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Fixed final time and free final state optimal control problem

for fractional dynamic systems

– linear quadratic discrete-time case
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Abstract. The optimization problem for fractional discrete-time systems with a quadratic performance index has been formulated and
solved. The case of fixed final time and a free final state has been considered. A method for numerical computation of optimization problems
has been presented. The presented method is a generalization of the well-known method for discrete-time systems of integer order. The
efficiency of the method has been demonstrated on numerical examples and illustrated by graphs. Graphs also show the differences between
the fractional and classical (standard) systems theory. Results for other cases of the fractional system order (coefficient α) and not illustrated
with numerical examples have been obtained through a computer algorithm written for this purpose.
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1. Introduction

Fractional calculus is an extension of the traditional calcu-
lus of the integer order, where the definition of derivatives
and integrals are defined for a non-integer (real or complex)
order. Using fractional calculus we can get a more detailed
mathematical model of physical processes or experiments. A
very good example of the use of the fractional calculus is
modeling of an ultracapacitor [1] or the heating process [2].
Also, other areas of science and technology have started to
pay more attention to these concepts and it may be noted that
the fractional calculus is being adopted in the fields of sig-
nal processing, system modeling and identification, and con-
trol [3–6].

Dynamic optimization problems for integer (not fraction-
al) order systems have been widely considered in literature
(see e.g. [7–10]). Mathematical fundamentals of the fractional
calculus, such as basic definitions of derivatives and integrals
and their relationship, are given in the monographs [11–13]
and the fractional differential equations and their applications
have been addressed in [14–15]. A numerical simulation of
the fractional order control systems has been investigated in
[16]. One of the fractional discretization method has been
presented in [17]. Some optimal control problems with fixed
final time and a final state for continuous-time systems of the
fractional order have been investigated in [18–26]. The frac-
tional Kalman filter and its application have been addressed in
[27–28]. Some recent interesting results in fractional systems
theory and its applications to standard and positive systems
can be found in [29–32].

In this paper the optimization problem with fixed final
time for fractional discrete-time systems with quadratic per-
formance index are formulated and solved. The case of a free
final state with fixed final time is considered. The case of a
fixed final state with fixed final time has been investigated in
[33]. A method for a numerical computation of the solution
of such an optimal control problem is presented. The pre-
sented method is a generalization of the well-known method
for discrete-time systems of an integer order. The efficiency
of the method is demonstrated on a numerical example and
illustrated by graphs. Graphs also show the differences be-
tween the fractional and classical (standard) systems theory.
It is shown that in a case when alpha is an integer number
the presented method is equivalent to well known results for
discrete-time systems of an integer order. Results for other
cases of the fractional system order (coefficient α) and not
illustrated with numerical examples are obtained through a
computer algorithm written for this purpose [34].

The paper is organized as follows. In Sec. 2 some pre-
liminaries are recalled and the problem is formulated. Also a
general solution and a link to the classical theory is demon-
strated in Sec. 2. The solution of the problem in case of a
free final state is presented in Sec. 3. In Sec. 4 a procedure
for computation of the solution is proposed and illustrated by
a numerical example. Conclusions of the paper are given in
Sec. 5.

The following notation is used: ℜ- the set of real numbers,
ℜn×n – the set of n × n real matrices, Z+ – the set of pos-
itive integers, S ≥ 0 is a matrix with non-negative elements,
R > 0 is a matrix with positive elements.
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2. Problem formulation and general solution

The fractional continuous-time system is described by the
equations [31]

RL
a Dα

t x(t) = Ax(t) + Bu(t),

where x ∈ ℜn, u ∈ ℜm are respectively the state and control
vectors, A ∈ ℜn×n, B ∈ ℜn×m and RL

a Dα
t x(t) is Riemanna-

Liouville fractional derivative.
The Grunwald-Letnikov (shifted) approximation of frac-

tional order derivative [17] is given as

RL
a Dα

t x(t) ≈
1

hα

n
∑P j = 0(−1)α

(

α

j

)

xk−j+1.

