
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 60, No. 4, 2012

DOI: 10.2478/v10175-012-0093-7

VARIA

Hyper-heuristics for cross-domain search

T. CICHOWICZ, M. DROZDOWSKI, M. FRANKIEWICZ, G. PAWLAK∗ ,

F. RYTWINSKI, and J. WASILEWSKI

Institute of Computing Science, Poznań University of Technology, 2 Piotrowo St., 60-965 Poznań, Poland

Abstract. In this paper we present two hyper-heuristics developed for the Cross-Domain Heuristic Search Challenge. Hyper-heuristics solve

hard combinatorial problems by guiding low level heuristics, rather than by manipulating problem solutions directly. Two hyper-heuristics

are presented: Five Phase Approach and Genetic Hive. Development paths of the algorithms and testing methods are outlined. Performance

of both methods is studied. Useful and interesting experience gained in construction of the hyper-heuristics are presented. Conclusions and

recommendations for the future advancement of hyper-heuristic methodologies are discussed.

Key words: hyper-heuristics, cross-domain heuristic search, HyFlex.

1. Introduction

In the recent decades, the study of computational methods

solving hard combinatorial problems was concentrated on

building metaheuristic algorithms. Many metaheuristics ex-

ploiting intimate knowledge of the problem features were de-

veloped with great success. The dependence on the particular

problem (also called a domain) is both a strength, and a weak-

ness. Namely, the dependence on the problem, the need for

tuning, and hence human interference, make the metaheuris-

tics hardly portable and bound to a particular problem/domain

(see for example [1–5]).

To overcome this difficulty the idea of Hyper-heuristics

(HH) was proposed. There are two levels of abstraction. On

the higher level hyper-heuristics explore the space of low level

heuristics (LLHs) instead of directly operating on the space

of problem solutions. The low level heuristics perform moves

in the space of the ground combinatorial problem solutions

similarly to the classic local search methods. The LLHs are

an interface between the problem domain and the domain-

independent guiding algorithm. Thus, hyper-heuristics serve

as a general concept of constructing methods applicable in

solving broad range of hard problems. Examples in which

dedicated two-level heuristics were applied to the solve select-

ed problems can be found in [6, 7]. Hyper-heuristic approach

has a potential advantage of, on one hand, unifying porting

and automating tuning processes and on the other hand, lim-

iting generality of the meta-heuristics. It in turn, should allow

solving a broad range of combinatorial problems on the basis

of the same methodology. The challenge that represents de-

veloping hyper-heuristics is to construct methods capable of

solving different kinds of combinatorial problems when prob-

lem formulation and its features are not directly known. It

means that at least two issues must be adequately addressed:

Which LLHs concepts can be implemented in every domain?

Which algorithm can guide the LLHs efficiently?

To foster new ideas for hyper-heuristics a Cross-Domain

Heuristic Search Challenge (CHeSC) was held in 2011 [8]. In

this paper we report on our achievements in CHESC, lessons

learnt, and conclusions for the future directions of hyper-

heuristic developments. Two hyperheuristics were developed:

Five Phase Approach (5Ph) and Genetic Hive (GH). The 5Ph

method evolved into a complex LLH control architecture. GH

was developed as alternative and competitive solution. Since

the team was restricted to submit only one method, GH was

finally chosen to be qualified in the challenge as slightly more

effective. Though, we were not particularly successful in the

competition (we were qualified in the middle of the ranking),

we would like to share the experience of constructing the two

hyperheuristics. HH research area is relatively new, and we

progressed from the state of initial misconceptions towards

some comprehension of HH operation. We believe that it is a

valuable contribution to the research area.

The remainder of the paper is organized as follows. In the

next section we introduce HyFlex, and the rules of CHESC

competition. Section 3 is dedicated to the 5Ph hyperheuristic.

Section 4 presents Genetic Hive hyperheuristic. Computation-

al results are reported in Sec. 5. Conclusions and recommen-

dations for future research are provided in the last section.

