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Abstract. This article presents the procedure of identification radar emitter sources with the trace distinctive features of original signal
with the use of fractal features. It is a specific kind of identification called Specific Emitter Identification, where as a result of using
transformations, which change measure points, a transformation attractor was received. The use of linear regression and the Lagrange
polynomial interpolation resulted in the estimation of the measurement function. The method analysing properties of the measurement
function which has been suggested by the authors caused the extraction of two additional distinctive features. These features extended the
vector of basic radar signals’ parameters. The extended vector of radar signals’ features made it possible to identify the copy of radar emitter
source.
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1. Introduction

The word “fractal” was introduced and popularized by Benoit
Mandelbrot in the book The Fractal Geometry of Nature [1].
This term concerns a wide range of example geometric ob-
jects such as Cantor set [2], Helge’a von Koch curve [3],
Sierpinski carpet [4], Julia Mandelbrot’s sets and many more.
In her early works Mandelbrot describes fractals using three
basic properties i.e. defined by the recursive relation and not
by a formula, having the self-similarity feature (a part is sim-
ilar to the entire object) and their dimension is not an integer.
However, it has to be said that the properties of fractals can-
not be a base for an accurate mathematical definition as the
same objects may be defined in different ways. The term “re-
cursive” is also one of many others as some “typical fractal”
may be defined in an algebraic way. A good example of it is
the Cantor set. The self-similarity feature is also difficult to
define especially while taking into account the fact that the
simplest geometric objects have this feature. One should focus
its attention on the dimension of geometric object especially
when it is difficult to define it by an integer. Therefore, one
of the most common number characteristics of fractals is the
dimension. At the same time examples of sets such as Cantor
set, Peano curves [5] and Hilbert curves [6] resulted in a new
definition of dimension [7]. Also Hausdorff dimension [8] and
the definition of Menger topological dimension [9] have a di-
rect influence on the Mandelbrot definition. The researchers
of the field of science often use the definition of dimension
by Minkowski [10], which is also called a box dimension.

2. Specific Identification of emitter sources,

extraction of Fractal features

Identification of signals with the use of classic methods (clas-
sic identification methods) based on the statistic analysis of

basic measurement parameters such as radio frequency (RF),
amplitude (A), pulse width (PW) or pulse repetition interval
(PRI) is not enough for SEI problems. Therefore, what is of-
ten adopted in the process of definition are methods using
for instance, out-of-band radiation or extraction of distinctive
features which increase the explicitness of the results received
in identification of emitter sources [11, 12].

One of the ways to increase the number of details of de-
finition is a specific identification of electromagnetic emitter
sources SEI which extracts distinctive features in the process
of signal transformation. The distinctive features may be a re-
sult of the received transformations of measurement data sets.
New data sets will have fractal features which will make it
possible to define clearly the source of emission. The fractal
features and the theory of fractals is adopted by researchers es-
pecially in the field of SAR (Synthetic Aperture Radar) image
transformation [13, 14], acoustic signal transformation and the
analysis of radar signals. New possibilities of Digital Signal
Processing (DSP) in Frequency Modulated Continuous Wave
(FMCW) radar and fractal image compression is a promising
brand new compression method [15, 16]. As the authors of
this article claim the identification of emitter sources based
on classical methods of the analysis of basic parameters is
currently inefficient. The methods of SEI [17, 18] should be
used in order to identify a radar copy of the same type more
precisely.

2.1. Measurement points transformation. The easiest way
to make fractals is using a set of affine transformations which
are contractions or narrowing transformations. In this case
the set of affine transformations is Iterated Function System
(IFS). The authors of this article made a recording of radar
signal where further frequency values, for which the recording
was made, correspond to particular measurement points. By
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transforming the sets of measurement points within the scope
of their symmetry or left-side/right-side asymmetry what was
received was the attractor of transformation which can be a
fractal in a special case. As a result the attractor of the gen-
eralized measurement function appeared which was the re-
sult of the procedure of SEI emitter identification described
here. While doing the analytical procedure of defining the
attractor of the measurement function the authors assigned
right-side measurement vectors pr and left-side ones pl, with
the beginning in the particular point of reference f0, so that:
pr = [pr

1
, pr

2
, ..., pr

N ]T and pl = [pl
1
, pl

2
, ..., pl

M ]T . In order to
define the desirable selective features the T : pr

→ t transfor-
mation was done. In this transformation t is the image of the pr

vector in the form of a vector with coordinates corresponding
to the pl vector. For the transparent record of the transforma-
tion above with the use of vectors: pr and pl, the mapping
was written in the Euclidean plane, that is T : E1

→ E2.

In the issue, which is considered here, these transformations
are linear mappings, so they can be written in the matrix
form as t = T (pp, A), in which A is the matrix of a giv-
en transformation. Depending on the received symmetry or
asymmetry (right/left-hand) of measurement points they cre-
ate three different dispersion graphs. These dispersion graphs
were presented in [19].

