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Sensitivity analysis of sandwich beams and plates accounting

for variable support conditions
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Abstract. The paper addresses the problems of the sensitivity analysis and optimal design of multi-span sandwich panels with a soft core
and flat thin steel facings. The response functional is formulated in a general form allowing wide practical applications. Sensitivity gradients
of this functional with respect to dimensional, material and support parameters are derived using adjoint variable method. These operators
account for the jump of the slope of a Timoshenko beam or a Reissner plate at the position of concentrated active load or reaction, thus
extending the sensitivity operators known in literature. The jump of slope is the effect of shear deformation of the core. Special attention is
focussed on sensitivity and optimisation allowing for variable support position and stiffness, because local phenomena observed in supporting
area of sandwich plates often initiate failure mechanisms. Introducing optimally located elastic supports allows to reduce the unfavourable
influence of temperature on the state of stress. Several examples illustrate the application of derived sensitivity operators and demonstrate
their exactness.
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1. Introduction

The common aim of designers and technologists is to find
solutions which combine high quality, safety and low price. It
can be achieved in sandwich structures because the properties
of the component materials can be used reasonably. Therefore
the optimal design of sandwich structures is a topic frequently
taken up in literature [1–14].

In the construction industry three-layered panels (sand-
wich panels) with a soft core and steel flat or profiled facings
are most often used because they provide high load-bearing
capacity coupled with small weight and good thermal insula-
tion. In design of these panels the effects of shear flexibility
of the core, wrinkling failure of the facings and essential in-
fluence of the temperature on the state of the stresses should
be taken into account.

Dimensional parametric optimisation of three layered
sandwich panels in the form of minimum weight design was
discussed in [13], whereas in [11] the Pareto optimal solu-
tions combining maximum range of applications with min-
imum cost were found for sandwich panels with soft core.
In [7] the optimisation problems with stress concentrations
at the interfaces were considered with the aim to maximize
the bending moment and minimize the energy due to interlay-
er stresses. The proposed functionally graded sandwich panels
allows energy to transfer from bending to shear and vice versa.
In the papers [2, 3] core junctions were proposed to improve
shear panel capacity. Simultaneously the geometric shape of
the boundary of the adjacent core materials has been improved
to significantly diminish local stress concentrations at the core.
Some recent works have tackled the problem of different fail-

ure modes and their influence on the state of stresses. The
comparison of the behaviour of sandwich panels with various
combinations of materials for achieving minimum mass has
been presented in [10]. In the study [12] failure maps have
been created which illustrate the dependence of failure mech-
anisms on the structural parameters as also load and support
conditions.

A sensitivity analysis has been considered by many au-
thors. In the early paper of Courant [4] the basic variational
formulation of sensitivity problems and possible applications
were discussed. Later in [8] the adjoint variable method was
developed. The influence of the initial distortions on the op-
timal design of support conditions in beams and frames was
studied in [5]. In [6, 9] the sensitivity analysis in the case
of dynamically loaded structures allowing for variable joint
parameters has been presented.

The paper develops the theory of optimal design of sand-
wich panels by consideration of variable support conditions.
In the derivation of the sensitivity operators the shear de-
formation of the core has been taken into account, thus ex-
tending the operators known in the literature. The response
functional is defined in general form allowing optimisation
of stress, strains or displacements. The sensitivity operators
are expressed explicitly using continuous formulation and the
adjoint variable method. The sensitivity gradients are often
employed in hybrid optimisation algorithms, where genetic or
particle swarm methods are combined with a gradient method.
Lately, the importance of the robust design accounting for
manufacturing and service tolerances has been stated in the
literature [1] and here the sensitivity information can also be
useful.
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2. Sandwich panel theory:

assumptions and simplifications

There are several methods of the analysis of sandwich struc-
tures. In macroscopic scale sandwich structures can be exam-
ined using Equivalent Single Layer (ESL) theories (1D or 2D)
which assume that mechanical properties of the surrogate lay-
er are the resultant of the parameters of the particular layers.
Many examples in literature prove, in spite of assumed simpli-
fications, that ESL models are very useful in determining the
mechanical response of sandwich structures in macro scale
[14]. Moreover, because the number of degrees of freedom is
independent from the number of layers the time of the numer-
ical calculations is rather small. Among the ESL theories are:
the Classical Laminated Plate Theory (CLPT) based on the
Kirchoff-Love plate theory, the First Order Shear Deformation
Theory (FSDT) and the High Order Shear Deformation Theo-
ry (HSDT). Three-dimensional elasticity theories can provide
more precise results especially in the analysis of local effects.
They are more sophisticated, engage large number of degrees
of freedom and require refined definition of boundary condi-
tions. Therefore, in the engineering practice these theories are
not often used.