2. HyFlex and CHESC

HyFlex [9] is a Java library embodying a concept of hyper-

heuristics using four types of low level heuristics: mutational,

ruin-recreate, local search, and crossover LLHs. It is assumed

that a pool of solutions is maintained by the HH. The HH must

decide which LLH to apply and on which solution. Since the

area for solutions is limited, HH has to decide which solutions

to replace. We describe the function of the LLHs on the ex-

amples evolving from bin packing domain. Three local search

LLHs are provided in HyFlex for bin packing: swap from the

lowest bin, split a bin, optimize one bin. The first LLH takes

∗e-mail: grzegorz.pawlak@cs.put.poznan.pl

801



T. Cichowicz, M. Drozdowski, M. Frankiewicz, G. Pawlak, F. Rytwinski, and J. Wasilewski

the largest piece from the least filled bin, and exchanges it

with a smaller piece from a randomly selected bin. If packing

is invalid, two pieces of smaller size are used. If still no valid

packing is possible, then the LLH performs nothing. Muta-

tional LLHs in bin packing domain are: swap, and repack

the lowest filled bin. The swap LLH exchanges two different

pieces at random. If the destination bin cannot accommodate

the new piece, then the piece is put into a new empty bin. Two

ruin-recreate heuristics are provided: destroy x highest bins,

destroy x lowest bins. In the former LLH the x most filled

bins are repacked using best-fit heuristic. Note that parameter

x determines the intensity of changes. The crossover LLH is

exon shuffling crossover [6]. Ruin-recreate, mutational, and

some crossover LLHs may have their own parameters con-

trolling ’depth of search’ or ’intensity of mutation’. HyFlex

evaluates solutions and the objective functions are uniform-

ly minimized. The problem domains covered by HyFlex are:

maximum satisfiability (Max-SAT), bin packing (BP), per-

mutation flowshop (FS), personnel scheduling (PS), traveling

salesman problem (TSP), and vehicle routing problem (VRP).

The Cross-Domain Heuristic Search Challenge (CHeSC)

[10] used 4 domains known at the development stage (Max-

SAT, Bin Packing, FS, PS), and 2 hidden domains (TSP,

VRP). The hidden domains remained unknown to the com-

petitors at the development stage. HyFlex provided 10 training

instances at the development stage. During the competition

the HH algorithm was not aware which domain and instance

it was solving. For the known domains, 3 randomly chosen

training instances and 2 hidden instances were used. For the

hidden domain 5 instances were used. The run times were

limited to 10 minutes for each instance. Since LLHs and HHs

exploited randomized algorithms, quality of the solutions was

a median from 31 runs on one instance. It will be shown in

Sec. 5 that the choice of the median was an important design

decision. The scoring method used “Formula 1” metric which

assigned 10, 8, 6, 5, 4, 3, 2, 1 points to the top 8 consecutive

performers on each instance (race). The scores were collected

over all tests. Thus, for 6 domains (4 known and 2 hidden)

and 5 instances, the maximum score was 300 points. Let us

observe that the rules of the competition required domain-

and instance-independent construction of the HH algorithm.

It was possible for HH to judge progress in solving an in-

stance only by changes of the objective function, and LLH

execution times only.

3. Five phase approach

In this section we sketch the development path of the Five

Phase Approach (5Ph) starting from its initial Three Phase

form (3Ph).

3.1. Initial three phase approach. There were two initial

ideas for the construction of the Three Phase method (3Ph):

To avoid being stacked in one unsuccessful search trajecto-

ry, the hyperheuristic should follow many alternative paths in

parallel. The search should undergo a repetitive pattern of in-

tensifying (improving) the current solution, and diversifying

the search after stagnation. Since the rules of the competition

disallowed multi-threading, the algorithm switched between

virtual streams handling different solutions, thus providing an

equivalent of the parallel threads. The architecture of Three

Phase algorithm (3Ph) is shown in Fig. 1. In the following,

we outline components of 3Ph.

Fig. 1. Architecture of 3Ph algorithm

802 Bull. Pol. Ac.: Tech. 60(4) 2012



Hyper-heuristics for cross-domain search

LLH classification. To identify which LLHs can improve so-

lutions and which can diverge from the current search point,

an online classifier of the LLH behavior was necessary. The

classification algorithm ran an LLH a predetermined number

of times, and the values of the objective function were record-

ed. For LLH i, scorei = −ai/∆i was calculated, where ai was

a slope of the linear approximation of the objective function

values recorded in the test LLH executions, ∆i was the execu-

tion time. Two types of LLHs were distinguished: improvers

with scorei > 0 applied in the intensification, and mashers

with scorei < −0.2 applicable in diversification stage. The re-

maining LLHs were excluded from use in the next algorithm

cycle.