2.2. The attractor of transformation, extraction of dis-

tinctive features. In further analytical procedure of making
an attractor of the measurement function the authors used
the method of linear regression in order to define regression
equations and coordinates of characteristic points. The next
step estimated the characteristic points (which are solutions
of regression equations) used to estimate the measurement
function running across these points in the form of Lagrange
interpolation polynomial. Measurement points presented in
Fig. 1, transformed and depicted together, form the so-called
measurement function K(fn). Figure 1 shows the coordinate
plane, where an abscissa (the value of x) is marked as a fx

n and
an ordinate (the value of y) is marked as a fy

n . On the basis of
distinctive streaks which were formed, such hypothesis can be
proposed: functions gA(fn), gB(fn), gC(fn) and gD(fn) be-
long to the class of linear functions, in which gA(fn), gB(fn),
gC(fn) and gD(fn) are the regression lines for the streaks
formed through the measurement points [19, 20].

A linear equation of regression for the presented case
is defined with the following equation g(fn) = α ·

fn + β, in which α can be expressed as a vector
[αA, αB, αC , αD]T and β can be expressed as a vector
[βA, βB, βC , βD]T and g(fn) can be expressed as a vector
[gA(fn), gB(fn), gC(fn), gD(fn)]T . To define the value of α

and β Eq. (1) should be minimalized.

E
[
fY

n − α · fn − β
]2

= min (1)

{
∂

∂α
E

[
fY

n − α · fn − β
]2

= −2E
[(

fY
n − α · fn − β

)
fn

]

∂
∂β

E
[
fY

n − α · fn − β
]2

= −2E
[(

fY
n − α · fn − β

)]

(2)

Fig. 1. A graph of measurement points dispersion after transforma-
tion in two-dimensional Euclidean plane E

2 in combined depicting
– attractor of transformation

After comparing the calculated derivatives (2) to zero, the sys-
tem of normal equations appears in which after replacing the
expected values with particular moments of equation systems
the following relations (3) can be written,

{
α · m20 + β · m10 = m11

α · m10 + β = m01

(3)

in which m10 and m01 are sample 1-th moments, m20 is sam-
ple 2-th moment and m11 is mixed sample 1-th moment. After
further transformations the regression equation is as follows,

g(fn) =
µ11

µ20

· fn +

(
m01 −

µ11

µ20

m10

)

= α21fn + β,

(4)

where

α21 =

[
µA

11

µA
20

,
µB

11

µB
20

,
µC

11

µC
20

,
µD

11

µD
20

]T

= [αA, αB, αC , αD]
T

,

(5)

β =

[
mA

01
−

µA
11

µA
20

mA
10

, mB
01

−
µB

11

µB
20

mB
10

,

mC
01

−
µC

11

µC
20

mC
10

, mD
01

−
µD

11

µD
20

mD
10

]T

= [βA, βB, βC , βD]T

(6)

and µ11 means mixed 2-th central moment and µ20 means
2-th central moment.

As a result of further transformations four equations of
linear regression have been received. Then it is possible to
draw a measurement function K (fn) in the form of a prod-
uct degree k, given k + 1 characteristic points, defined by
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the interpolation Lagrange’s formula in accordance with the
following relation,

K(fn) = akfk
n + ak−1f

k−1

n

+ak−2f
k−2

n + ... + a0,
(7)

where ak, ak−1, ..., a0 are characteristic parameters of a gen-
eralized measurement function K(fn). The formalized no-
tation of the measurement function K(fn) allows to extract
distinctive features through defining the space area under the
measurement function and the arc length of the function,
which appeared for the SEI process. The feature Ŝ, is the
value of the space area of a closed surface expanding from
the generalized measurement function K(fn) in the bracket〈
fmin

n , fmax

n

〉
, respecting the relation (8)

Ŝ =

fmax

n∫

fmin
n

K(fn)dfn =

fmax

n∫

fmin
n

(
akfk

n + ak−1f
k−1

n + ak−2f
k−2

n + ... + a0

)
dfn.

(8)

Simultaneously, the arc length of the generalized measurement
function K(fn) as the second distinction feature of the radar
emission source is represented through the arc length L̂ of
the function K(fn)in the brackets

〈
fmin

n , fmax
n

〉
respecting

the following Eq. (9).

L̂ =

fmax

n∫

fmin
n

[
1 +

(
∂K(fn)

∂fn

)2
] 1

2

dfn =

fmax

n∫

fmin
n

[
1+

(
kakfk−1

n +(k−1)ak−1f
k−2+...+a1

)2
]

1/2

dfn.

