
ARCHIVES OF CIVIL ENGINEERING, LVIII, 1, 2012

DOI: 10.2478/v.10169-012-0001-4

DAMAGE DETECTION OF A T-SHAPED PANEL BY WAVE PROPAGATION
ANALYSIS IN THE PLANE STRESS

M. RUCKA1, W. WITKOWSKI2, J. CHRÓŚCIELEWSKI3, K. WILDE4

A computational approach to analysis of wave propagation in plane stress problems is presented. The
initial-boundary value problem is spatially approximated by the multi-node C0 displacement-based
isoparametric quadrilateral finite elements. To integrate the element matrices the multi-node Gauss-
-Legendre-Lobatto quadrature rule is employed. The temporal discretization is carried out by the
Newmark type algorithm reformulated to accommodate the structure of local element matrices.
Numerical simulations are conducted for a T-shaped steel panel for different cases of initial exci-
tation. For diagnostic purposes, the uniformly distributed loads subjected to an edge of the T-joint
are found to be the most appropriate for design of ultrasonic devices for monitoring the structural
element integrity.
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1. I

Wave propagation modelling is a subject of intensive investigations and vast amount
of literature is available on this topic. Modelling of wave propagation phenomena
might be conducted either in time or frequency domain. One of the frequency-based
methods, is the spectral finite element method (SFEM) developed by Doyle [1] and
followed by Gopalakrishnan and his co-workers (e.g. [2, 3,]). A different approach
is offered by the spectral element method (SEM) developed by Patera [4]. The main
idea of the SEM is using a polynomial of high order for each domain. The spectral
element method is the same as the p-version of the multi-node finite element method
[5]. In the SEM approach, the Lagrange-type interpolation polynomials are applied at
the Gauss-Legendre-Lobatto nodes. The spectral element method can also be based
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on the Chebyshev polynomials as the basis functions at the Chebyshev-Gauss-Lobatto
points [6]. The spectral elements in time domain are available for elementary structural
models. The wave propagation in a rod and plane beam elements using the SEM were
presented by Kudela et al. [7]. The numerical analyses of frame and truss structures can
be found in Refs. [8] and [9]. Experimental and numerical analyses of wave propagation
in three types of frames, namely an L-frame (a.k.a. L-joint), a T-frame (a.k.a. T-joint)
and a portal frame were presented by Rucka in Refs. [10] and [11]. The study of
literature reveals that the analysis of wave propagation in plane stress problems (with
possible detection of singularities or cracks) is limited to rectangular panels. Żak et
al. analysed an isotropic panel [12] and a composite panel [13]. Sridhar et al. [6]
developed the plane element with Chebyshev nodes for analysis of rectangular beams.
Rucka [14] developed the time domain spectral element based on the Kane-Mindlin
theory and proved its efficiency on the example of in-plane waves in a rectangular plate
measured in 17 points.

In this paper the focus is on computational aspects of the proposed approach.
The study is confined to infinitesimal strain case with the linearly elastic homogenous
isotropic material. The C0 finite elements of arbitrary number of nodes are formulated.
Element matrices are integrated using the Gauss-Legendre-Lobatto quadrature rule that
asserts the diagonal mass matrix. The temporal integration scheme is formulated to
take advantage of the structure of element matrices. The developed code is used for
wave propagation simulations in the plane stress. The considered geometry consisted of
unions of rectangular regions connected along some edges and formed into a T-shaped
panel (a.k.a. T-joint) Such example may serve as rough approximation of connection
nodes in planar trusses. The paper resumes the authors’ studies of damage detection
in T-joint by in-plane waves [15]. Results presented in this study are broadened to
analysis of six different cases of excited in-plane waves. The purpose of this paper
are numerical simulations to determine the suitable excitation for ultrasonic diagnostic
device designed for constant monitoring of integrity of the steel T-joint panel.

2. W   -  

The formulation, whether strong or weak, of the initial-boundary value (IBV) problem
of the Cauchy continuum may be found in many classical textbooks, cf. for instance
[16, 17], and hence it will not be dwelled upon here.

Consider a body B with boundary ∂B of prescribed positive mass density ρ :
B →R1 experiencing an (infinitesimal) displacement field u(x, t), x ∈ B, t ∈ [0,T ]
with given body force vector f : B×] 0,T [→ Rndim , given boundary traction vector
t : ∂B f×] 0,T [→ Rndim and prescribed boundary displacement vector ū : ∂Bd×] 0,T [→
Rndim , with ] 0,T [ as the open set. The boundary is understood as usual to be the
union ∂B = ∂Bd ∪ ∂B f with ∂Bd ∩ ∂B f = ∅. The initial conditions are assumed as
u(x, 0) = u0(x), u̇(x, 0) = v0(x), ∀x ∈ B, t = 0. Here, the superposed dot denotes the
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time derivative. The components of vectors and tensors are understood as Cartesian.
Under the assumption of infinitesimal deformation considered here, the deformation at
given x ∈ B is described by the infinitesimal strain tensor ε = ∇su.