Using the above two relations we can obtain a fractional
discrete-time system, described by the equations

xk+1 =

k
∑

j=0

djxk−j + Buk, k ∈ Z+, (1a)

where x ∈ ℜn, u ∈ ℜm are respectively the state and control
vectors, A ∈ ℜn×n, B ∈ ℜn×m and

d0 = Aα = A + αIn, 0 < α < 1,

dj = (−1)j

(

α

j + 1

)

In, j = 1, . . . , k,
(1b)

where IN – the n × n identity matrix. We assume that the
initial value x0 of the state vector in discrete time k = 0 (ini-
tial conditions) is given and h = 1. The number of discrete
time points is N ∈ Z+, at which the state vector has to be
estimated, while the final value of the state vector at discrete
time k = N , i.e. x(k = N) = xN (final conditions) is also
pre-determined.

We consider a performance index of the form

Jk = S(xN , N) +

N−1
∑

k=0

Fk(xk, uk) = xT
NSxN

+

N−1
∑

k=0

(xT
k Qxk + uT

k Ruk),

(2)

where

R ∈ ℜm×m, Q ∈ ℜn×n, S ∈ ℜn×n

and S ≥ 0, Q ≥ 0 and R > 0, k = 0, . . . , N − 1.

Using the Lagrange multiplier theory we write (2) in the
extended form as

J(u) = xT
NSxN +

N−1
∑

k=i

(

xT
k Qxk + uT

k Ruk

+

[

k
∑

j=0

djxk−j + Buk − xk+1

]T

λk+1

)

.

(3)

We define the scalar functions Hk, called the Hamiltonians,
which are defined as follows:

Hk = xT
k Qxk+uT

k Ruk+





k
∑

j=0

djxk−j + Buk





T

λk+1. (4)

Using (4) and (2), we define a new performance index ex-
pressed by Hamiltonians, of the form

J(u) = xT
NSxN +

N−1
∑

k=i

(Hk − xT
k+1λk+1). (5)

To the right-hand side of the above equation we add and sub-
tract the term xT

i λi. By making changes to indices in the
second part of the sum we get a performance index of the
form

J(u) = xT
NSxN + xT

i λi − xT
NλN +

N−1
∑

k=i

(Hk − xT
k λk). (6)

We shall now examine the increment of the performance
index J due to the increments in all the variables xk, uk

and λk. The increment of the performance index we write as
follows

dJ(u) = [(S + ST )xN − λN ]dxT
N + λidxT

i

+

N−1
∑

k=i

[(Hk − λk)dxT
k + HkduT

k + (Hk−1 − xk)dλT
k ].

(7)

According to the Lagrange multiplier theory, at a constrained
minimum this increment should be zero. Necessary conditions
for a constrained minimum are given by

0 =
∂Hk

∂uT
k

for k = i, . . . , N − 1, (8a)

λk =
N−1
∑

k=i

∂Hk

∂xT
k

for k = i, . . . , N − 1, (8b)

xk+1 =
∂Hk

∂λT
k+1

for k = i, . . . , N − 1 (8c)

and

λN =
∂S(xN , N)

∂xT
N

, λi ∈ ℜ. (8d)

The conditions (8) for the considered performance index
(6) and discrete-time fractional system (1) take the form

uk = −[R + RT ]−1BT λk+1, (9a)

λk = [Q + QT ]xk +

N−k−1
∑

j=0

dT
j λk+j+1, (9b)

xk+1 =

k
∑

j=0

djxk−j + Buk (9c)

and
λN = (S + ST )xN , λ0 ∈ ℜ. (9d)
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The conditions (9) for α = 1 are equivalent to the conditions
for continuous-time systems of integral order (not fractional)
after the discretization. Substituting α = 1 to (9) yields

uk = −[R + RT ]−1BT λk+1, (10a)

λk = [Q + QT ]xk + AT
d λk+1, (10b)

xk+1 = Adxk + Buk, (10c)

where Ad = A + In.