(9)
The image of measurement points’ transformation which was
received is a „peculiar” attractor of transformation and the
further analysis makes it possible to define two additional dis-
tinctive features in the form of area under the measurement
function and the length of its arc. The additional distinctive
features received in that way modify the vector of basic mea-
surable parameters of a radar signal i.e. RF, PW, A and PRI
and further process of identification based on the extended
vector of features makes it possible to identify every copy of
radar emission source.

3. Results of estimations

In the researching and measuring procedure which was car-
ried out by the authors about 400 radar emissions from the
same type of several radar copies were analysed. On the basis

of the registered measurement vectors with the use of holdout
method [21, 22] (it divides the set of measurement data into
two separate sets i.e. the set used to teach the classificator
and the set used to test the classificator- usually the division
is: 2/3 available data is the teaching set and 1/3 is the testing
set), what was received were the standards of radar classes
and testing vectors.

Fig. 2. 3-D graphic depicting of RF, PRI and PW for three selected
copies of the same type of radars marked by blue, red and green

colour

Fig. 3. 3-D graphic depicting of PW, PRI and RF for three selected
copies of the same type of radars marked by blue, red and green

colour

On the basis of the recordings and initial analysis to fur-
ther process of identification only these copies were admitted
whose basic measurable parameters i.e. RF, PW and PRI were
much the same – see Figs. 2 and 3. Figures 4–7 present the
biggest similarity of the radar signal parameters which those
sources generated.
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Fig. 4. 3-D graphic depicting of RF for three selected copies of the
same type of radars

Fig. 5. RF histogram for three selected copies of the same type of
radars

Fig. 6. 3-D graphic depicting of PW for three selected copies of the
same type of radars

Fig. 7. PW histogram for three selected copies of the same type of
radars
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Figure 5 presents the histogram (graphic composition) of
the radio frequency (RF) for three copies radars of the same
type. Figure 7 presents the histogram of the pulse width (PW)
for three copies of the same type of radar. Packets of radar
signals consisting of 500 impulses were analysed. Figures 4
and 6 present 3-D depicting of radio frequency (RF) and pulse
width (PW) of radar signals. These graphs were received with
the use of ’mesh’ function in the MatLab software. This pro-
gram makes it possible to receive a solid net which depicts RF
and PW values of the analysed radar signals in three dimen-
sions. These graphs were made for a hundred of consecutive
impulses. As it can be easily seen in Figures 4÷7 basic mea-
surable radar parameters filter through each other. Classical
methods to define these emissions fail in identification the par-
ticular radar copy. And these three radar copies underwent the
process of identification with the use of fractal features. The
process of identification was made on the basis of length mea-
surement and the decision about the criterion of minimal dis-
tance classification. The functional of conformity assessment
of tests with particular class was Mahalanobis, Euclidean and
Hamming distances (metrics) [21, 22]. The criterion of clas-
sification was the criterion of “the nearest neighbour” which
was used as one of basic threshold criteria [23]. In order to as-
sess the quality of the classification/identification process the
Correct Identification Coefficient (CIC) was defined. This CIC
is the quotient of the number of correct classification to the
number of all identification tests. As the process of making
measurement vectors, estimating distances between classes,
defining the coefficient and the criteria used are not the main
problem of this article their precise description is in [19].

The first step was to define the vectors of the basic measur-
able parameters i.e. RF, PW and PRI. With the use of Maha-
lanobis, Euclidean and Hamming distances the correct identi-
fication coefficient CIC was estimated. The value of CIC was
precisely: CIC = 0.169 for Mahalanobis distance, CIC = 0.118
for Euclid distance and CIC = 0.202 with the use of Ham-
ming distance. The results of received were not enough to
identify exactly the copies of radars. Then the transformation
of measurable points was done and with the use of the lin-
ear regression method the coordinates of characteristic points
and measurement functions K(fn) were defined and as a re-
sult the attractor of these transformations was received. The
results were presented in Figs. 8–10. The presented method
of features extraction makes it possible to estimate numeri-
cal surface areas under the measurement functions (feature
Ŝ) and the distance of the arc of these functions (feature L̂).
Then the vector of basic measurable parameters of a radar
signal was extended with two additional features Ŝ and L̂.
Then the received vectors of features underwent the aforemen-
tioned process of transformation. As a result of the analysis:
CIC = 0.916 for Mahalanobis distance, CIC = 0.967 for Ham-
ming and Euclidean distances.

Fig. 8. Attractor of transformation for Copy of Radar No.1

Fig. 9. Attractor of transformation for Copy of Radar No.2

Fig. 10. Attractor of transformation for Copy of Radar No.3

Bull. Pol. Ac.: Tech. 61(3) 2013 627



J. Dudczyk and A. Kawalec

4. Conclusions

Taking into account the results received it can be concluded
that the process of identification of radar copies of the same
type based on the basic radar signal parameters i.e. PW, RF
and PRI is rather impossible. The possibility of classification,
that is identification of types which are in most identification
systems, is not enough.