Intensification. In each solution stream a randomly chosen

improver LLHs were executed for a predetermined time (ex-

perimentally set to 5 sec.). The probability of choosing certain

LLH i was proportional to its score stati as an improver. In a

thread, intensification finished after the assumed time period

or after detecting (local) stagnation (see the next paragraph).

The intensification phase reached global end when all streams

reached the time limit or all were in the stagnation state.

Stagnation. Stagnation of a thread was declared if the solu-

tion did not improve in a number of consecutive iterations of

the chosen LLH.

Diversification. To depart from the current solution (possibly

from a local optimum), a randomly chosen LLH was executed

for a predetermined time.

Preliminary tests exposed a number of misconceptions and

3Ph performance deficiencies: After just 2 min, 3Ph could

not improve the objective function. Since the rules of the

competition allowed 10 min. runtime, 80% of the time lim-

it remained unexploited. Classification of LLHs consumed

one third of the time limit, but the resulting assignment did

not persist between the iterations. Hence, LLH classification

was time-consuming, and counterproductive. The LLH per-

formance volatility demonstrate that their behavior depends

on the solutions on which they operate. Since the LLH classi-

fication is so short-lived, it is better to combine classification

with the actual search. The intensification phase almost al-

ways reached stagnation before the 5 sec. limit. Many threads

(solution streams) produced the same solution. Only a small

number of threads produced good results. This implied that

the diversification process was insufficient. The number of

solution streams needed not to be big if suitably guided.

An intermediate algorithm 4Ph was constructed using

crossover LLHs. This, in turn, was substituted by the 5Ph

algorithm.

3.2. Final five phase approach. 5Ph inherited the overall

control structure of 3Ph (cf. Fig. 2). Intensification, stagnation,

diversification and solution streams were preserved in 5Ph. It

was observed that small groups of LLHs (clusters) have more

diversified behavior and hence bigger potential for improv-

ing the objective function than singleton LLHs. The clusters

should mutate to diversify their search capabilities. The length

of LLH clusters was experimentally set to three, hence we

call them triplets. The number of threads was reduced to 7

because the runtime limits restricted spawning unproductive

threads. Greater diversity was achieved by changing the use of

LLHs than by brute force thread spawning. In the following

we refer to global iterations as to the iterations encompassing

all the phases from intensification to diversification. 5Ph ran

iteratively to the 10 min. time limit.

Fig. 2. 5Ph architecture

Bull. Pol. Ac.: Tech. 60(4) 2012 803



T. Cichowicz, M. Drozdowski, M. Frankiewicz, G. Pawlak, F. Rytwinski, and J. Wasilewski

Solution streams initiation. This step was applied once for

each thread to scatter the search paths into different areas of

the solutions space. Random LLHs were applied for five sec-

onds on every thread. The same procedure was applied in the

diversification phase described in the following.

Intensification and local stagnation. The triplets comprised

local search LLHs only. LLH classification was done on the

fly. Let φi denote the improvement of the objective func-

tion and δi the execution time in the last run of LLH i. The

score of LLH i was scorei = scorei ∗ eφi/δi , where initial

scorei = 1, φi > 0 represents improvements. LLH scores

were preserved between global iterations. An LLH from the

triplet was selected with probability proportional to its score

and applied on the solution. The selected LLH was run to its

stagnation in the local thread. As a side effect some LLHs

were eliminated by just one LLH with quickly growing score.

To prevent such a situation, the LLHs that were not applied

so far, had their scores increased by 5% with each execution

of any LLH in the thread. An LLH stagnation was declared if

the objective function was not improved in four consecutive

runs of the elected LLH or 5 sec. time limit was reached. The

selection of a new LLH and its run to stagnation was repeated

NoIt = ⌈gs/3 + 3⌉ times, where gs is the number of global

stagnations (see the stagnation paragraph). Thus, the pressure

on intensification increased with the number of global itera-

tions. After NoIt iterations we reached thread stagnation.