We analyse sandwich panels using the Timoshenko beam
theory generalized to sandwich sections (FSDT). This theo-
ry assumed that the materials are isotropic, homogenous and
linear. Because the Young modulus of the core is about 70
thousand less than Young modulus of the facings, the normal
stresses in the core are negligible, hence shear stresses in the
core are constant. It should be underscored that the response
of sandwich panels with shear deformable core is quantitative-
ly and qualitatively different from the response of a typical
panel. It is illustrated by the example of the beam loaded by
a concentrated force at the end of the cantilever, Fig. 1.

Fig. 1. Displacement lines for a sandwich and Bernoulli beam

The continuous line represents displacements of the
Bernoulli beam where the shear rigidity is infinitely great.
The dashed line represents displacements of the sandwich
beam for which the shear rigidity is assumed to be finite. The
bending and shear effects influence the total displacements of
sandwich beam.

3. Problem formulation

Rational optimisation of structural elements made of drastical-
ly different materials (i.e. steel facings and polyurethane soft
core) is rather difficult because the response can be counter-
intuitive as shown in Fig. 1. Therefore, mathematical theory

of optimisation can be particularly useful for practical en-
gineers. Sensitivity analysis also provides useful information
for this optimal design. In the present paper the problems of
sensitivity analysis are formulated in a general form to make
possible wide application of derived sensitivity operators. The
analysed structures are loaded mechanically and/or thermal-
ly. The latter one induces initial distortions. In the paper a
general form of initial distortions is allowed for.

Let us introduce the structural response functional in the
form (1), where F is an arbitrary Gateaux differentiable func-
tion of displacements w, stresses Q and strains q.

G(ξ) =

L∫

0

F (w, Q, q) · dx. (1)

The functional G(ξ) can play the role of the objective
function or a constraint. Using Dirac function δ(x−x0) in F ,
the global functional can represent a point-wise response at
x = x0. The design vector ξ (2) consists of the position of the
support xs, stiffness of the support ks, thickness of the upper
tF1 and the lower tF2 facing, total thickness of the panel D,
shear modulus of the core GC and the Young modulus of the
upper EF1 and the lower EF2 facing

ξ = [xs, ks, tF1, tF2, D, GC , EF1, EF2] . (2)

The variation of the functional G(ξ) takes the form

δG (ξ) =

L∫

0

(
∂F

∂w
δw +

∂F

∂Q
δQ +

∂F

∂q
δq

)

dx, (3)

where the variations δw, δQ and δq are implicit functions of
the design vector ξ.

It is worth adding that in general, according to [5], we
assume both the initial strain field qi which is kinematical-
ly inadmissible and initial stress field Qi which is statically
inadmissible. In effect elastic strain qe and stress Qe (4) are
induced (Fig. 2). They are interrelated by Hooks law (5):

q = qi + qe, Q = Qi + Qe, (4)

Qe = Kqe, qe = K−1 Qe, (5)

where K is the stiffness matrix. The total strain q and stress
Q are kinematically and statically admissible.

Fig. 2. Conception of the initial stress and strain, see (after Ref. 5)

Relations (4), (5) apply to general class of linear elas-
tic structures. In the case of Bernoulli beam we have scalar
valued quantities

Q = My, q = −w′′, K = EIy . (6)
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In the case of Timoshenko beam theory there is

Q =

[

My

Vz

]

, q =

[

φ′

φ + w′

]

,

K =

[

Bs 0

0 S

]

,

(7)

where My and Vz denote bending moment and shear force,
w is the vertical displacement, φ is rotation angle of the cross
section and Bs, S represent the bending and shear rigidity of
the cross section, respectively. Primes denote differentiation
with respect to x. Note that setting φ = −w′ in (7) we ob-
tain (6), where influence of Vz is neglected. In the case of a
three layered sandwich beam the bending and shear stiffness
coefficients Bs and S are expressed as follows:

Bs =
EF1tF1EF2tF2B

EF1tF1 + EF2tF2

e2, e = D −
tF1 + tF2

2
, (8)

S = GCAC , AC = B (D − tF1 − tF2) (9)

where B is the width of the beam.
In the case of Kirchhoff plate we have

Q =






Mxx

Myy

Mxy




 , q =












−
∂2w

∂x2

−
∂2w

∂y2

−
∂2w

∂x∂y












,

K =






D Dν 0

Dν D 0

0 0 (1 − ν)D




 ,

(10)

where D is the plate bending stiffness. In the case of a ho-
mogenous plate D = Eh3/12(1− ν2).

