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The digital function filters – algorithms and applications
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Abstract. The simple digital filters are not sufficient for digital modeling of systems with distributed parameters. It is necessary to apply
more complex digital filters. In this work, a set of filters, called the digital function filters, is proposed. It consists of digital filters, which
are obtained from causal and stable filters through some function transformation. In this paper, for several basic functions: exponential,
logarithm, square root and the real power of input filter, the recursive algorithms of the digital function filters have been determined The
digital function filters of exponential type can be obtained from direct recursive formulas. Whereas, the other function filters, such as the
logarithm, the square root and the real power, require using the implicit recursive formulas. Some applications of the digital function filters
for the analysis and synthesis of systems with lumped and distributed parameters (a long line, phase shifters, infinite ladder circuits) are
given as well.
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1. Introduction

Currently, due to extensive use of DSP devices [1–3], the
transition from the frequency domain to the time domain [4]
is important, because circuit parameters can be determined
based on the series of current and voltage samples by using
digital filters without calculating the harmonics. However, in
many situations - this concerns in particular the theory of
systems with distributed parameters or the power theory, to
model these cases digitally, simple digital rational filters are
not sufficient. There is a need to use more complex digital
filters. Such special filters, which include operators of sim-
ple digital filters as parameters, appear eg. as a result of
solution of ordinary differential equations of long line [5,
6]. In the published literature there are studies on the log-
arithm filter (ie. cepstrum) [7], inverse filters are commonly
found there in various solutions (these are simple recursions),
and studies on the fractional order digital filters referring to
differentiator and integrator filters [8–10]. In this paper, the
set of filters, called the digital function filters, is proposed.
This set consists of digital filters, obtained from linear, time-
invariant, causal and stable filters by some function transfor-
mation.

Direct determination of the impulse response of the digital
function filters by using the power series method is general-
ly not possible because computational difficulties grow expo-
nentially with an increasing sample number. Therefore, in this
paper, for several basic functions, the recursive algorithms of
the digital function filters have been formed. These functions
are: exponential, logarithm, square root and the real power of
input filter. Several applications of the digital function filters
for the analysis and synthesis of systems with lumped and
distributed parameters have been presented.

2. The digital filters – recursive algorithms

Let A be a linear, time-invariant, causal and stable digital filter
determined by the function:

A = A(z) =

∞∑

n=0

Anzn (1)

or equivalently by the series of weights (the impulse re-
sponse):

A ↔ {An}, n = 0, 1, 2, ... (2)

The conditions are fulfilled:

An = 0 for n < 0, (3)

∞∑

n=0

|An| < ∞ (4)

or equivalently

|A(z)| < ∞ for z : |z| ≤ 1. (5)

The filter A after transformation A(z) → f (A(z)) or in a
brief notation

A → f (A) (6)

is called the function filter. It is also linear, time-invariant,
causal and it is determined by the series of weights

{(f(A))n} , n = 0, 1, 2, ... (7)

or the function (f (A)) (z) =
∞∑

n=0
(f(A))nzn.

The purpose of this study is to formulate the recursive al-
gorithms to obtain the series {(f (A))n} from the series {An}
for n= 0, 1, 2, . . .
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Denoting by the symbol (·)′ = d(·)/dz the differentiation
operation with respect to the variable “z”, is obtained

z (f(A))
′

= zA′
df

dA
, (8)

where df /dA is the digital filter determined by ZET function,
or by the series of weights

df

dA
=

df

dA
(z) ↔

{(
df

dA

)

n

}
; n = 0, 1, 2, ... (9)

The initial conditions are obtained from the formulas (6)
and (8)

(f(A))0 = f(A0); (f(A))1 = A1
df

dA
(0) (10)

and formula (8) may become the recursive formula:

(f(A))n =

n∑

m=1

m

n
Am

(
df

dA

)

n−m

. (11)

Indeed, for the set of functions (set of the digital filters):

• the exponential type: exA,
• the hyperbolical type:

chxA =
1

2

(
exA + e−xA

)
,

shxA =
1

2

(
exA − e−xA

)
,

(12)

• and the elliptical type:

cosxA =
1

2

(
ejxA + e−jxA

)
,

sin xA =
1

2j

(
ejxA − e−jxA

)
,

(13)

where x – a real parameter; j =
√
−1; A – given a linear,

time-invariant, causal and stable digital filter of the series
of weights A ↔ {An}, n = 0, 1, 2, ...; the derivative filters
df /dA are the functions:

dexA

dA
= xexA,

dchxA

dA
= xshxA;

dshxA

dA
= xchxA,

d cos xA

dA
= −x sin xA;

d sin xA

dA
= x cos xA.

