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Simple sufficient conditions for asymptotic stability

of positive linear systems for any switchings
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Abstract. The asymptotic stability of positive switched linear systems for any switchings is addressed. Simple sufficient conditions for

the asymptotic stability of positive switched continuous-time and discrete-time linear systems are established. It is shown that the positive

switched continuous-time (discrete-time) system is asymptotically stable for any switchings if the sum of entries of every column of the

matrices of subsystems is negative (less than 1).
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1. Introduction

A dynamical system is called positive if its trajectory starting

from any nonnegative initial state remains forever in the pos-

itive orthant for all nonnegative inputs. An overview [1–16]

of state of the art in positive theory is given in the mono-

graphs [3, 6]. Variety of models having positive behavior can

be found in engineering, economics, social sciences, biology

and medicine, etc..

A positive switched system consists of a collection of posi-

tive state space models and a switching function (signal) gov-

erning the switching among the models [7, 8, 10, 11]. The

stability and stabilization of positive switched linear 1D sys-

tem have been investigated in [1, 2, 4, 5, 10, 11, 13, 14, 16]

and for positive 2D linear systems in [7, 8]. The copositive

Lyapunov functions approach to switched linear systems has

been applied in [2, 10, 11, 14].

The choice of the forms of Lyapunov functions for 2D

Roesser model has been analyzed in [9].

In this paper new simple sufficient conditions for the as-

ymptotic stability of positive switched linear systems for any

switchings are established.

The paper is organized as follows. In Sec. 2 basic defin-

itions and theorems concerning positive continuous-time and

discrete-time systems are recalled and the formulation of the

problem is given. The main result of the paper is presented

in Sec. 3 where sufficient conditions for the asymptotic sta-

bility of positive switched continuous-time and discrete-time

linear systems for any switchings are established. Concluding

remarks are given in Sec. 4.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, ℜn×m
+ – the set

of n×m matrices with nonnegative entries and ℜn
+ = ℜn×1

+ ,

Mn – the set of n × n Metzler matrices (real matrices with

nonnegative off-diagonal entries), In – the n×n identity ma-

trix.

2. Preliminaries and problem formulation

Consider the continuous-time linear systems

ẋ(t) = Aδ(t)x(t), (1)

where x(t) ∈ ℜn is the state vector, Aδ(t) ∈ ℜn×n and δ(t)
is the switching function which takes its values in the finite

set S = {1, 2, ..., N}, N is the number of subsystems. It is

assumed that the state vector x(t) ∈ ℜn does not jump at the

switching instants 0 ≤ t0 < t1 < .... When t ∈ [tk, tk+1),
k = 0, 1, ... then δ(tk)-th system of (1) is active.

Definition 1. [3, 6] The continuous-time system (1) is called

(internally) positive if x(t) ∈ ℜn
+, t ≥ 0 for any initial condi-

tions x(0) = x0 ∈ ℜn
+.

Theorem 1. [3, 6] The continuous-time system (1 ) is positive

if and only if

Aδ(t) ∈ Mn. (2)

Definition 2. [3, 6] The positive continuous-time system (1)

is called asymptotically stable if

lim
t→∞

x(t) = 0 for all x0 ∈ ℜn
+. (3)

Theorem 2. [3, 6] The positive continuous-time system (1)

is asymptotically stable if and only if one of the following

conditions is satisfied:

1. the coefficient of the polynomial

det[Ins − Aδ(t)] = sn + an−1s
n−1 + ... + a1s + a0 (4)

are positive, i.e. ak > 0, k = 0, 1, ..., n− 1.

2. there exists a strictly positive vector λ > 0 (with all positive

components) such that AT λ is a strictly negative vector, i.e.

AT λ < 0. (5)

The positive system (1) will be called the positive switched

continuous-time linear systems (shortly PSCLS).