In the case of Reissner plate the relations (10) take the
form

Q = [MxxMyyMxyVxVy]
T

, (111)

q =

[
∂φx

∂x

∂φy

∂y

1

2

(
∂φx

∂y
+

∂φy

∂x

)

φx+
∂w

∂x
φy+

∂w

∂y

]T

. (112)

Again, we note that by setting φx = −∂w/∂x, φy =
−∂w/∂y in (11) we arrive at (10) with shear effects neglect-
ed.

There is a large class of engineering applications e.g. in
civil engineering, where the slabs are loaded uniformly, have
the ratio length of span to width L/B > 2 and have line
supports in the direction B. In this case Timoshenko beam
theory can be successfully used for plates. For the brevity of
the presentation we focus attention on this class of problems.
However, the sensitivity operators derived in Sec. 4 based
on Timoshenko theory can be easily generalized for Reissner
plate theory, which is discussed in Sec. 5 and illustrated in
the example 5.

4. Sensitivity operators

Consider a sandwich beam illustrated in Fig. 3, where three
states are depicted: the actual structure (primary), the actu-
al structure after variation of control parameters ξ (primary
with superscript *) and the adjoint structure (denoted by su-
perscript a). The adjoint structure is introduced in order to
transform (3) to the explicit form.

Fig. 3. Considered structures: actual (primary), after variation of control parameters (primary *) and adjoint
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We write the virtual work equation using the statically ad-
missible stress fields from the adjoint structure and kinemati-
cally admissible variations of kinematic fields in the primary
structure

L∫

0

pa (w∗ − w) dx + Ra
s (w∗

s − ws)

−

L∫

0

Qa (q∗ − q) dx = 0.

(12)

Conversely, using adjoint kinematic fields and variations
of primary stress fields we obtain

L∫

0

(p∗ − p)wadx + R∗

s∗wa
s∗ − Rsw

a
s

−

L∫

0

(Q∗ − Q)qadx = 0.

(13)

The quantities denoted by star refer to the structure after
variation of the design parameters. Particularly, the subscript
s∗ denotes that a quantity is measured after the variation of
the support position x∗

s = xs + δxs. By developing the vari-
ations of displacements in Taylor series and retaining only
linear terms we obtain the following relations

w∗

s∗ − ws = δws (def.) ,

w∗

s − ws = δws − w−

s,xδxs,

wa
s∗ − wa

s = wa+
s,xδxs,

R∗

s∗ − Rs = δRs(def.).

(14)

Because of the slope discontinuity, the left and right deriv-
atives of the displacement are not equal at the point of the
concentrated load. This makes necessary to use left- (·)− and
right-handed (·)+ derivatives.

Subtracting (12) from (13) and introducing (4), (5), (14),
we finally obtain the following relation

0 =

L∫

0

{(p∗ − p)wa − pa (w∗ − w)

−δQiqai − δQiqae − qai (δKqe + Kδqe)

−qae (δKqe + Kδqe) + Qaiδqi

+Qaiδqe + Kqaeδqi + Kqaeδqe
}

dx + Ra
sw−

s,xδxs

+Rsw
a+
s,xδxs − Ra

sw∗

s∗ + Ra
sws + δRsw

a
s ,

(15)

where the functions Q, q, Qae and qae can be discontinuous
in the point s (i.e. point of applied concentrated load) as well
as function Q∗ and q∗ in the point s∗; the functions w, w∗

and wa are continuous of class C0, whereas p, p∗ and pa

could have distribution of the Heaviside or Dirac type. Addi-
tionally, we assume that p = p∗ and Ka = K. In our problem

we consider also the elastic supports, which can be introduced
in the following forms:

Rs = −ksws,

δRs = −δksws − ksδws,

Ra
s = −ka

swa
s ,

ka
s = ks, ks = f−1

s ,

(16)

where ks and fs are respectively stiffness and flexibility of
the support. Now, we can rewrite the (15) by introducing the
(16) in the following way

0=

L∫

0

{−paδw − qaeδQi − qaeδKqe +Kqaeδqi
}

dx

+

L∫

0







−qaiδQi − qaiδQe

︸ ︷︷ ︸

qaiδQ

+Qaiδqi + Qaiδqe

︸ ︷︷ ︸

Qaiδq







dx

+
(
Ra

sw−

s,x + Rsw
a+
s,x

)
δxs − wsw

a
s δks.

