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Abstract. In the paper, mathematical models of the supercapacitors are investigated. The models are based on electrical circuits in the

form of RC ladder networks. The elementary cell of the network may consist of resistances and capacitances that are connected in series

or parallel. The dynamic behavior of the circuit is described using fractional-order differential equations and its properties are analyzed.

The identification procedure with quadratic performance index is performed in time domain to identify the parameters of the supercapacitor

models. The results of numerical simulations are compared with the results measured experimentally in the physical system. In addition, an

example from the automotive industry is used for an experimental evaluation of the theoretical analysis and to present a perspective on the

applicability of the approach for other industrial projects.
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1. Introduction

1.1. Motivation. In recent years there has been a growing

attention to studies on ladder networks because they can be

employed to model both electrical and nonelectrical systems

with distributed parameters. Electric ladder networks can be

described as networks formed by numerous repetitions of an

elementary cell. The elementary cell may consist of resis-

tors, inductance coils, and capacitors connected in series or

in parallel. The properties of the electric ladder network make

this model suitable to capture the distributed double-layer ca-

pacitance and the distributed electrolyte resistance of the su-

percapacitors (also called ultracapacitors or electrochemical

double-layer capacitors). In addition, the use of fractional-

order mathematical models instead of integer-order models

can improve the behavior of the model towards the physical

system.

1.2. Related work. Various mathematical models have been

developed for analyzing the behavior of the supercapacitors.

Macroscopic models of the dynamic phenomena occurred dur-

ing charging process of the double layer in porous electrodes

have been developed in [1–3]. Mathematical models of the

supercapacitors in the form of electrical circuits have been

considered in [4–6]. Fractional-order capacitor models have

been also studied in the past. A good source of references

to papers in which the fractional capacitor theory is present-

ed can be found in [7] and recently in [8–11]. In general,

the problem is not new. Some simple experiments were per-

formed by S. Westerlund and M.J. Curie’s in 1889 (see [7,

chap. 10.3, p. 278 and the following] and also [8, chap. 7,

p. 127 and the following]). The papers [9, 12] cope with a

supercapacitor equivalent model where the capacitance is de-

scribed using fractional-order calculus (see also [11]). The

identification of the supercapacitor parameters is performed

in frequency domain. Another identification method of the

order of the fractional difference is presented in [13]. The

method is based on nonlinear programming technique with

Marquardt algorithm [14]. Interesting results complemented

with experiments can be also found in the PhD thesis [10].

Many authors (e.g., [7, 15–17]) consider the non-integer

order systems to describe dynamical behavior of materials and

processes over time and frequency scales. There has been also

a lot of studies devoted to the analysis of dynamic properties

of such systems, that is stability, controllability, reachability,

etc. (see e.g., [18–20]).

The properties of electrical ladder network modelled by

integer-order differential equations have been also studied in

the past. Control problems of linear RL, RC, LC, and RLC

electrical circuits are widely discussed in [21–23]. The dy-

namics and detailed characteristics of nonlinear electrical cir-

cuits are considered in [24].

1.3. Organization of the paper. The paper is organized as

follows. In the next section, mathematical models of the su-

percapacitors in the form of equivalent electrical circuits are

described. We start with simple RC circuit with a parallel

resistor and then extend it to RC transmission line model.

Identification method is briefly explained in Sec. 3. Follow-

ing section presents experimental results. Applications of the

supercapacitors are included in Sec. 5. Conclusions are in

Sec. 6.

2. Description of the models

2.1. RC circuit with a parallel resistor. A simple superca-

pacitor circuit model is composed of a capacitance Cs, a series

Rs, and parallel Rp resistances. The electric circuit schematic
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of the model is illustrated in Fig. 1. The resistance Rs mod-

els power loses that may result from internal heating occur-

ring during charging and discharging. The resistance Rp mod-

els current leakage, and influences long-term energy storage.

Simplicity and computational efficiency can be considered as

the main advantages of the model.

Cs

Rp

Rs

x

Fig. 1. Electrical circuit model of a supercapacitor in the form of

a RC circuit with a parallel resistance

The circuit’s dynamic behavior during charging process

can be described by the following fractional-order differential

equation

CsRs

dαx(t)

dtα
= −x(t) + u(t), x(0) = x0, (1)

where x(t) ∈ R is the voltage across the plates of the capaci-

tor Cs, α ∈ (0, 1] denotes the order of the fractional derivative

according to the Caputo definition [7], x0 ∈ R is the given ini-

tial condition, t > 0. When the power supply is disconnected

from the circuit, the discharge process of the supercapacitor

will be described by the following equation

Cs(Rs + Rp)
dαx(t)

dtα
= −x(t), x(0) = x0. (2)

2.2. RC transmission line model. A transmission line mod-

el in the form of RC ladder network is presented in Fig. 2.

