
ARCHIVES OF CIVIL ENGINEERING, LVII, 2, 2011

DOI: 10.2478/v.10169-011-0014-4

A SOLUTION OF NON-LINEAR DIFFERENTIAL PROBLEM WITH
APPLICATION TO SELECTED GEOTECHNICAL PROBLEMS

A. MILEWSKA1

A certain non-linear differential equation containing a power of unknown function being the
solution is considered with application to selected geotechnical problems. The equation can be
derived to a linear differential equation by a proper substitution and properties of operations G and
S.
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1. I

Contact issues [3], where one can consider many interaction problems, e.g. in parti-
cular the “stick-slip” phenomena, lead mainly to non-linear problems with differential
operators.

Similarly, as a specific geotechnical problem, a model of an interaction between
geosynthetic and the subsoil in a given situation (Fig. 1) – [12] can be considered as
a linear problem or non-linear one.

Such problem of the equilibrium can be presented in form of a differential equation
of the second order (elliptic or hyperbolic), furthermore, a large set of formulations is
discussed in e.g. [13].

Another example is the problem of vibration of a foundation loaded with dynamic
forces with using an isolation layer (Fig. 2) – [9]; this problem can be again analyzed
as a linear or non-linear one.

In the analysis of the process of pile driving into the soil (Fig. 3), or in the process
of driving an open pile with a soil plug creation, or models showing the interaction
between pile and soil using the basic rheological elements e. g. spring and slide with
a parallel connected piston [6], these problems are non-linear by nature and could be
understood as relevant geotechnical ones.
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Fig. 1. Model of an interaction between geosynthetic and subsoil.
Rys. 1. Model współpracy geowłókniny z podłożem

Fig. 2. A foundation loaded with dynamic forces with using an isolation layer.
Rys. 2. Fundament obciążony dynamicznie z warstwą izolacyjną

Settling of banks, diffusion in the porous medium, identifying dynamic geotech-
nical systems, etc., are only some of the problems that can be modelled as a linear or
non-linear one.

Linear models are only a rough approximation of the phenomena and processes
occurring in the soil. Usually they lead to differential equations, linear equations, or
systems of equations.

However, their advantage is often the fact that it is possible to find an analytic
solution to these models, which is crucial from the practical point of view.

In the case of the non-linear models, which are closer to reality, it is quite impos-
sible to find any analytic solution for the non-linear differential equations.



A   -      . . . 189

The aim of this paper is to find an analytic solution of the non – linear diffe-
rential equation system, and therefore an introduction of methods of linearization of
the non-linear systems is needed. Such linearization is understood as an approximate
analogue of the non-linear model with the appropriate linear one. Such linearization
procedure is ‘justified’ for ‘soft’ non-linearities occurring in the system in question. In
other cases numerical methods, e.g. genetic algorithms, are used but a disadvantage of
these methods is a difficulty to estimate the error of obtained approximation.

In this paper, a method for solving the above mentioned non-linear problems
without any resort to the approximate methods is described. This is an important
advantage of the method presented below. An additional advantage of the method is
that the results obtained for the non-linear cases can be used, or they are even useful
in the analysis of linear problems.

Fig. 3. Model of pile driving into the soil.
Rys. 3. Model pala wbijanego w grunt
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This method substitutes the non-linear problem with an equivalent (and not ap-
proximate) linear problem. It is easy to explain all the details and also the way to
create the useful functions on an example. Further considerations require precision and
mathematical accuracy, so they are presented as definitions, theorems and corollaries,
which are of the character of general laws, possible to be used in given geotechnical
situations mentioned above!

In the literature, various types of the non-linear differential equations are analysed.
A detailed analysis of the different classes of the non-linear equations can be found in
e. g. [1, 2, 11].

In this paper, a special type of non-linear differential equation is considered, which
in a sense corresponds to the special case presented in the form of an equation derived
in [10].