Thus, formula (11) becomes the direct recursive formula for
the functions:

exA
n = x

n∑

m=1

m

n
AmexA

n−m, (14)

(chxA)n = x

n∑

m=1

m

n
Am(shxA)n−m,

(shxA)n = x

n∑

m=1

m

n
Am(chxA)n−m

(15)

and

(cosxA)n = −x
n∑

m=1

m

n
Am(sin xA)n−m,

(sin xA)n = x

n∑

m=1

m

n
Am(cosxA)n−m.

(16)

The initial conditions for the formula (14) and for the “cross”
formulas (15) and (16) are obtained directly from (10):

exA
0 = exA0 , (17)

(chxA)0 = chxA0,

(shxA)0 = shxA0,
(18)

(cosxA)0 = cosxA0,

(sin xA)0 = sin xA0.
(19)

Further elements of the series of weights for the filters of
exponential, hyperbolical and elliptical type, are determined
from the formulas (14), (15) and (16) for n = 1, 2, . . .

3. Implicit recursive algorithms

For the function f(A) as ln A and
√

A, formula (8) does not
lead directly to the recursive formulas. For ln A the derivative
is:

d lnA

dA
= A−1

and after applying it to the formula (8)

z(lnA)′A = zA′ is obtained,

hence
n∑

m=1

m(lnA)mAn−m = nAn

or

(ln A)n =
An

A0
− 1

A0

n−1∑

m=1

m

n
(lnA)mAn−m. (20)

Expression (20) is already the recursive formula with initial
conditions resulting from (10):

(ln A)0 = lnA0; (lnA)1 =
A1

A0
. (21)

The algorithm of the “logarithm” can also be obtained other-
wise, writing formula (8) as

z(lnA)′ = zA′A−1

or for samples

(ln A)n =

n∑

m=1

m

n
AmA−1

n−m. (22)

Formula (22) can be used with an inversion of the filter A, ie:

AA−1 = 1

or
n∑

m=0

AmA−1
n−m = δn =

{
0n 6= 0

1n = 0
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hence
A−1

0 = (A0)
−1,

A−1
n = − 1

A0

n∑

m=1

AmA−1
n−m.

Using formula (8) to the filter
√

A leads to the formula:

z(
√

A)′ =
1

2
zA′(

√
A)−1

or

z(
√

A)′
√

A =
1

2
zA′

hence
n∑

m=1

m(
√

A)m(
√

A)n−m =
1

2
nAn.

After separation of this formula, the equation is obtained:

√
A0n(

√
A)n =

1

2
nAn −

n−1∑

m=1

m(
√

A)m(
√

A)n−m

which takes the form of recursion:

(
√

A)n =
1

2

An√
A0

− 1√
A0

n−1∑

m=1

m

n
(
√

A)m(
√

A)n−m. (23)

Square root of the operator A can also be obtained by the
direct method: √

A
√

A = A

or from the convolutional equation:
n∑

m=0

(
√

A)m(
√

A)n−m = An

which, after separation of the components:

2(
√

A)n

√
A0 = An −

n−1∑

m=1

(
√

A)m(
√

A)n−m

takes the form of recursive equation:

(
√

A)n =
An

2
√

A0

− 1

2
√

A0

n−1∑

m=1

(
√

A)m(
√

A)n−m. (24)

The recursive formulas (23) and (24) differ by the component

n−1∑

m=1

(
m

n
− 1

2

)
xmxn−m =

n−1∑

m=1

m − (n − m)

2n
xmxn−m

which, however, disappears because of antisymmetry when
replacing n − m ↔ m.

4. The real power of the digital filter operator

The following function is considered

A → Ap,

where p – real number.
This task can be solved by two methods:

• the direct method,
• the logarithm method (two steps).

