ± 0.010 1.493 ± 0.009

w0 0.516 ± 0.591 −0.062 ± 0.287 −0.084 ± 0.275

Time 0.219 0.187 0.203

As far as the mean values of parameter w0 are concerned,

the use of SQR and LIN loss functions lead to better results

if no weighting function is applied. For SIG and LOGL loss

functions, the SOWA gives better results, and for the HUB,

SIGL and LOG loss functions, the PLOWA performs better. It

should be noted that the best mean values of w0 obtained for

SQR, LIN and LOGL loss functions are more than eight-fold

bigger than the worst case among the best mean values for the

other four loss functions (HUB, SIG, SIGL, LOG). The values

of the standard deviation for parameter w0 were very similar

for all loss functions and all weighting functions except SQR

and LOGL loss functions with no weighting function used. In

these cases, the value of the standard deviation for parameter

w0 was once again twice as big as for all other combinations

of loss and weighting functions. The best results, with respect

to parameter w0, were obtained for the SIGL loss function

with the PLOWA and the worst results were obtained for the

LOGL loss function without weighting function.

The computing time for all combinations of loss and

weighting functions is very small; usually 3-6 times greater

with respect to the OLS. Only in three cases (SIGL/SOWA,

SIGL/PLOWA and HUB/SOWA) computing time exceeds one

second (about 10 times greater with respect to the OLS). An

example of the results obtained in this set of experiments is

presented in Fig. 1.
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Fig. 1. An example of data from the first dataset, and the regression

lines obtained by: squared loss without ordering (solid line), Huber

loss without ordering (dashed line), logarithmic loss and piecewise-

linear weighting function (dash-dot line)

5.2. Simple linear regression for data with background

noise The purpose of experiments in this subsection was to

evaluate the performance of the proposed method when ap-

plied with various loss and ordering functions to simple lin-

ear data with background noise. The dataset used in these

experiments consists of 100 simulated, smaller datasets, each

having 1000 observations, generated in the following way.

First, for each dataset, 1000 random uniformly distributed

input data (in the range from 0.0 to 50.0) were generated,

xi; i = 1, 2, · · · , 1000. The output data were generated as

yi = 0.5xi +7+ ςi. The ςi (noise) was standard normal (zero

mean and variance equal to one). Thus, the true vector of the

model coefficients was w⊤ = [w1, w0] = [0.5, 7]. To these

data, 2000 points (xi, yi) i = 1001, · · · , 3000 were added.

Coordinates of these data points were random, uniformly dis-

tributed in the ranges [0, 50] and [0, 35], respectively.

Table 2 shows the results obtained for each combination

of the loss function and the weighting function: the mean val-

ues ± standard deviation of the coefficients, and computation

time in seconds. In these experiments, the data points (xi, yi);
i = 1, 2, · · · , 2000 were used. Thus, we have 1000 observa-

tions taken from the known linear model and 1000 points of

background noise.

In this second set of experiments, the obtained results

show that for all loss functions used, the mean values of pa-

rameter w1 are closer to the real value if a weighting function

is used. In three cases of loss functions (SQR, SIGL, LOGL),

the PLOWA performs better than the SOWA. In three cases

(HUB, SIG, LOG) the same mean values of w1 were obtained

for the SOWA and the PLOWA, and in the case of LIN loss

function the results were better for the SOWA. The values of

the standard deviation for parameter w1 were the highest for

the SIG loss function. In the cases of LIN/PLOWA, SQR/Non

and LOGL/Non combinations, the mean value for parameter

w1 is greater than for all others cases. The best results, with

respect to parameter w1, were obtained for HUB loss function

with the SOWA and the worst results were obtained for SQR

loss function without weighting function.

Table 2

The influence of the loss and the weighting functions on the proposed

method performance on the second dataset. The true values of the

coefficients are w1 = 0.5 and w0 = 7.0

Loss function Weighting function

None SOWA PLOWA

SQR w1 0.251 ± 0.012 0.488 ± 0.003 0.492 ± 0.004

w0 12.235 ± 0.342 7.259 ± 0.100 7.165 ± 0.108

Time 0.188 0.625 0.594

LIN w1 0.456 ± 0.011 0.490 ± 0.011 0.487 ± 0.021

w0 7.928 ± 0.238 7.217 ± 0.255 7.270 ± 0.448

Time 1.172 2.375 2.172

HUB w1 0.461 ± 0.004 0.498 ± 0.003 0.498 ± 0.003

w0 7.813 ± 0.120 7.052 ± 0.091 7.045 ± 0.091

Time 0.765 1.187 1.187

SIG w1 0.481 ± 0.025 0.484 ± 0.029 0.484 ± 0.023

w0 7.428 ± 0.552 7.381 ± 0.618 7.369 ± 0.505

Time 0.704 1.015 0.984

SIGL w1 0.443 ± 0.005 0.497 ± 0.006 0.498 ± 0.005

w0 8.235 ± 0.135 7.063 ± 0.176 7.054 ± 0.170

Time 0.641 0.968 0.922

LOG w1 0.478 ± 0.003 0.495 ± 0.003 0.495 ± 0.003

w0 7.480 ± 0.104 7.132 ± 0.086 7.136 ± 0.087

Time 0.656 1.032 1.000

LOGL w1 0.345 ± 0.010 0.493 ± 0.003 0.495 ± 0.003

w0 10.246 ± 0.279 7.144 ± 0.093 7.108 ± 0.101

Time 0.578 0.735 0.719

In the case of the mean values of parameter w0, as well

as in the case of w1, application of a weighting function

leads to better results. For LIN and LOG loss functions, the

SOWA gives better results, and for the other loss functions

the PLOWA performs better. It should be noted that the best

mean values of parameter w0 are obtained for exactly the

same loss/weighting functions combinations, which assured

the best mean values of parameter w1. The best mean value

of w0 is obtained for the HUB loss function and the PLOWA.