(17)

Because operations on the ks and δks are numerically ineffi-
cient, the use of flexibility of the support fs is more conve-
nient. Hence, the later component of the (17) can be written as

−wsw
a
sδks = RsR

a
sδfs. (18)

In our considerations we also assume that the load and ini-
tial strains and stresses do not change with the variation of the
control parameters. Hence p = p∗, qi = q∗i and Qi = Q∗i.
It results in δqi = 0, δQi = 0. Summing up, we obtain
fundamental Eq. (19), which expresses the Eq. (3) explicitly
towards to δxs, δfs and δK:

δG (ξ) =

L∫

0

(
paδw + qaiδQ− Qaiδq

)
dx

=
(
Ra

sw−

s,x + Rsw
a+
s,x

)
δxs

+RsR
a
sδfs −

L∫

0

(qaeqeδK)dx.

(19)

In the derivation of (19) the step right of the support po-
sition was assumed, i.e. δx+

s = xs∗ − xs > 0. In the case of
step left δx−

s = xs∗ − xs < 0 the terms with the superscripts
(·)+ and (·)− change the sign i.e. w−

s,x changes into w+
s,x and

wa+
s,x changes into wa−

s,x. In a special case when only the po-
sition of the support is subject to variation δx+

s or δx−

s we
have

δG (xs) =
(
Ra

sw+
s,x + Rsw

a−
s,x

)
δx−

s , (201)

δG (xs) =
(
Ra

sw−

s,x + Rsw
a+
s,x

)
δx+

s . (202)

Lemma

Ra
sw+

s,x + Rsw
a−
s,x = Ra

sw−

s,x + Rsw
a+
s,x. (21)
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Proof. Equality (20) can be written as

Ra
s

(
w+

s,x − w−

s,x

)
− Rs

(
wa+

s,x − wa−
s,x

)
= 0

or briefly by introduction of the notation [. . . ] for the jump
of a function

Ra
s [ws,x] − Rs

[
wa

s,x

]
= 0. (22)

From (7) it follows that

My = BSφ′ and VZ = S (φ + w′) .

At a hinge support x = xs the bending moment My is C0

continuous, hence φ is C1. Therefore, the jumps of functions
can be written as

[Vz ] = [S (φ + w′)] = S [w′] = S [ws,x] .

But [Vz ] = Rs hence,

[ws,x] =
1

S
Rs and

[
wa

s,x

]
=

1

S
Ra

s . (23)

Introducing (23) into (22) one obtains 0 = 0. End of the

proof.
Using the lemma, the sensitivity operators (201) and (202)

simplify to

δG (xS) =
(
Ra

sw+
s,x + Rsw

a−
s,x

)
δxs

or δG (xS) =
(
Ra

sw−

s,x + Rsw
a+
s,x

)
δxs.

(24)

Necessary condition δG(xs) = 0 for optimal support position
in Timoshenko beam takes now the form

Ra
sw+

s,x + Rsw
a−
s,x = 0

orRa
sw−

s,x + Rsw
a+
s,x = 0.

(25)

The sensitivity gradient and optimality condition derived
in [5] for Bernoulli beam were:

δG =
(
Ra

sws,x + Rsw
a
s,x

)
dxS

and Ra
sws,x + Rsw

a
s,x = 0.

(26)

In case when the functional G1 represents the global stiff-
ness of the structure described by its total potential energy,
its variation and optimality condition (26) reduce to

δG1 = (Rsws,x) dxS

and Rsws,x = 0.
(27)

In the Example 4 we demonstrate that for Timoshenko beam
the formulae (27) change to (42)

δG1 = Rs · 0.5
(
w+

s,x + w−

s,x

)
δxs

and Rs · 0.5
(
w+

s,x + w−

s,x

)
= 0.

The derivative ·ws,x is replaced by the arithmetic mean
of left- and right-hand derivatives.