The transmission line model attempts to capture the distrib-

uted double-layer capacitance and the distributed electrolyte

resistance that extends the depth of the pore.

Cs

Rs

Rs

Cs

Rs

Rs

Cs

Rs

Rs

Cs

Rs

Rs

x1 x2 x3 xn

Fig. 2. Electrical circuit model of a supercapacitor in the form of a

RC ladder network

The dynamic behavior of the RC ladder network can be

described by the following fractional-order differential equa-

tions

CsRsD
dαx(t)

dtα
= Ax(t) + Bu(t), x(0) = x0, (3)

where x(t) = [x1(t) x2(t) . . . xn(t)]T ∈ R
n, x0 ∈ R

n,

u(t) ∈ R, t > 0, α ∈ (0, 1], t > 0,

D =























3 −1 0 . . . 0 0 0

−1 3 −1 . . . 0 0 0

0 −1 3 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 3 −1

0 0 0 . . . 0 −1 3























n×n

, (4)

A =























−2 1 0 . . . 0 0 0

1 −2 1 . . . 0 0 0

0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 −2 1

0 0 0 . . . 0 1 −2























n×n

,

B =













1

0
...

0













n×1

.

(5)

Remark 1. We consider an n × n tridiagonal Jacobi matrix

E(n; b) given by the following equality

E(n; b) =

















b 1 0 . . . 0

1 b 1 . . . 0

0 1 b . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

















. (6)

The eigenvalues of the n × n matrix E(n; b) (see [25,

p. 215], [26, p. 159], [27, p. 104]; see also [28,29]) are given

by

sk(E(n; b)) = b + 2 cosϕk, ϕk = kπ/(n + 1),

k = 1, 2, . . . , n.
(7)

Let

P =

√

2

n + 1













sinϕ1 sin 2ϕ1 . . . sinnϕ1

sinϕ2 sin 2ϕ2 . . . sinnϕ2

...
...

. . .
...

sinϕn sin 2ϕn . . . sinnϕn













, (8)

where ϕk is given in (7). You can check that P
2 = I . Thus

P
−1 = P and P E(n; b)P = diag (s1, s2, . . . , sn), where

sk is given in (7).

Also note that E(n; e + g) = E(n; e) + gI , where I is

the identity matrix n × n. Consequently

sk(E(n; e + g)) = e + g + 2 cosϕk. (9)

Theorem 1. The system (3) is diagonalizable, that is, the sys-

tem (3) can be broken down into n scalar systems.

Proof. Let x(t) = Pz(t), where P is given in (8), detP 6= 0.

In this case P
−1 = P . Thus z(t) = Px(t) and from (3) we

582 Bull. Pol. Ac.: Tech. 61(3) 2013



Fractional-order models of the supercapacitors in the form of RC ladder networks

have

CsRsPDP
dα

z(t)

dtα
= PAP z(t) + P Bu(t). (10)

Notice that D = −E(n;−3), A = E(n;−2) and (see Re-

mark 2)

CsRssk(D)
dαzk(t)

dtα
= sk(A)zk(t) +

√

2

n + 1
sin ϕku(t),

(11)

where k = 1, 2, . . . , n and

sk(D) = 1 + 4 sin 2 ϕk

2
> 0,

sk(A) = −4 sin 2 ϕk

2
< 0.

(12)

Example 1. Consider matrices D and A for n = 5. In this

case

P =

















−0.2887 −0.5000 0.5774 −0.5000 0.2887

−0.5000 −0.5000 −0.0000 −0.5000 −0.5000

−0.5774 0.0000 −0.5774 −0.0000 0.5774

−0.5000 0.5000 −0.0000 −0.5000 −0.5000

−0.2887 0.5000 0.5774 0.5000 0.2887

















,

(13)

and

PDP = diag (1.2679, 2.0000, 3.0000, 4.0000, 4.7321),
(14)

PAP = diag (−0.2679, −1.0000, −2.0000,

−3.0000, −3.7321).
(15)

From (11) and (12) we have

dαzk(t)

dtα
= akzk(t) + bku(t), k = 1, 2, . . . , n, (16)

where

ak =
4 sin 2 ϕk

2

CsRs

(

1 + 4 sin 2
ϕk

2

) ,

bk =

√

2

n + 1
sinϕk

CsRs

(

1 + 4 sin 2
ϕk

2

) .

(17)

The function G(s) of the system (16) is given by

G(s) =
bk

sα − ak

=
Yk(s)

Uk(s)
. (18)

Remark 2. For k = 1, 2, . . . , n each scalar equation (11) or

(16) can be solved using the formula given in the works: [11,

p. 32], [15, p. 92], see also [17, p. 65, 74].