3. Problem solution in case of free final state

and fixed final time

In the case of free final state xN the variation dxN is not equal
to zero. Therefore, we consider Eqs. (9d) and (9a)–(9c). We
assume that the number of discrete time points N is given.
The initial conditions and final time are given as

x(k = 0) = x0, N ∈ Z+. (11)

Taking into account initial conditions (11) and applying the
z-transform to Eqs. (9a) and (9c) we obtain the equations in
z domain. Applying then the inverse z-transform we obtain
the solution as

xk = Ψkx0 −

k−1
∑

i=0

Ψk−i−1B[R + RT ]−1BT λi+1, (12)

where

Ψ0 = In, Ψk =

k−1
∑

j=0

djΨk−j−1. (13)

Equation (12) in matrix form gives








x1

...

xN









=









Ψ1

...

ΨN









x0

−









Ψ0 · · · 0
...

. . .
...

ΨN−1 · · · Ψ0









B[R + RT ]−1BT









λ1

...

λN









.

(14)

Using the well-known matrix operations it can be easily shown
that the solution of (9b) has the form









λ1

...

λN









=









ΨT
N−1

...

ΨT
0









λN

+













0
...

0

0

ΨT
0

...

0

0

· · ·

. . .

· · ·

· · ·

ΨT
N−2

...

ΨT
0

0













· [Q + QT ]









x0

...

xN−1









.

(15)

Substituting (9d) to (15) we obtain








λ1

...

λN









=









ΨT
N−1

...

ΨT
0









[

S + ST
]

xN

+













0
...

0

0

ΨT
0

...

0

0

· · ·

. . .

· · ·

· · ·

ΨT
N−2

...

ΨT
0

0













· [Q + QT ]









x0

...

xN−1









.

(16)

From the above equation it follows that this time range
of the vector λk does not depend from x0. Taking as T1 =
[

R + RT
]

, T2 =
[

Q + QT
]

and T3 =
[

S + ST
]

the above
relationship is written in the form

















λ1

λ2

...

λN−1

λN

















=

















ΨT
0 T2 · · · ΨT

N−3T2 ΨT
N−2T2 ΨT

N−1T3

...
. . .

...
...

...

0 · · · ΨT
0 T2 ΨT

1 T2 ΨT
N−2T3

0 · · · 0 ΨT
0 T2 ΨT

1 T3

0 · · · 0 0 ΨT
0 T3

















·

















x1

x2

...

xN−1

xN

















.

(17)

Substituting (17) to (14) we obtain
















W 0
11 W 0

12 · · · W 0
1,N−1 W 0

1,N

W 0
21 W 0

22 · · · W 0
2,N−1 W 0

2,N

...
...

. . .
...

...

W 0
N−1,1 W 0

N−1,2 · · · W 0
N−1,N−1 W 0

N−1,N

W 0
N,1 W 0

N,2 · · · W 0
N,N−1 W 0

N,N

















·

















x1

x2

...

xN−1

xN

















=

















Ψ1

Ψ2

...

ΨN−1

ΨN

















x0,

(18)
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where





















W 0
11 W 0

12 · · · W 0
1,N−1 W 0

1,N

W 0
21 W 0

22 · · · W 0
2,N−1 W 0

2,N

...
...

. . .
...

...

W 0
N−1,1 W 0

N−1,2 · · · W 0
N−1,N−1 W 0

N−1,N

W 0
N,1 W 0

N,2 · · · W 0
N,N−1 W 0

N,N





















=

















In 0 · · · 0 0

0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

0 0 · · · 0 In

















·

















Ψ0 0 · · · 0 0

Ψ1 Ψ0 · · · 0 0
...

...
. . .

...
...

ΨN−2 ΨN−3 · · · Ψ0 0

ΨN−1 ΨN−2 · · · Ψ1 Ψ0

















T1

·





















ΨT
0 T2 · · · ΨT

N−3T2 ΨT
N−2T2 ΨT

N−1T3

...
. . .

...
...

...

0 · · · ΨT
0 T2 ΨT

1 T2 ΨT
N−2T3

0 · · · 0 ΨT
0 T2 ΨT

1 T3

0 · · · 0 0 ΨT
0 T3





















.

(19)

Using the Gauss-Jordan elimination method we can deter-
mine the inverse matrix and write (18) in the form

















x1

x2

...

xN−1

xN

















=





















MN
11 MN

12 · · · MN
1,N−1 MN

1,N

MN
21 MN

22 · · · MN
2,N−1 MN

2,N

...
...

. . .
...

...