Now let us focus attention on the last term in (19). Ac-
cording to (7) and (8) we can write

L∫

0

(qaeqeδK) dx=

L∫

0

(w′′ae
M w′′e

M δBs + w′ae
V w′e

V δS) dx. (28)

In case of support translation, discontinuities of kinematic and
static fields at x = xS are observed. Therefore in special cases
the integrals in x domain must be divided into three integra-

tion ranges
∫ L

0
· · ·dx =

∫ x−

s

0
· · · dx+

∫ x+
s

x−

s

· · ·dx+
∫ L

x+
s

· · ·dx,

where the integral
∫ x+

s

x−

s

· · · dx can be evaluated using 1st mean
value theorem for functions. This is discussed in [5] and [9]
for Bernoulli beam.

The variations of the δBs and δS in (28) in case of sand-
wich beams take the form:

δBs = B1δEF1 + B2δEF2 + B3δtF1 + B4δtF2 + B5δD,

B1 =
B

4

tF1E
2
F2t

2
F2 (2D − tF1 − tF2)

2

(EF1tF1 + EF2tF2)
2

,

B2 =
B

4

E2
F1t

2
F1tF2 (2D − tF1 − tF2)

2

(EF1tF1 + EF2tF2)
2

,

B3 =
B

4

EF1EF2tF2 (2D − tF1 − tF2)
(
2DEF2tF2 − 2EF1t

2
F1 − 3tF1EF2tF2 − EF2t

2
F2

)

(EF1tF1 + EF2tF2)
2

,

B4 =
B

4

EF1tF1EF2 (2D − tF1 − tF2)
(
2DEF1tF1 − 2EF2t

2
F2 − 3EF1tF1tF2 − EF1t

2
F1

)

(EF1tF1 + EF2tF2)
2

,

B5 =
BEF1tF1EF2tF2 (2D − tF1 − tF2)

EF1tF1 + EF2tF2

,

(29)

δS = B (D − tF1 − tF2) δGC − GCBδtF1 − GCBδtF2 + GCBδD. (30)
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According to (3) and (19), the adjoint actions are defined
as follows:

pa =
∂F

∂w
, qai =

∂F

∂Q
, Qai = −

∂F

∂q
, (31)

where pa is the adjoint loading, qai and Qai are initial strain
and stress in the adjoint structure.

In optimal design and sensitivity analysis there can be
different classes of problems depending on the form of the
response functional G. They will be illustrated by the way of
examples presented in Chapter 6.

All formulae derived hitherto can be directly used to rec-
tangular slabs provided that the length-to-width ratio, load-
ing and support conditions make possible to apply the Timo-
shenko layered beam theory, as described in Chapter 3. This
limitation follows from the assumption that kinematic and sta-
tic fields are constant in the width direction B of the slab. If
these conditions are not satisfied and bending and torsional
moments in width direction exist, then 2-D theory must be
employed. This issue is discussed in Chapter 5 and in the
example 5.

5. Generalization

The derived sensitivity operators can be generalized for a
broader class of slabs, where the loading and hence the stress
and strain fields are not constant in the width direction. The
2-D Reissner plate model must be used, where constitutive
Eqs. (11) are introduced instead of (7). Distributed load p is
defined per unit surface area (kN/m2) and reaction force is
expressed in kN/m. Let the support with a position xs, which
is subject to variation δxs, be a line support perpendicular
to L (Fig. 4). The sensitivity operators derived in Chapter 4
remain valid provided that the integrals in the length domain
L∫

0

dx are substituted by integrals over the middle surface of

the slab

L∫

0

B/2∫

−B/2

dydx and the sensitivity operators with re-

spect to variation of the support position [..]δxs are substituted
by the same term integrated in the range B/2 ≤ y ≤ B/2,

namely






B/2∫

−B/2

[..] dy




 δxS . The Eq. (19) takes the form

δG (ξ) =

L∫

0

B/2∫

−B/2

(
paδw + qaiδQ− Qaiδq

)
dydx =

=






B/2∫

−B/2

(
Ra

sw−

s,x + Rsw
a+
s,x

)
dy




 δxs

+






B/2∫

−B/2

RsR
a
sdy




 δfs −

L∫

0

B/2∫

−B/2

(qaeqeδK)dydx.