Consider now the discrete-time linear system

xi+1 = Aδi
xi, i ∈ Z+ = {0, 1, ...}, (6)
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where xi ∈ ℜn is the state vector, Aδi
∈ ℜn×n and δi is

the switching function which takes its value in the finite set

S = {1, 2, ..., N}, N > 1 is the number of subsystems. It is

assumed that the state vector xi ∈ ℜn does not jump at the

switching instants 0 ≤ i0 < i1 < .... When i ∈ [ik, ik+1),
k = 0, 1, ... then k-th subsystem of (6) is active.

Definition 3. [3, 6] The discrete-time system (6) is called (in-

ternally) positive if xi ∈ ℜn
+, i ∈ Z+ for any initial conditions

x0 ∈ ℜn
+.

Theorem 3. [3, 6] The discrete-time system (6) is positive if

and only if

Aδi
∈ ℜn×n

+ . (7)

Definition 4. [3, 6] The positive discrete-time system (6) is

called asymptotically stable if

lim
i→∞

xi = 0 for all x0 ∈ ℜn
+. (8)

Theorem 4. [3, 6] The positive discrete-time system (6) is

asymptotically stable if and only if one of the following con-

ditions is satisfied:

1. the coefficient of the polynomial

det[In(z + 1) − Aδi
] = zn + an−1z

n−1 + ...

+a1z + a0

(9)

are positive, i.e. ak > 0, k = 0, 1, ..., n− 1.

2. there exists a strictly positive vector λ > 0 (with all posi-

tive components) such that (A
T

δi
−In)λ is a strictly negative

vector, i.e.

(A
T

δi
− In)λ < 0. (10)

The positive system (6) is called the positive switched

discrete-time linear systems (shortly PSDLS).

It is assumed that that for both positive switched systems

(1) and (6) the number of switchings is finite for any finite

interval.

The problem under considerations for both the positive

continuous-time (1) and discrete-time (6) systems can be stat-

ed as follows:

Find conditions under which the positive switched systems

(1) and (6) are asymptotically stable for any switchings (finite

number for any finite interval).

3. Problem solution

In this section simple sufficient conditions are established for

the asymptotic stability of the positive switched systems (1)

and (6) for any switchings finite in number for any finite in-

terval.

It is easy to show that the positive switched system (1)

and (6) are asymptotically stable for any switchings only if all

subsystems are asymptotically stable. Therefore, it is assumed

that the subsystems (1) and (6) are asymptotically stable.

3.1. Positive continuous-time linear systems. Consider the

positive continuous-time linear system

ẋ(t) = Ax(t), (11)

where x(t) ∈ ℜn
+, t ≥ 0 and A = [aij ] ∈ Mn.

Theorem 5. The positive continuous-time system (11) is as-

ymptotically stable if

aii < 0 and aii +

n
∑

j=1
j 6=i

aij < 0

for i = 1, 2, ..., n

(12a)

or

ajj < 0 and ajj +

n
∑

i=1
i6=j

aij < 0

for j = 1, 2, ..., n.

(12b)

Proof. The positive system (11) is asymptotically stable if the

condition (12a) (or (12b)) is met since by Gershgorin’s Circle

Theorem [15] all discs centered at the point aii (ajj) with the

radii

ri =

n
∑

j=1
j 6=i

aij , i = 1, 2, ..., n






rj =

n
∑

i=1
i6=j

aij , j = 1, 2, ..., n







are located in the left half of the complex plane.

Remark 1. Asymptotically stable Metzler matrices may sat-

isfy only one of the conditions (12). For example the matrix

A =

[

−0.8 1

0.21 −1.2

]

∈ M2 (13)

satisfies only the condition (12b) since a11 = −0.8, a21 =
0.21 but it does not satisfy the condition (12a) since a12 = 1.

The positive system (11) with (13) is asymptotically stable

since the polynomial

det[I2s − A] =

∣

∣

∣

∣

∣

s + 0.8 −1

−0.21 s + 1.2

∣

∣

∣

∣

∣

= s2 + 2s + 0.75

(14)

has all positive coefficients (the condition 1) of Theorem 2).