Triplet mutation. For each thread a triplet from some other

thread was selected with the probability proportional to the

average score of the three LLHs. The worst LLH in the cur-

rent triplet was replaced with the best LLH from the foreign

triplet. After thread stagnation and triplet mutation in one

thread, 5Ph switched to the next thread.

Diversification. If local stagnation was detected in all the

threads, then diversification was applied on each thread sep-

arately in the same way as it was described in the initiation

step.

Global stagnation. Global stagnation occurred if in 3 glob-

al iterations, i.e. after running all threads three times through

stagnation, mutation and diversification, the objective function

did not improve.

Solution crossingover. After global stagnation an attempt

was made to combine solution features by applying crossover

operators. A randomly chosen LLH of crossover type was ap-

plied on two solutions from the threads. One solution was

chosen with probability proportional to the objective value,

the other solution with the probability inversely proportional

to the objective value. Thus, on average good solutions were

crossed over with bad solutions. During the tests the number

of crossovers was gradually decreased from 10 to 1. At the

end of this step the global stagnation counter gs was reset to

0, and 5Ph restarted in the intensification phase.

4. Genetic Hive algorithm

Genetic Hive algorithm (GH) was inspired by Bees Algorithm

[11] and by genetic algorithms [12]. Bee population split in-

to groups: those actively searching for food locations and the

other part remaining in the hive. After some time, the search-

ing bees return to the hive and those previously in the hive,

set out to explore the food locations. The bees finding larger

amounts of food have bigger chances to proliferate. Evolving

sequences of LLH are the equivalent of bees searching for

food. Searching for food locations corresponds with search-

ing solution space by the sequence of LLHs. GH embodies

the search by using evolutionary and agent colony methods.

The idea of the algorithm is one of the original contributions

of the paper. A pseudocode of GH is shown in Fig. 3.

Fig. 3. Pseudocode of GH algorithm

In the following section we refer to the sequences of LLHs

as to agents and to procedures and code lines in Fig. 3. In

the  procedure set H of hSize random agents, and a

lSize random solutions (search locations) are created. Agents

from set H are chosen randomly to form set L of lSize agents

assigned to the lSize locations. In line 5 agents in set L are

applied on their solutions. Each agent obtains a score that is

the relative solution improvement. In line 6 bSize best agents

are selected to set B and remain in their locations. Agents in

set L \ B are moved to set H as bees returning to the hive.

Set S of sSize invariant agents is randomly selected from

H \ B to simulate survival of some agents, and extinction

of the remaining hSize-bSize-sSize agents. In procedure 

oSize new agents are constructed using crossing-over and mu-

tation of the agents in set B. Pairs of agents are selected to

crossingover by roulette wheel method with probabilities pro-

portional to the agent score. Next, a single point crossover

is applied to the LLH sequences (i.e. the agents). In other

words, the sequences are cut in two random places and their

prefixes are exchanged. After that, mutation randomly changes

LLHs in the agent sequence. Elements from sets B, S, O cre-

ate new version of set H (line 9). The lSzie-bSize abandoned

search slots are assigned new agents chosen from the new set

H . GH algorithm repeats iteratively lines 2-10 until exploit-

ing the time limit. hSzie, lSize, bSize, sSize, oSize are control

parameters of the algorithm.

5. Computational experiments

Computational experiments and the testbed followed CHESC

rules as closely as possible to guarantee comparability with

the final competition results. In the following subsection we

804 Bull. Pol. Ac.: Tech. 60(4) 2012



Hyper-heuristics for cross-domain search

describe the testbed, results of the tests on individual LLHs,

and on the final HHs.

5.1. Testing environment. To test the algorithms in reason-

able time, and in manner allowing reproduction of the re-

sults the dedicated distributed testing system with a central-

ized management unit was designed. Since the comparability

of the results was essential for further decisions, all com-

puting nodes had the same hardware and software configura-

tions. Each node was equipped with a modern quad-core x64

processor with ample memory(8GB). The experiments were

run on Linux platform with disabled unnecessary system tasks

to ensure non-preemtable run on a processor core in dedicat-

ed memory. Because HyFlex framework is Java module, all

experiments had to be run on Java Virtual Machine (JVM).