(32)

Fig. 4. Rectangular sandwich panel with variable support position xs

Here the variations δxs and δfs are scalar valued. The
optimality condition (24) can be written as

B/2∫

−B/2

(
Ra

sw+
s,x + Rsw

a−
s,x

)
dy=

B/2∫

−B/2

(
Ra

sw−

s,x + Rsw
a+
s,x

)
dy=0.

(33)
6. Examples

Practical application and the correctness of the sensitivity op-
erators derived above will be demonstrated by the following
examples. Therefore several special cases are considered and
the sensitivity operators evaluated by means of the presented
theory are compared with simple finite difference calculation
(central or forward). We focus attention on effects typical for
sandwich panels and important in structural design, namely
deflection of the panel, value of reaction force and bending
moment at the middle support. The latter two quantities play
important role in design, since they can result in local failure
mechanisms at the support. Following the main idea of the pa-
per, the attention will be focussed on variation of parameters
specifying the support, namely its position and stiffness, al-
though the derived sensitivity gradients account for variation
of all design variables defined in (2). Example 4 demonstrates
usefulness of sensitivity operators when in optimisation algo-
rithm the genetic and gradient methods are combined. The
analyses in examples 1 to 4 are carried out using the authors’
program FEM a fine mesh which ensured exactness within the
limits of Timoshenko beam theory. Example 5 demonstrates
the correctness of the sensitivity operator when applied to
Reissner plate. Here the Abaqus system with the FEM mesh
5 × 5 cm was used.

Example 1. Consider a sandwich beam shown in Fig. 5. It
is subjected to uniformly distributed load p(x) = 1.0 kN/m.
Total length of the beam is L = 2.0 m. We will study the
sensitivity of displacement at the point a is xa = 1.0 m with
respect to variation of the support position. We will study
the sensitivity of the deflection in the whole range of support
positions xs. The thickness of the facings is tF1 = tF2 =
0.00045 m, the thickness of the core is d = 0.12 m, and the
shear modulus is GC = 2500 kPa. The adjoint action, accord-
ing to Eq. (31), is P a = 1. The design vector is limited to
xS . We are checking both forms of the operator (24), namely

δG (xs) =
(
Ra

sw+
s,x + Rsw

a−
s,x

)
δxs

and δG (xs) =
(
Ra

sw−

s,x + Rsw
a+
s,x

)
δxs.

(34)
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Fig. 5. Variation of the displacement of sandwich beam with respect to the variation of support position: primary structure, structure after
variation of the support position (primary *) and adjoint structure

Fig. 6. Variable support position xs: a) sensitivity gradient δwa/δxs, b) displacement wa

This example proved that in the whole range of support
positions xs both forms of (24) provided the same values of
the sensitivity operator and these values were compared with
simple finite difference computation. The differences were
less than 3%. The displacement wa and the sensitivity gra-
dient δwa/δxs are shown in Fig. 6. The singular point at
xs = 1.0 m represents a trivial solution when the deflection
is measured at the support.
Example 2. Consider again the sandwich beam analysed in
the example 1, with the same dimensions and loading. Now
we will study the sensitivity of the reaction force with respect
to variation of support position i.e. (δRs/δxs). Determina-
tion of δRs requires introducing the settlement of the support
∆a

s in the adjoint structure. Hence, the primal structure is in
the state of stress and strain induced by the load p, where-
as stresses and strains in the adjoint structure are induced by

kinematic distortion in the form of displacement ∆a
s of the

rigid support located at x = xs. Variation of the functional
G is expressed by two equivalent formulae

δG (xs) = −δRs∆
a
s =

(
Ra

sw+
s,x + Rsw

a−
s,x

)
δxs, (351)

δG (xs) = −δRs∆
a
s =

(
Ra

sw−

s,x + Rsw
a+
s,x

)
δxs. (352)

In Fig. 7 the value of the support reaction Rs and the sen-
sitivity gradient (δRs/δxs) are depicted for the whole range of
support positions 0 ≤ xs ≤ L. Again, both formulae (351) and
(352) gave the same results. These results were compared with
simple finite difference computation. The differences were less
than 2%. The values of Rs in Fig. 7b are negative, because
we assumed positive direction of Rs downwards in agreement
with displacement w.
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Fig. 7. Variable support position xs: a) sensitivity gradient δRs/δxs, b) value of reaction Rs at x = xs

Example 3. Consider a symmetrical two-span sandwich
beam with the length of spans L shown in Fig. 8. Let us
assume that the middle support is perfectly rigid, i.e. its flex-
ibility f = 0. The steel facings are tF1 = tF2 = 0.00045 m
and the thickness of the core d = 0.10 m. Hence the bending
stiffness of the beam is BS = 531.3 kNm2. The shear mod-
ulus is GC = 3000 kPa. We will analyse three load cases:
(a) mechanical load, (b) thermal load and (c) interaction of
mechanical and thermal load. The analyses will be carried out
for length of span L equal to 3 m, 4 m and 5 m.