Let H1 be the Sobolev space of functions (cf. also [18]), that is H1 = H1(B) =

{w : w ∈ L2; w,x ∈ L2}, L2(B) =

{
w :

∫

B
w2dx < ∞

}
. Then the space of kinematically

admissible displacements is S =
{
u : ui ∈ H1; u(x) = ū; x ∈ ∂Bd

}
and the space of

kinematically admissible virtual displacements satisfying homogenous boundary con-
ditions is V =

{
w : wi ∈ H1; w(x) = 0; x ∈ ∂Bd

}
. With these definitions the weak form

of IBV problem may be stated as follows. Given f , t, ū, u0 and v0, find u(t) ∈ St ,
t ∈ [0,T ], such that ∀w ∈ V

(2.1) (w, ρü)B + (w, cu̇)B + a(w, u)B = (w, f)B + (w, t)∂B f

where c is the positive damping density.
In case of linear elasticity for any given vector fields, say a, b, the above notation

reads

(2.2) (a, b)B =

∫

B
a · b dV , a (a, b)B =

∫

B
∇sa · c∇sb dV, (a, b)∂B f

=

∫

∂B f

a · b ds

where · is the scalar product. The explicit expressions of bilinear forms from (2.1) will
be presented later.

In (2.2)2 c ≡ c(x, n, t) denotes the constitutive tensor that, in general, depends on
x – the placement and n – the material direction. In the plane stress case c reads

(2.3) cαβγπ = λ̄ δαβδγπ + µ (δαγδβπ + δαπδβγ)

where Greek letters take values from 1 to 2 while µ =
E

2(1 + v)
and λ̄ =

2λµ
2µ + λ

=

Ev
1 − v2 . Following the argumentation presented in [17], it can be shown that in the
isotropic linear elasticity c in the form of (2.3), in plane stress problems, admits two
speeds of propagation of plane elastic waves given by the formulae

(2.4) c1 =

√
1
ρ

E
1 − v2 , c2 =

√
µ

ρ

In the following FEM implementation we write the constitutive equation using the
matrix/vector notation

(2.5)



σ11

σ22

σ12

 =
E

1 − ν2



1 ν 0
ν 1 0
0 0 1

2 (1 − ν)





ε11

ε22

2ε12

 , σ = Eε
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3. F   

3.1. S      

Following the standard finite element method (FEM) approach, the two-dimensional
domain B may be approximated as the sum

(3.1) B ≈
∑

e∈Ne
B(e)

where Ne is the number of finite elements. A typical finite element B(e) is defined
as a smooth image of a so-called standard element π(e). In the plane stress problem
π(e) = [−1,+1] × [−1,+1] is the element in the parent (natural) domain ξ = (ξ1, ξ2).
It is assumed that the element has N = m · n nodes, where m denotes the number of
nodes in ξ1 direction whereas n in ξ2 direction, cf. Fig 1.

Fig. 1. Standard Lagrange-type interpolation in R2.
Rys. 1. Interpolacja Lagrange’a w R2

Let

(3.2) Lm
p (ξ) =

m∏

q,p
q=1

ξ − ξ(q)

ξ(p) − ξ(q)

be the Lagrange polynomial of order m − 1. The shape function of the element

(3.3) La(ξ) = Lm1
r (ξ1) Lm2

s (ξ2)
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results from the rule g = f (ξ1, ξ2) associating the number of the element nodes
a, b = 1,2, ..., N with the node numerations r = 1,2, ...,m and s = 1,2, ..., n of
the interpolation polynomials entering (3.3). The nodal shape functions (3.3) satisfy

(3.4) La(ξb) = δab,
∑N

a=1
La(ξ) = 1, ∀ξ ∈ π(e)

The matrix of C0 interpolation functions of the a-th node is then

(3.5) La(ξ)
2×2

=


La(ξ) 0

0 La(ξ)



while the matrix of the whole N-node element (e) is L(e)(ξ) = [L1(ξ)|L2(ξ)|...|LN (ξ)].
Therefore, the C0 interpolation scheme for the vector variables of the problem is

(3.6) u(ξ, t) = L(e)(ξ) q(e)(t), q(e)(t) =



u1(t)
...

uN (t)


, ua(t) =


u1(t)
u2(t)


a

For variables independent of time t the time parameter in formulae of the type
(3.6) is omitted. In addition, following usual methodology, the strain tensor ε and its
virtual counterpart δε are rewritten as vectors, and in the plane stress problems they
are given as