The JVM 1.6.0 26 version was used.

A shared disk space for storing the results was provided.

To minimize I/Os communication and blocking on file, all the

results were written to local log files using caching/buffering

mechanisms and multi-part logs. We also proposed slim tasks

management model by using system built-in commands. The

centralized management unit was used for setting shared data

such as equal Java random number generator seed in every

node. After the experiment initialization, tasks were distrib-

uted between 40 cores (10 different instances * 4 domains

= 40 cores). According to the competition rules, it took 10

minutes of parallel processing to execute the test. Each exper-

iment was performed with fixed set of settings determined by

the algorithm tested. Afterwards, the results were merged and

exported to analysis tools.

5.2. Low level heuristic tests. We started our study with in-

tuitive expectation that the LLHs preserve certain performance

patterns. We expected patterns of the form: LLH i typically

improves solution quality until arriving in stagnation, LLH j
in domain X uniformly provides good solutions.

To determine the characteristics of the HyFlex LLHs [9],

a number of tests has been conducted. 10 LLHs from the

groups of mutational, ruin-recreate, and local search LLHs

have been run on each of the ten instances from each domain.

For mutational and ruin-recreate LLHs with control parame-

ters (intensity of mutation, depth of search) the parameters

were chosen randomly from range [0,1] with 0.1 grid. This

gave a total of 1200 tests. In a test, the chosen LLH was repet-

itively executed for at least 300 sec. During the test the best

objective function value obtained to this point and the current

function value were recorded.

A more complex tests were needed for crossover LLHs

to avoid crossover of a solution with itself. For this purpose

10 random solutions have been initialized and then random-

ly crossed-over. The result of crossover operation replaced

one out of the previously chosen solutions. The time limit

was modified to 60 sec. The best objective function value

was chosen from the 10 stored solutions. This gave another

400 tests.

To verify if solution diversity changes behavior of LLH,

analogous tests have been conducted after mixing the solu-

tion by 30 sec. run of a random LLH. The only observed

difference was that the LLHs previously improving objective

function had a slightly worse starting point. This was usually

compensated within 30–60 sec. of the given LLH run time.

The results proved that the behavior of LLHs of a cer-

tain type is inconsistent between domains and instances in

the same domain. Another observation was that some of the

LLHs failed completely to change the objective function along

their execution at all. LLH behavior may not correspond with

common understanding of the LLH class name. In conse-

quence, we concluded that the LLH performance is instance-,

domain- and solution-dependent.

5.3. Hyper heuristics results. In this section we report on

electing best HH submitted to the challenge, and then we

comment on the results in the competition. In general, com-

paring performance of heuristics fairly is very difficult. In our

case the challenge was smaller because we compared HHs in

fully controllable conditions, on the same instances. A cru-

cial decision was the choice of performance metric. Formu-

la 1 scoring method chosen by the competition organizers

gives a strong preference to the order of competitors, ignor-

ing the difference in the objective function. Therefore, to elect

the best of our HHs we used the number of wins against

other HHs on the given 40 instances. The results are col-

lected in Table 1. The second column in Table 1 provides

names of the HHs. RND LLH maintains 10 independent so-

lutions, and for each of them applies iteratively a randomly

chosen LLH. Each LLH executes iteratively, in the given in-

stance, one LLH. The best solution generated by any LLHs

is returned. The remaining LLHs are variants of the meth-

ods described in Secs. 3 and 4. In the following columns,

each entry represents the number of wins vs the number of

defeats of the HH given in the row against the HH given

in the column. As secondary criteria we used the number

of times a given HH provided the best solution, and the

number of unique best solutions. As a result, variants 5Ph-

160-63 of 5Ph and GenHive-68 of GH were chosen for fi-

nal comparison. The results of our finals are shown in Ta-

ble 2.

The two final HHs were compared on all the HyFlex in-

stances. Minima, medians and averages of the objective func-

tion are presented in Table 2. A value in the boldface is the

better one of two values and the method producing it was

winning. It can be seen in Table 2 that GH is better on min-

ima, 5Ph is better on averages and there is a tie in medians.