The method by which a certain non-linear differential equation can be brought to
a linear differential equation is presented. In this method some properties of non-linear
operation Gn defined in [7, 8] and some properties of the operation S defined in [4,
5] are used. The above-mentioned method enables to determine an explicit solution of
the analyzed non-linear differential equation, or an explicit solution of linear equation
corresponding to it, or at any rate some representations of solutions of the differential
equations being a member of a certain class.

2. T -  G   -  

Definition 1. We denote

(2.1) Sx
def
= b (t)

dx
dt

where x ∈ C1 (< t1, t2 >,R) , b (t) , 0 for t ∈< t1, t2 > .
Definition 2. By induction we define a sequence of operations Gn, n ∈ N, such as

(2.2) Gn (x) = SGn−1 (x) + xGn−1 (x)

(2.3) G0 (x)
def
= x

where x ∈ Cn (< t1, t2 >,R) .
Corollary 1. For n=1 one obtains

(2.4) G1 (x) = Sx + x2.

For n=2 we have

(2.5) G2 (x) = S2x + 3xSx + x3.
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For n=3 we have

(2.6) G3 (x) = S3x + 3 (Sx)2 + 4xS2x + 6x2Sx + x4.

Remark. The operation Gn is a non-linear operation.
Definition 3. We denote

(2.7) Ex def
= exp

(
−

∫ t

t0

x (τ)
b (τ)

dτ
)
.

where
x ∈ C0 (< t1, t2 >,R) .

It can be proved by induction that the operation Gn formulated in definition 2
possesses the following properties:

(2.8) Gn
(
(Sx) x−1

)
=

(
Sn+1x

)
x−1, x ∈ Cn+1 (< t1, t2 >,R) , x ∈ Inv

(2.9) Sn (Ex) = ExGn−1 (−x) , x ∈ Cn (< t1, t2 >,R) .

Let us consider a differential equation in the following form

(2.10) an+1Gn (−x) + anGn−1 (−x) + an−1Gn−2 (−x) + · · · + a1G0 (−x) + a0 = 0,

where ai ∈ C0 (< t1, t2 >,R) for i = 0, 1, 2, . . . , n + 1, x ∈ Cn (< t1, t2 >,R).
Corollary 2. For n=1 the non-linear first-order differential equation is obtained

(2.11) a2Sx = a2x2 − a1x + a0.

For n=2 one gets the non-linear second-order differential equation

(2.12) a3

(
S2x − 3xSx

)
+ a2Sx = −a3x3 + a2x2 − a1x + a0.

For n=3 one gets the non-linear third-order differential equation

(2.13)
a4

(
S3x − 3 (Sx)2 − 4xS2x + 6x2Sx

)
+ a3

(
S2x − 3xSx

)
+ a2Sx =

= a4x4 − a3x3 + a2x2 − a1x + a0.

Taking into account the above formulations it is possible to show, that using the
operation G1

(2.14) Sx = d1x2 + d2x + d3

where
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x ∈ C1 (< t1, t2 >,R) , d1, d2 ∈ C0 (< t1, t2 >,R) , d3 ∈ C1 (< t1, t2 >,R) , d3 ∈ Inv,
can be written in the form (2.11), with α2

def
= 1. Let us substitute

(2.15) x = −d3y−1, y ∈ C1 (< t1, t2 >,R) , y ∈ Inv

to the equation (2.14). From the substitution (2.15) and from definition of the operation
S we get the following relation

(2.16) Sx =
[− (Sd3) y + d3 (Sy)

]
y−2,

so the equation (2.14) can be rewritten to the following form

(2.17)
[− (Sd3) y + d3 (Sy)

]
y−2 = d1d2

3y
−2 − d2d3y−1 + d3,

so

(2.18) Sy = y2 + (Sd3 − d2d3) d−13 y + d1d3.

Corollary 3. We can write a differential equation (2.14) using the operation G1, i.e.

equation (2.14) can be transformed to the from (2.11). In this case a2
def
= 1,

a1
def
= − (Sd3 − d2d3) d−13 , a0

def
= d1d3.