The direct method comes from the formula (8):

z(Ap)′ = pzA′Ap−1 (25)

or
z(Ap)′A = pzA′Ap.

Hence the convolutional equation is obtained:
n∑

m=0

m(Ap)mAn−m = p

n∑

m=0

mAmAp
n−m

which after separation of the components takes the form:

nAp
nA0 = p

n∑

m=1

mAmAp
n−m −

n−1∑

m=1

mAp
mAp

n−m

= pnAnAp
0 +

n−1∑

m=1

m(pAmAp
n−m − Ap

mAn−m)

and turns into the recursive equation:

Ap
n = p(A0)

p−1An

+
1

A0

n−1∑

m=1

m

n
(pAnAp

n−m − Ap
mAn−m).

(26)

Equation (25) can also be written as

z
(Ap)′

Ap
A = pzA′

or
z(lnAp)′A = pzA′ (27)

which leads to the “logarithm method”. Equation (27) should
be written in the convolutional equation form so that the series
{(lnAp)n} could be determined, ie:

n∑

m=0

m(lnAp)mAn−m = pnAn

or

n(lnAp)nA0 = pnAn −
n−1∑

m=1

m(ln Ap)mAn−m

hence

(lnAp)n = p
An

A0
− 1

A0

n−1∑

m=1

m

n
(lnAp)mAn−m. (28)

Applying the formula:

Ap = elnAp

and the recursion (14), is obtained

Ap
n =

n∑

m=1

m

n
(lnAp)mAp

n−m. (29)

The initial conditions for the series (26), (28) and (29) are
obtained from the formulas

Ap
0 = (A0)

p.

(ln Ap)0 = ln(A0)
p = p lnA0.
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5. Applications

The differential equation of a long line in partial derivatives
has the form:

∂2u

∂t2
− ∂2u

∂x2
+ 2β

∂u

∂t
+ RGu = 0 (30)

for line: R, L, G, C > 0, and

∂2u

∂t2
+

∂2u

∂x2
+ 2β

∂u

∂t
+ RGu = 0 (31)

for line: R, L, −G, −C.
Equation (30) is the wave equation, whereas (31) is the

Laplace equation. Digital – operator models after the substi-
tution:

∂

∂t
→ s → 1

τ
(1 − z). (32)

Equations (30) and (31) turn into the ordinary derivative equa-
tions with operators:

d2u

dx2
− A2u = 0 (33)

for the equation (30), and

d2u

dx2
+ A2u = 0 (34)

for the equation (31).
The following symbols were introduced:

t → t√
LC

; β =
Rρ−1 + Gρ

2
;

ρ =

√
L

C

(35)

A is the square root operator:

A = (s2 + 2βs + RG)
1
2 =

(
(s + Rρ−1)(s + Gρ)

) 1
2

=
1

τ
((a − z)(b − z))

1
2 ,

(36)

where a = 1 + τRρ−1; b = 1 + τGρ.
For a simple operator, the expansion of real p-th power

can be obtained directly from the formula:

(a − z)p ↔
{
knapa−n

}
n=0,1,2,...

, (37)

where {kn} – the universal series defined by the recursive
formula:

kn =
n − 1 − p

n
kn−1; k0 = 1. (38)

For the complex operators, the recursive formulas given in
Sec. 4 should be applied.

Whereas, the samples expansion of the operator A can be
obtained by convolution:

An =
√

aba−n

n∑

m=0

(a

b

)m

kn−mkm, (39)

where

km =
2m − 3

2m
km−1; k0 = 1. (40)

The general solution of the differential equation (33) has the
form:

ux = (chxA)p + (shxA)q, (41)

where p, q – any time-variable signals with the samples ex-
pansion in the series form {pn}, {qn}, n = 0,1,2, ...

The particular solution satisfying the boundary conditions:

ux=0 = u0; ux=l = ul (42)

at the beginning (x = 0) and at the point x = l is the:

ux =
sh(l − x)A

shlA
u0 +

shxA

shlA
ul. (43)

Equation (43) in samples notation is a convolution:

ux
n =

n∑

m=0

(
sh(l − x)A

shlA

)

n−m

u0
m

+

n∑

m=0

(
shxA

shlA

)

n−m

ul
m,

(44)

where the partial convolutions take the form:
(

shxA

shlA

)

n

=

n∑

m=0

(shxA)n−m(shlA)−1
m (45)

and inversion of the shlA filter is determined from the recur-
sive formulas:

(shlA)−1
0 = (shlA0)

−1 for n = 0,

(shlA)−1
n = − 1

shlA0
n∑

m=1

(shlA)m(shlA)−1
n−m

for n = 1, 2, 3, ...