(3.7) ε→ =



ε11

ε22

2ε12


= u, δε→ δ =



δε11

δε22

2δε12


= w, =



(.),1 0
0 (.),2

(.),2 (.),1



The interpolation schemes are

(3.8) (ξ, t) = L(e)(ξ) q(e)(t) = B(e)(ξ) q(e)(t)

(3.9) δ (ξ) = L(e)(ξ)δq(e) = B(e)(ξ)δq(e), δq(e) =



w1
...

wN


, wa =


w1

w2


a

where B(e)(ξ) = L(e)(ξ). Assuming that ρ and c are constant over the element, in the
light of arbitrariness of w(ξ) and with representation (3.6) of the position vector x(ξ),
the virtual displacement vector w(ξ), the displacement vector u(x, t), the velocity vector
u̇(x, t), the acceleration vector ü(x, t), the body force vector f (x, t) and the prescribed
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traction vector t(x, t), x ∈ ∂B f the matrix versions of bilinear forms entering (2.1)
become

(3.10) a (w, u)B(e)
→ r(e) = h0

∫

B(e)

BT
(e)(ξ)σ(e)(ξ) dx1dx2

(3.11) (w, ρü)B(e)
→ M(e) = ρh0

∫

B(e)

LT
(e)(ξ)L(e)(ξ) dx1dx2

(3.12) (w, cu̇)B(e)
→ C(e) = ch0

∫

B(e)

LT
(e)(ξ)L(e)(ξ) dx1dx2 =

c
ρ

M(e) = ηM(e)

(3.13)

(w, f )B(e)
+ (w, t) ∂B(e)

f → pelem
(e) = h0


∫

B(e)

LT
(e)(ξ) f(ξ) dx1dx2 +

∫

∂B(e)
f

LT
(e)(ξ) t(ξ) ds



where h0 is the thickness of the body, assumed to be constant throughout the element
area. It is assumed that ρ and c are proportional (up to the units) η = c/ρ, where η
denotes a proportional damping coefficient. The element stiffness K(e) matrix is not
used directly in the present formulation. Instead, the internal forces r(e) are computed
according to (3.10). In (3.15) the integrands are defined by

(3.14) f(ξ, t) = L(e)(ξ) f(e)(t), ξ ∈ π(e), f(e)(t) =



f 1(t)
...

f N (t)


, f a(t) =


f1(t)
f2(t)


a

and

(3.15) t(ξ, t) = L(e)(ξ) t(e)(t), ξ ∈ ∂π(e), t(e)(t) =



t1(t)
...

tN (t)


, ta(t) =


t1(t)
t2(t)


a

Here xa ∈ ∂B(e)
f , ∂B(e)

f = ∂B(e) ∩ ∂B f , ∅ ∂π(e) ↔ ∂B(e). The Jacobian determinant
j(ξ) = det(∂x/∂ξ) is

(3.16) j(ξ) =
∂x1

∂ξ1

∂x2

∂ξ2 −
∂x1

∂ξ2

∂x2

∂ξ1

which renders the transformation formula for the volume area

(3.17) dV = h0dA = h0dx1dx2 = j(ξ)h0dξ1dξ2



D    T-          9

In addition, adhering to the usual FEM approach, it is assumed that the element
external load vector pelem

(e) (3.13) may be supplemented with the vector of point forces
applied directly at the element nodes, so that

(3.18) p(e) = pelem
(e) + pnod

(e) ,p
nod
(e) =



P1
...

PN


,Pa =


Px1

Px2


a

where Px1 , Px2 , analogously to pelem
(e) , are the components referred to the global coor-

dinate system.
In writing the equilibrium condition the following vectors of inertia and damping

(3.19) b(e) = M(e)ü(e), c(e) = C(e)u̇(e)

are used. The global equations of motion are obtained in the course of standard ag-
gregation procedure which leads to the matrix form of the equilibrium equation

(3.20) Mq̈ + Cq̇ = p − r(q)

Here q, q̈ and q̇ are the vectors of displacements, accelerations and velocities, respec-
tively. The temporal approximation of dynamic equilibrium equations (3.20) take the
advantage of diagonal structure of the matrices.

3.2. N 

The element matrices are evaluated numerically

(3.21)
∫

B(e)

g(x) dx1dx2 =

∫

π(e)

g(ξ) j(ξ) dξ1dξ2 =
∑M

p=1
g(ξ p) wp j(ξ p)

where g(ξ) represents any quantity from the equations (3.10)-(3.13), M denotes the
number of integration points, p ∈ 1, 2, . . . ,M is the label of ξ p = (ξ1, ξ2)p, i.e. the
abscissa, and wp = wξ1

p
· wξ2

p
stands for the associated weight.