MN
N−1,1 MN

N−1,2 · · · MN
N−1,N−1 MN

N−1,N

MN
N,1 MN

N,2 · · · MN
N,N−1 MN

N,N





















·

















Ψ1

Ψ2

...

ΨN−1

ΨN

















x0 =

















Θ1

Θ2

...

ΘN−1

ΘN

















x0,

(20)

where MN
ij for i, j = 1, . . . , N are given as

W k
pr =















W k−1
pr − W k−1

pk (W k−1

kk )−1W k−1

kr

for p 6= k

(

W k−1

kk

)−1
W k−1

kr for p = k

Mk
ij =



































Mk−1

ij − W k−1

ik (W k−1

kk )−1Mk−1

kj

for i 6= k

(

W k−1

kk

)−1
Mk−1

kj for i = k

M0
ij = IN for i = j

M0
ij = 0 for i 6= j

(21)

for k = 1, 2, . . . , N ; i, j, p = 1, 2, . . . , N and r =
k + 1, . . . , N .

From (20) we get the optimal value of the vector xk. Sub-
stituting (20) to (17) we can determine the values of the vector
λk. Then, substituting vector λk to (9a) we can determine the
value of the optimal control vector uk.

4. The procedure and example

for fixed final state case

From the above considerations, the following procedure for
solving the dynamic optimization problem follows:

Procedure 1.

Step 1. For given discrete-time fractional system (1), per-
formance index (2) and initial conditions x0 write the per-
formance index in the extended form (5) expressed by the
Hamiltonian.

Step 2. Determine the necessary conditions (8), which in
the quadratic case of performance index are given in the form
(9).

Step 3. Using known methods for solving systems of equa-
tions, determine the vector xk relative to the initial conditions
x0 and matrices Ψk. Also determine the vector λk relative to
the xk and matrices ΦT

k .
Step 4. Determine the matrices Θk from (20). Knowing

the initial conditions x0 and matrices Θk determine the values
of the vector xk and λk. Knowing the value of the vector λk

determine the optimal control vector uk satisfying (1).

Example 1. Consider a discrete-time fractional system (1)
with matrices

A =

[

0.1 0.7

0.6 0.4

]

, B =

[

2

1

]

,

n = 2, m = 1

(22)

and performance index (4) with matrices

S =

[

2 1

1 2

]

, Q =

[

3 2

2 3

]

, R =
[

1
]

(23)

with initial conditions given as

x0 =

[

0.6

0.8

]

. (24)
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We assume N = 5 and α = 0.7. Using the foregoing consid-
erations, we obtain

x0 =

[

0.6

0.8

]

, x1 =

[

−0.4377

0.5011

]

,

x2 =

[

−0.2301

0.2257

]

, x3 =

[

−0.1526

0.1454

]

,

x4 =

[

−0.1075

0.1064

]

, x5 =

[

−0.069

0.09

]

,

λ0 =

[

7.7728

9.4877

]

, λ1 =

[

−0.3464

2.1705

]

,

λ2 =

[

−0.3372

0.9682

]

, λ3 =

[

−0.2434

0.5947

]

,

λ4 =

[

−0.1632

0.3852

]

, λ5 =

[

−0.0961

0.2221

]

,

u0 =
[

−0.7389
]

, u1 =
[

−0.1469
]

,

u2 =
[

−0.0539
]

, u3 =
[

−0.0294
]

,

u4 =
[

−0.0149
]

, u5 =
[

0
]

.

The minimum values of performance index Jmin are given
as follows

J0 =
[

6.1269
]

, J1 =
[

0.6609
]

,

J2 =
[

0.1886
]

, J3 =
[

0.0818
]

,

J4 =
[

0.0364
]

, J5 =
[

0.0133
]

.

Figures 1–3 show the above considerations for the sys-
tem (1) with matrices (22) and the performance index (2) with
matrices (23) for four different values of α = 0.5, 0.7, 0.9, 1.0
and N = 5. Individual results were obtained with the help of
a dedicated computer program implementing the above is-
sues.