Theorem 6. Let the subsystems of (1) be asymptotically sta-

ble, i.e. Aδ(t) for δ(t) ∈ S = {1, 2, ..., N} be asymptotically

stable Metzler matrices. The PSCLS (1) is asymptotically sta-

ble for any switchings if the sum of entries of every column

of the matrices Aδ(t), δ(t) ∈ S is negative.

Proof. By Theorem 5 the subsystems of (1) are asymptot-

ically stable since the matrices Aδ(t), δ(t) ∈ S satisfy the

condition (12b). As a common Lyapunov function for all sub-

systems we choose

V (x(t)) = 1T
nx(t), (15)
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where 1T
n = [ 1 ... 1 ]∈ℜn

+. The function (15) is positive

definite for all positive subsystems since 1T
nx(t) > 0 for any

nonzero x(t) ∈ ℜn
+, t ≥ 0. From (15) and (1) we have

V̇ (x(t)) = 1T
n ẋ(t) = 1T

nAδ(t)x(t) < 0 (16)

since by assumption the sum of entries of every column of

the matrices Aδ(t), δ(t) ∈ S is negative, i.e. the row vector

1T
nAδ(t) has all negative components. Therefore, the positive

switched system (1) is asymptotically stable for any switch-

ings.

Example 1. Consider the positive switched system (1) with

two subsystems

A1 =

[

−0.8 0.5

0.4 −0.7

]

,

A2 =

[

−1 1

0.2 −1.1

]

.

(17)

The switching function δ(t) is presented on Fig. 1.

Fig. 1. Switching function δ(t) for the system (1) with matrices (17)

By Theorem 6 the positive switched system (1) with (17)

is asymptotically stable for any switchings since the sum of

entries of every column of the matrices (17) is negative. The

same result can be obtained as follows. The matrices (17)

are asymptotically stable Metzler matrices with the eigenval-

ues s11 = −0.3, s12 = −1.2 and s21 = −0.6, s22 = −1.5,

respectively. The solution of the equation

ẋ(t) = A1x(t) =

[

−0.8 0.5

0.4 −0.7

]

x(t) (18)

has the form

x(t) =

[

x1(t)

x2(t)

]

= eA1tx0

=
1

9

[

4e−0.3t + 5e−1.2t 5(e−0.3t − e−1.2t)

4(e−0.3t − e−1.2t) 5e−0.3t + 4e−1.2t

]

x0

(19)

and the solution of the equation

ẋ(t) = A2x(t) =

[

−1 1

0.2 −1.1

]

x(t) (20)

has the form

x(t) =

[

x1(t)

x2(t)

]

= eA2tx0

=
1

9

[

5e−0.6t + 4e−1.5t 10(e−0.6t − e−1.5t)

2(e−0.6t − e−1.5t) 4e−0.6t + 5e−1.5t

]

x0.

(21)

Taking into account the switching function δ(t), (19) and (21)

we obtain

x(t) =
1

9

[

4e−0.3t + 5e−1.2t 5(e−0.3t − e−1.2t)

4(e−0.3t − e−1.2t) 5e−0.3t + 4e−1.2t

]

x0 for 0 ≤ t < 1, (22a)

x(t) =
1

81

[

5e−0.6(t−1) + 4e−1.5(t−1) 10(e−0.6(t−1) − e−1.5(t−1))

2(e−0.6(t−1) − e−1.5(t−1)) 4e−0.6(t−1) + 5e−1.5(t−1)

]

×

[

4e−0.3 + 5e−1.2 5(e−0.3 − e−1.2)

4(e−0.3 − e−1.2) 5e−0.3 + 4e−1.2

]

x0 for 1 ≤ t < 3

(22b)

x(t) =
1

729

[

4e−0.3(t−3) + 5e−1.2(t−3) 5(e−0.3(t−3) − e−1.2(t−3))

4(e−0.3(t−3) − e−1.2(t−3)) 5e−0.3(t−3) + 4e−1.2(t−3)

]

×

[

5e−1.2 + 4e−3 10(e−1.2 − e−3)

2(e−1.2 − e−3) 4e−1.2 + 5e−3

]

×

[

4e−0.3 + 5e−1.2 5(e−0.3 − e−1.2)

4(e−0.3 − e−1.2) 5e−0.3 + 4e−1.2

]

x0 for 3 ≤ t < 5.