Fig. 8. Sensitivity of the bending moment Ms at the middle support
with respect to variation of support flexibility fs and bending stiff-
ness BS : primary structure, structure after variation of the design

parameters (primary *) and adjoint structure

We are concerned in the value of the bending under the
middle support. This is an important issue since this moment
produces concentration compressive stress in the upper layer
which can result in wrinkling and failure. We will study the

variation of moment Ms with respect to variation of support
flexibility δf s and to variation of the bending stiffness δBs

of the beam. The latter one can result from variations of the
thickness of cover plates δtF1 and δtF2. The design vector is
ξ = [fS, BS ] and (19) takes the form

δG (ξ) =

L∫

0

(
qaiδQ

)
dx = +RsR

a
sδfs −

L∫

0

(qaeqeδK)dx,

(36)
or setting Q(x) = MSδ(x − xS) and q = w′′ we obtain

δG (ξ) = ϕaδMs = Ra
sRsδfs −

L∫

0

(w′′ae
M w′′e

M δBs) dx. (37)

Figure 8 shows the primary structure with rigid support,
and the structure after variation of design parameters δf and
δBS , where static and kinematic fields are denoted by star.
Both structures are subjected to mechanical load p and/or
temperature load. Next we assume that the adjoint structure
is subjected only to initial kinematic distortion in the form of
an angle of rotation ϕai = 1 of cross section over the middle
support (Fig. 8).

We solve using FEM the primary and adjoint problems.
Next the reaction forces and kinematic fields are introduced
into (37) to provide the sensitivity gradients The results for
L = 3.0 m and rigid support f = 0 are:

– case (a), when p(x) = 6.0 kN/m, the sensitivity gradi-
ents are

∂MS/∂f = 2128.7 kN2 (note that kNm/(m/kN)=kN2) and

∂MS/∂BS = 0.003173 m−1 (since kNm/(kNm2) = m−1),

– case (b), when ∆T = −30◦C, there is ∂MS/∂f =
−112.6 kN2,

– case (c), when p(x) = 6.0 kN/m and ∆T = −30◦C, it
is ∂MS/∂f = 420.9 kN2.

In cases (b) and (c) the gradients ∂MS/∂BS were not
computed. Optimisation of sandwich panels with respect to
BS was discussed by the authors in [11].
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Fig. 9. Variation of the moment at the support δMs for various flexibility f of support, for three span lengths: a) mechanical load
p(x) = 1.0 kN/m b) thermal excitation ∆T = −30.0◦C

All presented above gradients were compared with the
ones obtained from finite difference method. The differences
were less than 1.5%.

Figure 9 presents the increments of the moment at the
support (δMs) for a specified small variation of the support
flexibility for three lengths of span and for various flexibility
coefficients f . It is interesting that all functions are nearly con-
stant in a large range of small flexibility f . For great flexibility
all curves tend to zero. Crossing of functions for different L
is observed. Note, that in both load cases p(x) = 1.0 kN/m
(Fig. 9a) and ∆T = −30◦C (Fig. 9b) introduction of flexi-
ble support is advantageous. In the first load case p, negative
moment at the support is induced therefore positive incre-
ment δMS > 0 improves the response. In the latter load case
∆T there is positive moment MS, hence negative increment
δMS < 0 is advantageous, too.

Example 4. Let us check the usefulness of the derived sensi-
tivity operators by the way of the example of support position
optimisation. Consider the sandwich beam shown in Fig. 5
with all parameters and loading p described in the Exam-
ple 1. Our task is to find the optimal position xs of the sup-
port which provides maximum stiffness measured by the total
potential energy Π. For a linear elastic material the equivalent
formulations are

maxΠ = max





∫

L

(
1

2
qT Kq − pw

)

dx





or min




1

2

∫

L

pwdx



 .