From Fig. 3, we conclude that the performance index
takes smaller values for fractional discrete-time systems for
α = 0.5, 0.7, 0.9 than for discrete-time system of integer or-
der α = 1.0. In terms of physical and technical properties
performance indexes present such values as energy consump-
tion, fuel consumption, cost of production, profit, time, accu-
racy, etc. Consideration of the optimization problems in a case
of fractional systems can bring greater benefits than for the
systems of integer order.

Fig. 1. Optimal trajectory and its zoom of end points forα = 0.5, 0.7, 0.9, 1.0 and N = 5
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Fig. 2. Optimal control and its zoom of end points for α = 0.5, 0.7, 0.9, 1.0 and N = 5

Fig. 3. The minimum values of the performance index and its zoom of end points for α = 0.5, 0.7, 0.9, 1.0 and N = 5
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Example 2. Consider a discrete-time fractional system (1)
with matrices (22) and performance index (4) with matri-
ces (23). The initial conditions are given as (24). We assume
N = 10 and α = 0.5. Using the foregoing considerations, we
obtain optimal control in form

u0 =
[

−0.6417
]

, u1 =
[

−0.1469
]

,

u2 =
[

−0.0518
]

, u3 =
[

−0.0315
]

,

u4 =
[

−0.0216
]

, u5 =
[

−0.0161
]

,

u6 =
[

−0.0127
]

, u7 =
[

−0.0103
]

,

u8 =
[

−0.0086
]

, u9 =
[

−0.054
]

, u10 =
[

0
]

.

(25)

The state vector is given as follows

x0 =

[

0.6

0.8

]

, x1 =

[

−0.3633

0.4384

]

, x2 =

[

−0.1298

0.1297

]

,

x3 =

[

−0.0987

0.0917

]

, x4 =

[

−0.0736

0.0667

]

,

x5 =

[

−0.0589

0.0528

]

, x6 =

[

−0.0487

0.0436

]

,

x7 =

[

−0.0412

0.0372

]

, x8 =

[

−0.0353

0.0325

]

,

x9 =

[

−0.0303

0.0293

]

, x10 =

[

−0.0222

0.029

]

.

The minimum values of performance index Jmin are given
as follows

J0 =
[

5.7746
]

, J1 =
[

0.4429
]

, J2 =
[

0.0859
]

,

J3 =
[

0.0495
]

, J4 =
[

0.0303
]

, J5 =
[

0.0198
]

,

J6 =
[

0.0133
]

, J7 =
[

0.0088
]

, J8 =
[

0.0056
]

,

J9 =
[

0.0032
]

, J10 =
[

0.0014
]

.

Now we assume that elements of matrices (22) of fraction-
al discrete-time system (1) have been changed. We consider
two cases, i.e.

a) A1 =

[

0.15 0.7

0.6 0.4

]

,

b) B1 =

[

2.05

1

]

.

(26)

We apply optimal control (25) to fractional discrete-time
system with matrices (26) and we compute new state vector
and minimal values of performance index.

The Figs. 4–8 show the above considerations for the sys-
tem (1) with matrices (22) and (26) and the performance index
(4) with matrices (23) for four different values of α = 0.5, 1.0
and N = 10. Individual results were obtained with the help
of a dedicated computer program implementing the above is-
sues.

Fig. 4. Optimal control for α = 0.5, 1.0 and N = 10
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Fig. 5. The minimum values of the performance index for α = 0.5 and N = 10

Fig. 6. The minimum values of the performance index for α = 1.0 and N = 10

Fig. 7. Optimal trajectory for α = 0.5 and N = 10
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Fig. 8. Optimal trajectory for α = 1.0 and N = 10

5. Conclusions

An optimal control problem for fractional discrete-time sys-
tems with quadratic performance index has been formulated
and solved. A method for numerical computation of optimal
control problems in the case of the free final state and fixed
final time for discrete-time fractional systems has been pre-
sented. The presented method is a generalization of the well
known method for discrete-time systems of integer order. The
efficiency of this method has been demonstrated by a numer-
ical examples and computer simulations. It has been shown
that in a case when alpha is an integer number the presented
method is equivalent to well known results for discrete-time
systems of an integer order. The differences between results
of the fractional and integer order systems theory have been
shown. A computer algorithm for solving this issue with a
quadratic performance index for fractional discrete-time sys-
tems has been tested for different values of the coefficient
alpha.
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