The reason is quite simple: distributions of the results are

different. Hence, the choice of the HH performance metric is

essential for the final winner. Moreover, this demonstrates that

a single performance index is insufficient to show the whole

complexity of the results. Since the rules of CHESC, by the

Formula 1 scoring system, preferred methods giving the best

solutions (minima), GH method was our final choice.

Bull. Pol. Ac.: Tech. 60(4) 2012 805



T. Cichowicz, M. Drozdowski, M. Frankiewicz, G. Pawlak, F. Rytwinski, and J. Wasilewski

Table 1

Pairwise comparison of CS-Put HHs

Hyper Heuristic 1 2 3 4 5 6 7 8 9 10 11 12 13

1 RND LLH x

2 Each LLH 22/17 x

3 4Ph-LS 36/2 35/5 x

4 4Ph-RND LLH 25/14 21/17 6/32 x

5 5Ph-LS 3pl 37/3 35/5 19/17 36/3 x

6 5Ph-RND LLH 3pl 25/15 28/12 6/33 18/15 4/34 x

7 5Ph-154 37/2 35/5 17/20 33/4 20/17 37/2 x

8 5Ph-155 32/7 31/8 17/20 31/8 16/18 31/8 16/22 x

9 5Ph-160-40 35/5 27/10 19/18 28/12 18/21 25/15 17/22 19/20 x

10 5Ph-160-46 30/10 27/12 19/20 24/15 18/21 24/14 16/20 15/24 14/24 x

11 5Ph-160-63 32/6 35/5 17/21 29/11 20/19 30/10 15/23 18/20 20/19 22/17 x

12 GenHive-35 32/8 28/10 14/24 30/9 17/21 28/12 16/22 17/20 17/22 19/21 14/23 x

13 GenHive-65 36/4 27/13 19/19 29/9 19/18 26/13 18/21 21/18 21/17 21/16 19/21 20/19 x

14 GenHive-68 35/5 29/11 21/17 30/10 24/15 30/10 19/19 26/14 22/18 24/15 23/15 26/11 23/15

Table 2

Results for 5Ph an GH

Ins. SAT FS PS BP SAT FS PS BP

5Ph GH

Minimum

1 2 6331 3310 0.0062 2 6318 3303 0.0064

2 19 6277 2045 0.0036 19 6271 2070 0.0068

3 14 6340 350 0.0199 15 6350 320 0.0207

4 1 6366 19 0.0205 0 6339 11 0.0197

5 1 6415 23 0.0003 1 6404 17 0.0003

6 2 10507 22 0.0032 1 10501 18 0.0031

7 5 10923 1120 0.0162 5 10923 112 0.0057

8 5 26329 2230 0.0260 5 26292 2225 0.0172

9 5 26838 3266 0.0459 5 26780 3165 0.0452

10 209 26655 10037 0.0070 209 26639 9509 0.0037

Median

1 10 6389 3347 0.0110 12 6377 3360 0.0255

2 30 6330 2350 0.0081 27 6323 2540 0.0195

3 24 6409 400 0.0228 23 6402 465 0.0272

4 10.5 6391 28 0.0242 17 6377 27.5 0.0265

5 7 6471 31 0.0063 27 6468 31 0.0105

6 18.5 10545 31 0.0084 45 10537 31 0.0089

7 6 10972 1358 0.0899 9 10970 1379 0.0660

8 6 26455 2688 0.1051 9 26434 2429 0.0738

9 9 26943 3994 0.1000 12 26928 3533 0.0802

10 211 26761 26366 0.0197 217 26751 11057 0.0271

Average

1 14.8380 6386.1 3348.3 0.0101 44.73 6421.87 14257.25 0.0447

2 30.9225 6328.5 2352.1 0.0092 37.89 6360.88 15639.17 0.0427

3 25.4296 6406.5 403.2 0.0227 57.98 6454.41 46504.29 0.0542

4 9.9718 6388.6 29.5 0.0243 34.28 6421.61 253.00 0.0513

5 8.1479 6469.9 32.4 0.0063 39.87 6506.50 336.82 0.0216

6 18.9014 10542.3 32.7 0.0069 64.18 10574.08 251.63 0.0195

7 6.2535 10973.7 1646.5 0.0886 17.38 11008.66 8599.89 0.0978

8 5.9507 26447.2 3286.9 0.0990 13.68 26499.88 11627.68 0.1080

9 8.4296 26939.5 4598.5 0.0965 19.45 26996.80 13495.29 0.1030

10 211.4789 26758.4 28463.8 0.0211 250.83 26814.96 28253.26 0.0322

806 Bull. Pol. Ac.: Tech. 60(4) 2012



Hyper-heuristics for cross-domain search

Fig. 4. Quality of GH in Max-SAT and Personnel Scheduling vs other contenders

It is also interesting to know how far our solution was

from the winners. It is not easy to answer this question be-

cause in the final competition, the instances were randomly

chosen. Hence, we did not know which ones were chosen and

a direct comparison was impossible. Nevertheless, in the con-

test the same set of instances were used for all the submitted

methods. For example, in Fig. 4 quality of solutions for Max-

SAT (SAT) and Personal Scheduling (PS) is shown. Minima,

maxima, medians of other contenders and the GH results are