(38)

We formulate the following problem: find the optimal support
position xs which provides minimum of G

G =

∫

L

F (w)dx =

∫

L

pwdx. (39)

Comparing (39) with (1) and in view of (3), (30), the ad-
joint problem is identical as the primal one. Hence Ra

s = Rs,
wa+

s,x = w+
s,x and wa−

s,x = w−

s,x. The sensitivity operators (24)

simplify to one formula

δG (xS) = Rs

(
w+

s,x + w−

s,x

)
δxs. (40)

Note that in case of minimization of internal energy

G1 = U = 0.5

∫

L

qT Kqdx = 0.5

∫

L

pwdx (41)

the sensitivity gradient (40) and optimality condition take the
forms

δG1 (xS) = δU = Rs · 0.5
(
w+

s,x + w−

s,x

)
δxs

and Rs · 0.5
(
w+

s,x + w−

s,x

)
= 0.

(42)

The total number of the fitness function calls n is limited
to 80. For this range of n the best fitness function value equals
1.233884 kNm and occurs for n = 71 (point 1 in Fig. 10).
It corresponds to the support position xs = 1.366 m. This
will be the starting point for next using the operator (40) with
the step δxs = 0.001 m. Table 1 presents the computational
steps required to obtain the optimal global solution with the
precision 0.001 m. This precision is assumed to demonstrate
the correctness and effectiveness of the algorithm, though in
engineering practice so high precision is not needed.

Fig. 10. Course of the fitness function (ff ) vs. number of computation
n by EA
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Table 1
Computational steps in the gradient method

Step no. xs [m] ∇G(xs) Decision

1 start xs = 1.366 2.52693 · 10−5 > 0 go left

2 xs = 1.365 1.30598 · 10−5 > 0 go left

3 xs = 1.364 0.08448 · 10−5 > 0 go left

4 xs = 1.363 −1.13820 · 10−5 < 0 return to 3 and stop

For the obtained support position xs = 1.364 m the fit-
ness function equals 1.233864 kNm. Table 1 demonstrates
that optimal global solution can be obtained faster using the
derived sensitivity operators and combining them with evo-
lutionary algorithm. The sensitivity operators in this hybrid
method found the optimal solutions in 4 steps after switching
from EA. For comparison solitary EA had to perform almost
1500 computations more, see point 2 in Fig. 10.

Example 5. Consider the variation of the sandwich plate dis-
placement δwa at the point a, induced by variation δxs of the
support position, see Fig. 4. The sandwich plate is subjected
to uniformly distributed load p(x, y) = 1.6 kN/m2 over the
strip of a width b = 0.20 m at the boundary of the plate. The
total length of the plate is L = 3.0 m, the width B = 1.0 m,
the thickness of the facings is tF1 = tF2 = 0.0005 m, the
thickness of the core is d = 0.08 m, and the shear modulus
is GC = 2000 kPa. The adjoint action, according to Eq. (21),
is P a = 1.

The structural analysis was performed by use of the
Abaqus software. Shell composite elements with a fine mesh
5× 5 cm were employed. The main goal of this example was
verification of the derived operators (33) in the case of their
application to Reissner plates. The sensitivity gradient ob-
tained using the operators (33) equals (δwa/δxs) = 0.001236,
whereas finite difference method with the step right ∆xs =
0.05m provided 0.001226. The difference did not exceed 2%.

7. Concluding remarks

In the paper sensitivity operators accounting for variation of
geometrical and material parameters of the layers and varia-
tion of the support conditions of the thermally and mechani-
cally loaded sandwich panel have been derived. The response
functional is formulated in a general form allowing wide prac-
tical applications of derived sensitivity gradients. A special at-
tention has been focussed on variation of support conditions
since local phenomena at the supports often initiate the failure
mechanisms in sandwich plates. The derived sensitivity oper-
ators are valid for Timoshenko beam and Reissner plate. They
account for the discontinuity of the slope of the displacements
at the support of shear deformable beam or plate. Therefore
they further develop that is known in the literature, which are
valid for the Bernoulli beam. By the way of examples the ap-
plication of derived sensitivity operators has been illustrated.
The sensitivity gradients were computed with two methods,
namely using a derived formulae and a simple finite differ-
ence method. An excellent agreement has been obtained. The

derived sensitivity formulae are more general and numerically
more efficient. Computation of structural sensitivity with re-
spect to many variables requires only two solutions (primary
and adjoint), whereas in the finite difference approach each
variable must be perturbed. The derived sensitivity operators
well illustrate physical and engineering meaning of optimality
conditions.
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