With the use of the linear regression method it is possible
to formalize the written form of the measurement function
K(fn) and the extraction of two distinctive features Ŝ and
L̂. As a result there is a possibility to enter the additional
features, which modify the vector of basic measurable para-
meters of a radar signal, to the description of the radar copy.
The features are a piece of distinctive information which is a
good measure of separation in order to distinguish well the
exact copy of the emission source. Simultaneously, as a re-
sult of the use of transformation sets with measurement points
what was received was the transformation attractor of the gen-
eralized measurement function. The “transformation fractal”
which was received will be used in further research in order
to optimalize the procedure of specific identification of radar
copies of the same type.

Acknowledgements. This work was supported by the Na-
tional Centre for Research and Development (NCBiR) from
sources for science in the years 2010–2012 under project
O R00 0161 12.

REFERENCES

[1] B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Free-
man and Comp., New York, 1982.

[2] G. Cantor, “Uber unen dliche, lineare Punktmannigfaltigkeit-
en”, V Math. Ann. 21, 545–591 (1883).

[3] H. von Koch, “Sur une courbe continue sans tangente, obtenue
par une construction geometrique elementaire”, Arc. Mat. 1,
681–404 (1904).

[4] W. Sierpiński, “Sur une courbe cantorienne don’t tout point est
un point de ramification”, C.R. Acad., Paris 160, 302 (1915).

[5] G. Peano, “Sur une courbe qui remplittoute une aire plane”,
Math. Ann. 36, 157–160 (1890).

[6] D. Hilbert, “Uber die stetige Abbildung einer Linie auf
Flachenstruck”, Math. Ann. 38, 459–460 (1891).

[7] R. Engelking, Dimension Theory, Scientific Press PWN, War-
saw, 1977.

[8] F. Hausdorff, “Dimension und auseres”, Mas. Math. Ann. 79,
157–179 (1918).

[9] K. Menger, Dimensionstheorie, Teubner, Leipzig, 1928.
[10] P. Mattila, B. Bollobas, and W. Fulton, Geometry of Sets and

Measures in Euclidean Spaces: Fractals and Rectifiability,
Cambridge Univ. Press, Cambridge, 1999.

[11] J. Dudczyk, A. Kawalec, and R. Owczarek, “An application of
iterated function system attractor for specific radar source iden-
tification”, Proc. Int. Conf. on Microwaves, Radar and Wireless

Communications MIKON 1, 256–259 (2008).
[12] A. Kawalec, R. Owczarek, and J. Dudczyk, “Data modelling

and simulation applied to radar signal recognition”, Molecular

and Quantum Acoustics 26, 165–173 (2005).
[13] F. Berizzi, G. Bertini and M. Martorella, “Two-dimensional

variation algorithm for fractal analysis of sea SAR images”,
IEEE Trans. Geosci. Remote Sens. 44, 2361–2373 (2006).

[14] M. German, G.B. Be’nie’, and J.M. Boucher, “Contribution of
the fractal dimension to multiscale adaptive filtering of SAR
imagery”, IEEE Trans. Geosci. Remote Sens. 41, 1765–1772
(2003).

[15] B. Świdzińska, “Fractal compression using random encoding
algorithm”, Bull. Pol. Ac.: Tech. 46 (4), 525–532 (1998).

[16] A. Wojtkiewicz, M. Nałęcz, K. Kulpa, and R. Rytel-Andrianik,
“A novel approach to signal processing in FMCW radar”, Bull.

Pol. Ac.: Tech. 50 (4), 347–359 (2002).
[17] M.W. Liu and J.F. Doherty, “Specific emitter identification

using nonlinear device estimation”, Proc. Sarnoff Symposium

IEEE 1, 1–5 (2008).
[18] K.I. Talbot, P.R. Duley, and M.H. Hyatt, “Specific emitter

identification and verification”, Technology Review J. 113–133
(2003).

[19] J. Dudczyk, “Applying the radiated emission to the radio-
electronic devices identification”, Dissertation Thesis, Dept.
Elect., Military Univ. of Tech., Warsaw, 2004, (in Polish).

[20] Z. Hellwig, Theory of Probability and Mathematical Statistics,
Scientific Press PWN, Warsaw, 1998.

[21] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification,
John Wiley & Sons, New York, 2000.

[22] K. Fukunaga, Introduction to Statistical Pattern Recogniction,

Second Edition, Academic Press, New York, 1990.
[23] C.T. Zahn, “Graph-theoretical methods for detecting and de-

scribing gestalt clusters”, IEEE Trans. on Computers 1, 68–86
(1971).

628 Bull. Pol. Ac.: Tech. 61(3) 2013