shown. For the Max-SAT problem the differences are quite

evident, and there was space for improvement. In contrast,

in the Personal Scheduling all results were fairly similar, and

there were almost no space for improvement.

6. Conclusions

In this section we summarize experience and observations

made in the process of developing, tuning, and electing our

best hyperheuristic.

We started our endeavor with a set of misconceptions.

Probably, they were formed by the earlier experience in the

classic heuristic and metaheuristic search. We believed that in

general, certain LLHs should perform well on certain prob-

lems. Some types of LLHs should behave similarly in all

domains. Yet, it turned out to be a misconception. The LLHs

of the same type behave completely differently in various do-

mains. Also on one domain, or on one instance but for various

current solutions, LLHs have different performance. It applies

both to the solution quality and to the runtime. Thus, LLH

performance is domain-, instance-, and solution-dependent.

This has consequences for reasoning about LLHs, HHs, and

HH search. Classifying LLHs by their typical behavior makes

no sense, because such classifications are inevitably volatile.

Considering the HH concept strictly, like in CHESC compe-

tition, as an HH does not “know” which instance in which

domain is solved, then the LLHs can perform unpredictably

and each instance becomes a unitary combinatorial optimiza-

tion problem. As a result, HHs cannot be preconditioned for

efficiently solving any instance in any domain. All the in-

formation needed to guide the HH must be collected while

solving the actual instance. It might have been different if we

knew which kind of domain was being solved, and which the

particular LLH operated.

An HH can be understood as three key components: ar-

chitecture, control parameters, and the guiding AI algorithm.

Examples of architecture are genetic algorithm (GA), tabu

search (TS), simulated annealing (SA), 5Ph, GH. As the clas-

sic metaheuristics (GA, TS, SA) architecture dictates opera-

tions in the space of solutions, the HH architecture dictates

what operations can be done in the space of LLHs. Control

parameters of the classic metaheuristics are set in the tun-

ing process. In HH search, setting control parameters is much

more difficult, especially assuming a strict approach as to a

unitary search problem. Tuning control parameters of an HH

requires a good machine learning algorithm (the guiding AI),

as well as a lot of time. Yet, this resource was very scarce in

CHESC competition. An HH with complex control architec-

ture, like 5Ph, needs a lot of time to be tuned (either man-

ually, or automatically). On the contrary, simple HHs should

be easier to control and self-tune. Hence, it seems a reason-

able idea to start study of HH search from very simple ar-

chitectures. There is one more, humorous, reason for starting

future research in HH from something rudimentary. In our

tests, sometimes a wrong implementation of a certain idea re-

sulted in better performance than the correct implementation

embodying the desired idea.

There are also a number of technical observations result-

ing from the use of HyFlex. One of the issues in HyFlex is

that some LLHs have input parameters. Some of them have

strong impact on LLH performance. For example, some ’depth

of search’ parameters control depth of search in exponential

time algorithms. Controlling LLH input parameters again re-

quires adequate methods. In our implementation, this issue

was not satisfactorily addressed because each pair of an LLH

and its parameter was treated as a unique LLH.