The unit step response of the system (18) can be expres-

sed as

yk(t) = L−1{G(s)} = bktαEα,α+1(aktα), (19)

where Eν,γ is the Mittag-Leffler function in two parameters

(see e.g., [7, p. 17])

Eν,γ(w) =

∞
∑

i=0

wi

Γ(νi + γ)
. (20)

The gamma function Γ(x) is defined by the integral [7, p. 1]

Γ(x) =

∞
∫

0

e−ttx−1 dt, (21)

which converges in the right half of the complex plane

Re (x) > 0.

Remark 3. The system (16) is BIBO stable (Bounded Input

Bounded Output). This is evident with the stability criterion

given, for example, in the work [8, p. 21 and 22].

3. Identification method

Denote by θ a vector that contains the parameters to be iden-

tified. Assume that a vector function vs(·) contains measure-

ment data collected during the experiments, and a vector func-

tion vs(·) represents estimated data calculated during simula-

tions for a given set of the parameters θ. In addition, denote

by ǫ(·) the error function

ǫ(t) = vs(t) − vs(t) (22)

between the experimental and simulated data.

The identification problem is to find a vector θ ∈ Θad

that minimizes the quadratic criterion J , that is,

min
θ∈Θad

J, (23)

where

J =

T
∫

0

ǫ(τ)TWǫ(τ) dτ, (24)

Θad stands for the set of admissible parameters, W
T = W

is a positive definite weighting matrix, T denotes simulation

time.

The problem (23) can be solved efficiently using many

optimization algorithms. For example, in [13], nonlinear pro-

gramming technique with Marquardt algorithm [14] has been

successfully used. In this paper, the identification procedure

has been implemented in MATLAB R© environment using the

Nelder-Mead simplex (direct search) method [30]. The frac-

tional continuous-time linear system that is used to model

the supercapacitor has been simulated also in MATLAB en-

vironment. In the simulation experiment, the system solution

expressed by the Mittag-Leffler matrix function has been uti-

lized (see e.g., [31]). The number of samples in sum opera-

tion in the calculation of the Mittag-Leffler matrix function

has been limited to 150. The measurement data have been

obtained using the test bench as presented in Fig. 3.

Fig. 3. Schematic diagram of the test bench for identification of the

supercapacitor parameters

Bull. Pol. Ac.: Tech. 61(3) 2013 583
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4. Experimental results

The supercapacitor SAMSON DRE22/2.5 (capacitance 22 F,

operating voltage 2.5 V) has been exploited in the experi-

ments.

The parameters θ = [α Rs Rp]T of the model (1), (2) have

been determined via a least-squares procedure minimizing the

performance index (24) for W = [1]. In this case, the voltage

vs(t) (see Fig. 3) across the terminals of the supercapacitor

vs(t) = x(t) + RsCs

dαx(t)

dtα
(25)

has been compared with the voltage waveform measured ex-

perimentally in the physical system. The identified parameters

are presented in Table 1. The graphical comparison of the

simulated and measured voltage waveforms are illustrated in

Fig. 4.

In case of the model (3), the parameters θ = [α Rs]
T

have been identified for n = 5. The voltage measured across

the terminals of the supercapacitors can be calculated as fol-

lows

vs(t) = x1(t) + RsCs

dαx1(t)

dtα

+
Rs

R + Rs

(

u(t) − x1(t) − RsCs

dαx1(t)

dtα

)

.

(26)

Table 1 contains the parameters that have been obtained via

a least-squares identification procedure where the weighting

matrix W = I has been chosen as identity matrix. Figure 5 il-

lustrates graphically the effect of the identification procedure.

Table 1

Results of the numerical identification of the parameters for the

supercapacitor circuit models

Model Cs [F] Rs [Ω] Rp [Ω] α

RC circuit with parallel resistor 22 0.03 0.19 0.88

RC transmission line for n = 5 22 0.01 − 0.74

a)

0 1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t [s]

v s [V
]

 

 

simulated data
measured data

b)

0 1 2 3 4 5 6 7 8 9
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t [s]

ε 
[V

]

Fig. 4. a) Comparison of the simulated (solid line) and measured (dotted line) voltage waveforms for the 22F/2.5V supercapacitor; b) dif-

ference ǫ between simulated and measured values. The simulation data are based on the model presented in Fig. 1

a)

0 1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t [s]

v s [V
]

 

 

simulated data
measured data

b)

0 1 2 3 4 5 6 7 8 9
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

n=3

n=4

n=5

t [s]

v s [V
]

Fig. 5. (a) Comparison of the simulated (solid line) and measured (dotted line) voltage waveforms for the 22F/2.5V supercapacitor; b) com-

parison of the simulated voltage waveforms for different n ∈ {3, 4, 5}. The simulation data are based on the model presented in Fig. 2 for

n = 5
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5. Applications

Supercapacitors are primarily used for energy storage purpos-

es in a variety of commercial applications. They can act as

short-term backup supplies to retain data in digital compo-

nents with memory in case of a short interruption in the pow-

er supply. The supercapacitors offer long performance lifetime

and therefore do not need to be replaced regularly as it is in

case of batteries. Using a supercapacitor in combination with

a battery can relieve the battery of the most severe load de-

mands by meeting the peak power requirements, and allowing

the battery to supply the average load. The reduction in pulsed

current drawn from the battery can result in an extended bat-

tery lifetime in portable electronic devices such as laptops and

mobile phones.