3. M      

Theorem 4. The non-linear differential equation (2.10) can be brought about to a
linear differential equation

(3.1) an+1Sn+1y + anSny + an−1Sn−1y + · · · + a1Sy + a0y = 0,

where y ∈ Cn+1 (< t1, t2 >,R) and x
def
= − (Sy) y−1, y ∈ Inv.

Proof. Substituting

(3.2) x = − (Sy) y−1

into the equation (2.10) we get

(3.3)
an+1Gn

(
(Sy) y−1

)
+ anGn−1 (

(Sy) y−1
)

+ an−1Gn−2 (
(Sy) y−1

)
+ · · ·+

+a1G0
(
(Sy) y−1

)
+ a0 = 0.

Using the properties of the operations Gn we can write the previous equation in
the following form

(3.4) an+1

(
Sn+1y

)
y−1 + an (Sny) y−1 + an−1

(
Sn−1y

)
y−1 + · · · + a1 (Sy) y−1 + a0 = 0,
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so

(3.5) an+1

(
Sn+1y

)
+ an (Sny) + an−1

(
Sn−1y

)
+ · · · + a1 (Sy) + a0 = 0.

Theorem 5. We can bring the differential equation (3.5) to the differential equation

(2.10), where y
def
= Ex.

Proof. Substituting y
def
= Ex into the equation (3.5) we get

(3.6) an+1

(
Sn+1Ex

)
+ an (SnEx) + an−1

(
Sn−1Ex

)
+ · · · + a1 (SEx) + a0Ex = 0.

From properties of the operation Gn we get the equation

(3.7)
an+1ExGn (−x) + anExGn−1 (−x) + an−1ExGn−2 (−x) + · · ·+
+a1ExG0 (−x) + a0Ex = 0

Based on the previous equation one achieves the following equation

(3.8) an+1Gn (−x) + anGn−1 (−x) + an−1Gn−2 (−x) + · · · + a1G0 (−x) + a0 = 0.

Corollary 6. There exists an equivalence between the differential equation (3.5) and
the non-linear differential equation (2.10). Thus, the differential equation (2.11), i.e.

(3.9) a2b(t)x′ = a2x2 − a1x + a0

is an equivalent to the differential equation

(3.10) a2 (b (t))2 y′′ + b (t)
(
a2b′ (t) + a1

)
y′ + a0y = 0,

where y
def
= Ex.

Remark If

(3.11) S2y +
(
a0c−1 + c

)
Sy + a0y = 0, c ∈ Ker

(
b (t)

d
dt

)
, c ∈ Inv

or

(3.12) S2y + a1Sy +
(
a1c − c2

)
y = 0, c ∈ Ker

(
b (t)

d
dt

)
, c ∈ Inv,

then the element
y = Ec

is a solution of the differential equation (3.11) or (3.12).
Theorem 7. If there exists a solution µ ∈ Inv of the differential equation (2.10) then a
differential equation

an+1Sn+1y + anSny + an−1Sn−1y + · · · + a1Sy + a0y = u, u ∈ C0 (< t1, t2 >,R)
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is an equivalent to the system of equations

ānSnu1 + ān−1Sn−1u1 + · · · + ā0u1 = u, Sy + µy = u1

(is an equivalent to the series connection of the dynamical systems illustrated in Fig. 4).

Fig. 4. Series connection of two dynamical systems.
Rys. 4. Szeregowe połączenie dwóch układów dynamicznych

Proof. From the previous system of equations we have
(
ānSn + ān−1Sn−1 + · · · + ā0

)
(Sy + µy) = u.

In the case for n=3 the following equation

a4S4y + a3S3y + a2S2y + a1Sy + a0y = u

can be replaced by the equation below
(
ā3S3 + ā2S2 + ā1S + ā0

)
(Sy + µy) = u.

Based on the previous fact, it can be stated that the element µ ∈ Inv is the solution of
the equation (13), i.e.

a4

(
S3x − 3 (Sx)2 − 4xS2x + 6x2Sx

)
+ a3

(
S2x − 3xSx

)
+ a2Sx =

= a4x4 − a3x3 + a2x2 − a1x + a0.