To avoid being trapped in one bad solution path, we in-

troduced parallel search threads in 3Ph ... 5Ph. It turned out

inefficient: only a few threads produced interesting solutions,

the same solution was often constructed in many threads. On

the contrary, limited parallelism of search in GH was more

successful. It means that without diversification of the search

Bull. Pol. Ac.: Tech. 60(4) 2012 807



T. Cichowicz, M. Drozdowski, M. Frankiewicz, G. Pawlak, F. Rytwinski, and J. Wasilewski

paths, parallelism in itself is not helpful. Since the LLHs did

not provide internally sufficient diversity of search, we turned

our attention to more diverse use of the LLHs. Consequent-

ly the number of threads decreased from over 100 in 3Ph to

3–7 in 5Ph. Thus, brute force of massive parallelism by it-

self does not provide real advantage in HH search. Moderate

parallelism with other mechanisms to breed diversity may be

helpful.

In the above discussion we used concepts of search stag-

nation, diversification, in rather intuitive manner. These con-

cepts, inevitably, had their instantiation in our HHs. It may

be argued that they could be implemented differently, and

hopefully better. However, defining them in domain-, LLH-

independent way is difficult. To conclude we could say that

constructing effective hyperheuristic working in the above in-

troduced strict sense is a hard task. Only future may tell if

this idea finally turns successful.

Acknowledgements. Research partially supported by the Pol-

ish National Science Center Grant No. NN519643340.

REFERENCES

[1] J. Blazewicz, E. Pesch, M. Sterna, and F. Werner, “Metaheuris-

tic approaches for the two-machine flow-shop problem with

weighted late work criterion and common due date”, Comput-

ers & Operations Research 35, 574–599 (2008).

[2] J. Blazewicz, W. Domschke, and E. Pesch, “The job shop

scheduling problem: Conventional and new solution tech-

niques”, Eur. J. Operational Research 93, 1–33 (1996).

[3] K.S. Hindi and E. Toczylowski, “Detailed scheduling of batch

production in a cell with parallel facilities and common re-

newable resources”, Computers and Industrial Engineering 28,

839–850 (1995).

[4] P. Jantos, D. Grzechca, and J. Rutkowski, “Evolutionary algo-

rithms for global parametric fault diagnosis in analogue inte-

grated circuits”, Bull. Pol. Ac.: Tech. 60 (1), 133–142 (2012).

[5] S. Dinu and G. Bordea, “A new genetic approach for transport

network design and optimization”, Bull. Pol. Ac.: Tech. 59 (3),

263–272 (2011).

[6] P. Rohlfshagen and J. Bullinaria, “A genetic algorithm with

exon shuffling crossover for hard bin packing problems”, Proc.

9th Annual Conf. on Genetic and Evolutionary Computation

GECCO’07 1, 1365–1371 (2007).

[7] M. Kaleta and E. Toczylowski, “Restriction techniques for the

unit-commitment problem with total procurement costs”, En-

ergy Policy 36 (7), 2439–2448 (2008).

[8] M. Hyde, G. Ochoa, and A.Parkes, “Cross-domain heuris-

tic search challenge”, http://www.asap.cs.nott.ac.uk/chesc2011/

(2011).

[9] G. Ochoa, M. Hyde, T. Curtois, J.A. Vazquez-Rodriguez, J.

Walker, M. Gendreau, G. Kendall, B. McCollum, A.J. Parkes,

S. Petrovic, and E.K. Burke, “HyFlex: a benchmark framework

for cross-domain heuristic search”, Eur. Conf. on Evolutionary

Computation in Combinatorial Optimisation (EvoCOP 2012),

Lecture Notes on Computing Science 7245, 136–147 (2012).

[10] M.Hyde and G. Ochoa, “ASAP Default Hyper-heuristics”,

http://www.asap.cs.nott.ac.uk/chesc2011/defaulthh.html

(2011).

[11] D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and

M.Zaidi, “The bees algorithm”, Manufacturing Engineering

Centre, Cardiff University, Cardiff, 2005.

[12] K. Chakhlevitch and P. Cowling, “Hyperheuristics: recent de-

velopments”, Adaptive and Multilevel Metaheuristics, SCI 136,

3–29 (2008).

808 Bull. Pol. Ac.: Tech. 60(4) 2012