(46)

While, the general solution of the differential equation (34) is
the operator:

ux = (cosxA)p + (sin xA)q (47)

acting on any signals p and q.
The particular solution satisfying boundary conditions:

ux=0 = u0; ux=l = ul

takes the form:

ux =
sin(l − x)A

sin lA
u0 +

sinxA

sin lA
ul. (48)

As an example of a filter “p-th power” of the operator A, the
phase shifter can be used adjusted in exponential way. The
transmittance of such a system, in analog form, is:

(
α − s

α + s

)p

,

where 0 ≤ p ≤ 1, α – positive real number.
The frequency response is an allpass type with the phase

correction: (
α − jω

α + jω

)p

= e−j2parctg ω
α

and hence (see chart in Fig. 1)

ϕ(ω) = −2parctg
ω

α
.
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Fig. 1. Phase response of the filter

Digital model of phase shifter with bilinear transform has
the form

(
α − s

α + s

)p

→
α − 2

τ

1 − z

1 + z

α +
2

τ

1 − z

1 + z

= a
a−1 + z

a + z

hence (
α − s

α + s

)p

= ap (a−1 + z)p

(a + z)p
,

where

a =
ατ + 2

ατ − 2
.

However, the resulting digital filter does not meet the root
condition [5]:

A(z) > 0 for z ∈ {z : |z| ≤ 1} ∩ R,

R – set of real numbers.
However, the root condition is met by another filter with

“analog” transmittance:
(

a + s

b + s

)p

,

where a, b – the positive real number.
The frequency response of this filter is:

(
a + jω

b + jω

)p

=

(
a2 + ω

b2 + ω2

2
) p

2

ejp(arctg ω
a
−arctg a

b
).

Denoting by K(ω) the module response (the amplitude re-
sponse) and by ϕ(ω) – phase response, is obtained:

K(ω) =

(
a2 + ω

b2 + ω2

2
) p

2

,

ϕ(ω)ϕ = p(arctg
ω

a
− arctg

a

b
).

There is
K(0) =

(a

b

)p

; K(∞) = 1

and also:

dϕ

dω
= p





1

a

1 +
ω2

a2

−
1

b

1 +
ω2

b2



 = 0.

The condition
dϕ

dω
= 0

turns to the equation

1

a

(
1 +

ω2

b2

)
− 1

b

(
1 +

ω2

a2

)
= 0

hence
ω =

√
ab.

The maximum value of phase response is:

ϕmax = p

(
arctg

√
b

a
− arctg

√
a

b

)
.

In Fig. 2 the phase and amplitude responses were shown.

Fig. 2. Phase and amplitude responses of the phase shifter

The analysis of the graphs in Fig. 2 shows that, it is pos-
sible to continuously adjust the maximum point of phase re-
sponse.

Some other properties have the allpass phase shifter with
“analog” transmittance:

[
(a − s)(a∗ − s)

(a + s)(a∗ + s)

]p

=

[
aa∗ − 2(Re a)s + s2

aa∗ + 2(Re a)s + s2

]p

and the frequency response
[
(aa∗ − ω2) − j2(Re a)ω

(aa∗ − ω2) + j2(Re a)ω

]p

= e
−j2parctg

(2Re a)ω

aa∗
−ω2 .

In Fig. 3 phase response of filter was shown.

Fig. 3. Phase response of allpass filter and the distribution of its
zeros and poles

Using the transformation s → 1

τ
(1 − z) to digital simu-

lation of the filter is obtained
(a − s)(a∗ − s)

(a + s)(a∗ + s)
=

(1 − aτ − z)(1 − a∗τ − z)

(1 + aτ − z)(1 + a∗τ − z)

=
(α − z)(α∗ − z)

(β − z)(β∗ − z)
,
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where
α = 1 − aτ ; β = 1 + aτ

and using the bilinear transform:

s → 2

τ

1 − z

1 + z

the function is obtained:

σσ∗

(
1

σ
− z

)(
1

σ∗
− z

)

(σ − z)(σ∗ − z)
=

1 − (σ + σ∗)z + σσ∗z2

σσ∗ − (σ + σ∗)z + z2
,

where

σ =
2 + aτ

2 − aτ
.