The ability of the supercapacitors to deliver high electri-

cal performance can resolve the limitation of lead-acid and

lithium-ion batteries in the automotive industry [32]. This is-

sue is especially challenging in hybrid and electric vehicles

that are getting more and more popular as well as in vehicles

equipped with automated Start & Stop systems. The use of

the supercapacitors can support cold cranking condition and

therefore extend battery life. The support of warm cranking

condition in Start & Stop systems can improve the fuel ef-

ficiency. The supercapacitors find also applications in KERS

(Kinetic Energy Recovery System) systems in regenerative

energy capture during braking and coasting. The promising

application areas are distributed power systems where the su-

percapacitors can play an important role in reducing wiring

size, weight, and consequently cost.

Consider a battery model that is based on a simple elec-

trical circuit shown in Fig. 6. The circuit consists of a bulk

capacitance Ccb, a surface capacitance Ccs, an internal resis-

tance Ri, and a polarization resistance Rt. The bulk capacitor

characterizes the ability of the battery to store charge and the

surface capacitor represents battery diffusion effects. The volt-

ages across the bulk capacitor and the surface capacitor are

denoted by Vcb and Vcs, respectively. The current and voltage

observed at the terminals of the battery are represented in the

circuit by I and U , respectively. The current I is taken as

positive in case of charging and negative otherwise.

U

R
I

i

Rt

Ccs

Vcs

Vcb
Ccb

+

-

Fig. 6. Electrical circuit model of a battery

The dynamic behavior of the model in Fig. 6 can be gov-

erned by the following equations:

dαVcb(t)

dtα
=

1

Ccb

I(t), (27)

dαVcs(t)

dtα
= −

1

RtCcs

Vcs(t) +
1

Ccs

I(t), (28)

U(t) = Vcs(t) + Vcb(t) + RiI(t). (29)

By defining the following state variables

x1(t) = Vcb(t), x2(t) = Vcs(t), (30)

and denoting the input and output as

u(t) = I(t), y(t) = U(t), (31)

we can formulate a fractional-order state space model of the

battery

dαx(t)

dtα
= Ax(t) + Bu(t), (32)

y(t) = Cx(t) + Du(t), (33)

where x(t) = [x1(t) x2(t)]
T, α ∈ (0, 1], t > 0 and

A =





0 0

0 −
1

RtCcs



 , B =

[

C−1
cb

C−1
cs

]

,

C =
[

1 1
]

, D =
[

Ri

]

.

(34)

Power management applications in the automotive elec-

tronics systems are subject to wide input voltage fluctuations

resulting from load dump, jump start, and cold-cranking con-

ditions. A load dump occurs when the battery is disconnected

while the engine and the alternator are running. A jump start

or boost occurs when a second battery (often from another ve-

hicle) is temporarily connected to recharge the dead battery of

the disabled vehicle. A cold-cranking condition occurs during

the startup of a vehicle engine. In such situation the battery

supplies a large current to the electric starter motor. At the

same time the battery voltage drops dramatically even below

5 V what could cause reset of many electronic devices in the

vehicle. Figure 7 shows a typical cold-cranking profile.

0 0.5 1 1.5 2
0

5

10

15

t [s]

U
 [V

]

Fig. 7. An example of typical cold-cranking profile
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Fig. 8. Current waveform during vehicle cranking (data collected

from a real vehicle)
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Fig. 9. Voltage waveform during vehicle cranking (data collected

from a real vehicle)
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si

m
ul

at
ed

)

Fig. 10. Simulated voltage waveform during vehicle cranking (data

collected from the battery model (32), (33))

Table 2

Parameters of the battery model

Parameter Value Unit

Ccb 50000 F

Ccs 30 F

Ri 0.015 Ohm

Rt 0.015 Ohm

α 0.8 −

The voltage (Fig. 9) and current (Fig. 8) waveforms have

been measured during crank operation. These data can be used

to identify the parameters of the battery model (32), (33) (see

Table 2). Simulated voltage waveform is presented in Fig. 10.

6. Conclusions

Fractional-order models can be successfully utilized to de-

scribe mathematically the dynamic behavior of the superca-

pacitors. In the paper, equivalent electrical circuit models in

the form of RC ladder networks have been used to verify the

hypothesis. The comparison of simulation and experimental

data has shown the effectiveness of the proposed modelling

methodology.
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