The worst mean value was obtained for the SQR/None com-

bination; the second worst results were obtained for LOGL

loss function without weighting function. The values of the

standard deviation for parameter w0 were very similar for al-

most all loss functions and all weighting functions (except

SIG loss function, and SQR, LOGL loss functions with no

weighting function used). The best results, with respect to pa-

rameter w0, were obtained for the HUB loss function with

the PLOWA, and the worst results were obtained for the SQR

loss function without weighting function. The computing time

for all combinations of loss and weighting functions is very

small, hence, in most cases, more important than in the first

set of experiments. In six cases the computing time exceeds

one second and in one case (LIN/SOWA) it is greater than

two seconds. An example of the results obtained in this set of

experiments is presented in Fig. 2.

The next experiment was dedicated to evaluate the in-

fluence of the growing number of outliers on the proposed

method. As in the above experiments, data points (xi, yi) for

i = 1, 2, · · · , 1000 + 100 · ρ were used. Thus, we have 1000

observations taken from the known linear model and 100 · ρ
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points of background noise, where ρ = 1, 2, · · · , 20. thus,

the number of background noise points was varied from 100
to 2000 (with the step 100). The performance of the method

was evaluated by means of the mean squared error (of the

difference between the true and the obtained values of the

model parameters). The results obtained are presented in Fig.

3 for the following cases: the squared loss without any weight-

ing function (the line with the triangle markers), the Huber

loss without any weighting function (the line with the cross

markers), the logarithmic loss and the PLOWA (the line with

the square markers). Of course, for the squared loss function,

the growing number of outliers has the greatest impact on

the model quality. For the Huber loss function the impact is

similar although not so great. Applying the logarithmic loss

function and the PLOWA, we do not observe a strong deteri-

oration of the model quality, even if the number of outliers is

twice as large as the number of observations!
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Fig. 2. An example of data from the second dataset, and the re-

gression lines obtained by: squared loss without ordering (solid

line), Huber loss without ordering (dashed line), logarithmic loss

and piecewise-linear weighting function (dash-dot line)
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Fig. 3. Comparison of the quality of regression lines for a grow-

ing number of background noise (outliers) obtained by: squared loss

without ordering (line with triangle markers), Huber loss without

ordering (line with cross markers), logarithmic loss and piecewise-

linear weighting function (line with square markers). Vertical axis is

in logarithmic scale

5.3. Multiple linear regression with ǫ-insensitive loss

function and ℓ2 regularization. The purpose of exper-

iments in this subsection was to investigate the gener-

alization ability of a model obtained by the proposed

method with the ǫ-insensitive loss function and regulariza-

tion when applied to an ill-posed regression problem. The

dataset used in these experiments consist of 100 simulat-

ed, smaller datasets, each having 50 observations generated

in the following way. First, for each dataset, 11 · 50 ran-

dom, uniformly distributed input data in the range from

−10.0 to 10.0 were generated, xj,i; j = 1, 2, · · · , 11;

i = 1, 2, · · · , 50. The output data were generated as

yi = −2.5x1,i−2.0x2,i−1.5x3,i−1.0x4,i−0.5x5,i−0.0x6,i+
0.5x7,i+1.0x8,i+1.5x9,i+2.0x10,i+2.5x11,i+10+ςi. Each

ςi (noise) was generated as a sum of 2 independent random

uniformly distributed variables in [−1, 1] and [−1.5, 1.5].
Thus, the true vector of the model coefficients was w⊤

t =
[−2.5,−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 10.0].
Each dataset was divided into the learning (i = 1, 2, · · · , 7)

and the testing part (i = 8, 9, · · · , 50).

In the experiments, the squared ǫ-insensitive loss func-

tion was used. The insensitivity parameter ǫ was varied from

0.2 to 4.0 (with the step 0.2). The regularization parame-

ter τ was changed from 0.00025 to 0.0125 (with the step

0.00025). The models were created using the training parts

of the datasets. The generalization ability was evaluated us-

ing the testing parts. Figure 4 presents the contour plot of

the squared sum of errors on the testing parts vs. ǫ and τ .

The darker the area the greater the generalization ability of

the model. The main conclusion from these experiments is as

follows: for values ǫ = 2.9 and τ = 0.0110, so different from

zero, the model has the greatest generalization ability. Similar

results were obtained for the other loss functions, but due to

the volume of the work, they were not presented here.
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Fig. 4. The generalization ability of the linear model as the func-

tion of insensitivity parameter ǫ and regularization parameter τ . The

darker the area the greater the generalization ablity of the model

6. Conclusions

In this paper it has been shown that linear regression for var-

ious loss functions, ordered weighted averaging of residuals,
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and regularization, can be formulated as minimization of the

iteratively reweighted least squares (IRLS) criterion function.

The proposed criterion function may easily be extended for

the ǫ-insensitive loss functions. The conjugate gradient algo-

rithm is a computationally effective method for minimization

of the proposed criterion function. An experimental analy-

sis on synthetic datasets shows that the proposed method is

high-breakdown robust to outliers. Depending on the selected

loss functions, weighting vector for ordered residuals, the well

known classical regression method can be obtained, as well

as many new methods, including for example: the least me-

dian with the Huber loss, the trimmed ǫ-insensitive absolute

deviation with regularization. Regardless of a loss function

and a weighting vector used, the numerical solution to the

regression problem can be obtained using the same algorithm

based on the iteratively reweighted least squares scenario with

conjugate gradient optimization.
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