(22c)
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Form (22) it follows that the swichted system is asymp-

totically stable for any swichtings.

3.2. Positive discrete-time systems. Consider the positive

discrete-time linear system

xi+1 = Axi, (23)

where

xi ∈ ℜn
+, i ∈ Z+ and A ∈ ℜn×n

+ .

Theorem 7. The positive discrete-time system (23) is asymp-

totically stable if

n
∑

j=1

aij < 1 for i = 1, 2, ..., n (24a)

or
n

∑

i=1

aij < 1 for j = 1, 2, ..., n. (24b)

Proof. The positive system (23) is asymptotically stable if the

condition (24a) (or (24b)) is met since by Gershgorin’s Circle

Theorem [15] all discs centered at the points aii (ajj) with

the radii

ri =

n
∑

j=1
j 6=i

aij , i = 1, 2, ..., n






rj =

n
∑

i=1
i6=j

aij , j = 1, 2, ..., n







are located in the unit circle.

Remark 2. Asymptotically stable matrices with nonnegative

entries may satisfy only one of the conditions (24). For ex-

ample the matrix

A =

[

0.5 0.4

0.5 0.3

]

∈ ℜ2×2
+ (25)

satisfies only the condition (24a) since a11 + a12 = 0.9 and

a21 + a22 = 0.8 but a11 + a21 = 1. The positive system (23)

with (25) is asymptotically stable since the polynomial

det[I2(z + 1) − A] =

∣

∣

∣

∣

∣

z + 0.5 −0.4

−0.5 z + 0.7

∣

∣

∣

∣

∣

= z2 + 1.2z + 0.15

(26)

has all positive coefficients (the condition 1) of Theorem 4).

Theorem 8. Let the subsystems (6) be asymptotically stable,

i.e. Aδi
∈ ℜn×n

+ for δi ∈ S = {1, 2, ..., N} be asymptotically

stable matrices. The PSDLS (6) is asymptotically stable for

any switchings if the sum of entries of every column of the

matrices Aδi
, δi ∈ S is less than 1.

Proof. By Theorem 7 the subsystems of (6) are asymptoti-

cally stable since the matrices Aδi
, δi ∈ S satisfy the condi-

tion (24a). As a common Lyapunov function for all subsystems

we choose

V (xi) = 1T
nxi, (27)

where

1T
n = [ 1 ... 1 ]∈ℜn

+.

The function (27) is positive definite for all positive subsys-

tems since 1T
nxi > 0 for any nonzero xi ∈ ℜn

+, i ∈ Z+. From

(27) and (6) we have

∆V (xi) = V (xi+1) − V (xi) = 1T
n (xi+1 − xi)

= 1T
n (Aδi

− In)xi < 0
(28)

since by assumption the sum of entries of every column of

the matrices Aδi
, δi ∈ S is less than 1, i.e. the row vec-

tor 1T
n (Aδi

− In) has all negative components. Therefore, the

positive switched system (6) is asymptotically stable for any

switchings.

4. Concluding remarks

Simple sufficient conditions for the asymptotic stability of

positive switched continuous-time (Theorem 6) and discrete-

time (Theorem 8) linear systems for any switchings have

been established. It has been shown that the positive switch-

ed continuous-time (discrete-time) system is asymptotically

stable for any switchings if the sum of entries of every col-

umn of the matrices of subsystem is negative (less than 1).

Note that the well-known [10] condition that the matrices

of subsystems commute is not necessary for the asymptot-

ic stability of the positive switched systems for any switch-

ings. The effectiveness of the presented sufficient conditions

is demonstrated on a numerical example of continuous-time

positive switched linear system. The considerations can be

extended to the Lyapunov functions (15), where 1n = λ,

where λ = (Aδ(1))
−11n ∈ ℜn

+ is a strictly positive vec-

tor.

Following [7, 8] the presented sufficient conditions can be

extended to the positive switched 2D linear systems.
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