Coefficients ā3, ā2, ā1, ā0 could be determined from the following dependencies

ā3
def
= a4

ā2
def
= a3 − a4µ

ā1
def
= a2 − 3a4Sµ − a3µ + a4µ

2

ā0
def
= a1 − 3a4S2µ − 2a3Sµ + 5a4µSµ − a2µ + a3µ

2 − a4µ
3.

Remark. The proof of Theorem 7 is of practical importance because it shows how the
unknown element µ and the coefficients āi should be determined.

Remark. Non – linear problems can be replaced with a series connection of two
or more simple systems, as presented in Fig. 5.



A   -      . . . 195

Fig. 5. Series connection of n+1 dynamical systems.
Rys. 5. Szeregowe połączenie n+1 układów dynamicznych

4. E

Here the equation of beam deflection y(x) with variable stiffness is considered. A beam
placed on an elastic foundation, loaded by axial force P and any transverse loading
q(x), can be written in form of the following differential system of equations:

(4.1) M′′ (x) +
P

B (x)
M (x) = q (x)

(4.2) B (x) y′′ (x) = M (x)

where M(x) indicates moment, B(x) means variable beam stiffness understood as a
variable foundation parameter.

In practical cases the equation (4.1) is solved based on approximation way by using
the method of series, as well as the numerical methods. However, it often gives no
answer to the following question: does the solution exist and if it exists, is the solution
unique ?
If

B (x) = −
Pc2

(
c1 + c2 exp

(
x
c

))

c2 exp
(

x
c

) , c1, c2, c ∈ R, c , 0, c2 , 0,

Then, on the basis of the previous discussion, the equation (4.1) can be written as a
series connection of the first order systems, i.e.

(S − µ) (SM + µM) = q, where µ = −
c2 exp

(
x
c

)

c
(
c1 + c2 exp

(
x
c

)) , b = 1.

Thus, from the previous formula M(x) can be determined.
Afterwards, using the equation (4.2), one can determine y(x) by the double-integration.
Remark. In the purpose of determination of the moment M(x) in general cases

the theorem 7 should be utilized, and as a consequence the equation (4.1) should be
replaced by the following equivalent equation:

(S − µ) (SM + µM) = q,
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where the element µ is the solution of the non-linear differential equation shown below:

Sµ = µ2 +
P

B (x)
.

5. C

The analysis of non-linear differential equations is very important because of problems
of practical use, particularly in geotechnics. The presented method enables transforma-
tion of the non-linear problems into the linear ones and vice versa with very effective
results.

This method is effective for the reason that many non-linear differential equations
created for geotechnical behaviors can be solved analytically with different conditions,
i.e. initial conditions, boundary conditions or initial-boundary ones.

Non-linear geotechnical problems formulated in their differential form can be sub-
stituted with chain-connections with two or more simple systems. The analysis of
the whole system can be therefore investigated with limitation to the analysis of the
separate elements of the chain-connection, where only linear elements of the first-order
are included. As a simple example of usage of this method, the stiffness of a beam
placed on an elastic subground, described by variable quantities is considered.

This particular method presented in this paper evidently shows that future research
can be based on the results presented here which can lead to the non-linear identification
of the geotechnical differential systems.
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PEWNE ROZWIĄZANIE NIELINIOWEGO PROBLEMU RÓŻNICZKOWEGO Z ZASTOSOWANIEM
DO WYBRANYCH ZAGADNIEŃ GEOTECHNICZNYCH

S t r e s z c z e n i e

Pewne nieliniowe równanie różniczkowe jest analizowane pod kątem zastosowań do rozwiązywania wybra-
nych problemów geotechnicznych, które modelowane są jako nieliniowe, bądź liniowe o współczynnikach
funkcyjnych. Dane równanie różniczkowe jest sprowadzane analitycznie do równania różniczkowego li-
niowego i odwrotnie dzięki właściwościom iteracji operacji G oraz właściwościom operacji S.
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