Another example of the application of the integral - derivative
fractional order complex operators is an infinite ladder circuit.
A general diagram of such homogeneous circuit in Fig. 4 is
shown

Fig. 4. Diagram of infinite homogeneous ladder circuits with opera-
tors: a horizontal r and a vertical g

This circuit consists of two operators: horizontal – im-
pedance type (r) and vertical – admittance type (g).

The input impedance operator meets the following recur-
sive formula:

Ẑn+1 = r +
1

g +
1

Ẑn

which implies the boundary impedance equation of infinite
ladder circuit

Ẑ = r +
1

g +
1

Ẑ
or

gẐ2 − rgẐ − r = 0. (49)

The solution of equation (49) is

Ẑ =
1

2
r +

1

2

√
r

g

√
4 + rg. (50)

For electric ladder RL, GC, that simulates the classic long line
(see Fig. 5) the operators r and g take the form of PD-type
operators:

r → R + sL; g → G + sC

hence

Ẑ(s) =
1

2
L

[
(a + s) +

(a + s)
1
2

(b + s)
1
2

(s2 + (a + b)s + ab + 4ω2)
1
2

] (51)

where

a =
R

L
; b =

G

C
; ω2 =

1

LC
. (52)

Fig. 5. The infinite homogeneous electric ladder RL, GC

The second degree polynomial appearing in the expres-
sion (51) has a distribution with respect to the pair of complex
conjugate zeros:

s2 + (a + b)s + ab + 4ω2 = (σ + s)(σ∗ + s), (53)

where

σ =
a + b

2
+ j

√

(2ω)2 −
(

a − b

2

)2

and therefore the function (51) takes the form:

Ẑ(s) =
1

2
L(a + s)

1
2 (b + s)

1
2

(σ + s)
1
2 (σ∗ + s)

1
2 + (a + s)

1
2 (b + s)

1
2

b + s
.

(54)

Digital modeling of expression (54) gives:

(a + s)
1
2 →

(
a +

1

τ
(1 − z)

) 1
2

=
1√
τ

(1 + aτ − z)
1
2

hence

Ẑ =
1

2

L

aτ
(a − z)

1
2 (b − z)

1
2

(σ − z)
1
2 (σ∗ − z)

1
2 + (a − z)

1
2 (b − z)

1
2

b − z
,

(55)

where
a → 1 + aτ > 1,

b → 1 + bτ > 1,

σ → 1 + στ > 1, |σ| > 1.

(56)

Equation (55) is significant in the occurrence of complex con-
jugate zeros. A variant of formulas (37), (38) for the complex
conjugate zeros gives

(σ − z)p(σ∗ − z)p ↔
n∑

m=0

kn−mkmσpσ−(n−m)(σ∗)p(σ∗)−m

=

n∑

m=0

|σ|2p
kn−mkmRe

[
σ−n

( σ

σ∗

)m]

= |σ|2p−n
n∑

m=0

kn−mkm cos (|(n − m) − m| < σ).

(57)

376 Bull. Pol. Ac.: Tech. 61(2) 2013



The digital function filters – algorithms and applications

6. Summary

In this paper the methods to determine recursive algorithms
of the digital function filters (the irrational filters) have been
presented. The digital function filters of exponential, hyper-
bolical and elliptical type can be obtained by direct recursive
formulas. For the other function filters, such as the logarithm
and the real power, implicit recursive formulas are required.
The function filters of exponential, hyperbolical and elliptical
type in a natural way are used to solve some of the initial and
boundary problems of partial differential equations such as
wave equations – the filters of hyperbolical type and Laplace’s
equations – the filters of elliptical type. However, the function
filters of the real power can be applied to the synthesis of some
systems with lumped parameters, such as phase shifters, syn-
thesis of which in the analog case is very inconvenient. The
integral – derivative fractional order complex operators can
also be used to determine a boundary impedance of an infinite
ladder circuit.
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