Let PM denote the M-th order Legendre polynomial defined as

(3.22) PM(ξ) =
1

2MM!
dM

dξM [(ξ2 − 1)M], ξ ← ξ1, ξ2

In the Gauss-Legendre-Lobatto quadrature rule, cf. for instance [5], the abscissas
are formally computed as the roots of the equation

(3.23) (1 − ξ2)
dPM−1(ξ)

dξ
= 0,M ← m, n
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whereas the weights follow from

(3.24) w =
2

M(M − 1)(PM−1(ξ))2
,M ← m, n

Although the number of integration points is the same as the number of element
nodes, the integration rule used here cannot be termed ‘full integration’ since it can
easily be checked that the mass matrix is underintegrated. Thus the stiffness matrix
is integrated exactly while the mass matrix is integrated non-exactly. The inexact in-
tegration by the Gauss-Legendre-Lobatto quadrature effectively diagonalizes the mass
matrix [19]. Diagonal mass matrix integrated in such a way is said to be optimally
lumped [20].

3.3. T 

The temporal integration is performed by the method described in details in Refs. [8]
and [9]. Following the standard argumentation, cf. for instance [16], solution of the
linear equation of motion (3.20) is approximated by qn ≡ q(tn) in the finite number of
time points t1, t2, ..., tn, ...., ti < ti+1. Assuming that qn, q̇n and q̈n are known from the
previous step, the solution at the next time point tn+1 = tn + ∆t is predicted by

(3.25) Mq̈n+1 + Cq̇n+1 = pn+1 − r(qn+1)

where ∆t is the time step. The presence of qn+1 on rhs of (3.25) makes the sche-
me implicit and iterations are required. Assuming Newmark’s approximations [20] in
iterative notation (see [8]), the implicit equation wrt iteration correction δq̈ reads

(3.26)
[
M + ∆tγC

]
δq̈ = pn+1 − b(i)

n+1 − c(i)
n+1 − r

(
q(i)

n+1 + (∆t)2βδq̈
)

Equation (3.26) is solved using the simple iteration method leading to

(3.27) δq̈ =
[
M + ∆tγC

]−1 (
pn+1 − b(i)

n+1 − c(i)
n+1 − r(q(i)

n+1)
)

In view of the fact that M and C are diagonal, significant efficiency of the time inte-
gration scheme is attained.

4. S     T- 

4.1. D  T-   FE 

The considered T-joint panel is shown in Fig. 2. The panel consists of two elements.
The horizontal part has length of 1 m and height of 0.2 m. The attached vertical element
has a length of 0.4 m, counted from the connection with the horizontal element. All the
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members are made of steel and have thickness of 0.005 m. The steel of the T-joint has
modulus of elasticity E = 196.58 GPa, mass density ρ = 7976 kg/m3 and Poisson’s
ratio v = 0.27. Simulations of propagating waves are performed for two cases: the
T-shaped panel without any defect and the panel with a defect in the form of a hole
of squared shape of 0.04 m by 0.04 m located at the distance of 0.44 m from the
left-down corner of the panel. The area of the defect is 0.0016 m2, which is about
0.6% of the total area of the panel equal 0.28 m2.

Fig. 2. Geometry of T-shaped joint and location of the defect.
Rys. 2. Geometria tarczy typu T oraz położenie defektu

The spectral FE model of the T-joint is shown in Fig. 3. The panel is divided into
175 square elements of size 0.04 m by 0.04 m. The single element has 11×11 nodes.
Such element has been chosen as a compromise between the multi-node approach and
the sufficiently large integration time step. An odd number of nodes per element side
is preferred since it provides a node in the middle of each element side. The panel has
no external supports and the boundary conditions are assumed to be free, i.e. all the
nodes located along the edges of the T-joint are not restricted in any direction. The
FE model of the T-joint has 17901 nodes and 35802 degrees of freedom. The time
step has been chosen as ∆t = 10−7 s. The applied time step has been selected in view
of the numerical stability criteria of the central difference method. The computational
effort for the single simulation of wave propagation in terms of CPU time was about
25 minutes (the hardware used for simulations was HP notebook, 4 GB RAM, Intel
Core2 (Duo) running at 2.5 GHz under Windows XP).

As the excitation a four-cycle sinusoidal wave of frequency 120 kHz modulated
by Hanning window (Fig. 4a) has been used. Different types of excitation waves have
been examined. The selected excitation signal compromises the effectiveness of the
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Fig. 3. FEM mesh of T-joint.
Rys. 3. Podział tarczy typu T na elementy skończone

diagnostics and the ability to detect the defects located in the vicinity of the excitation
source. In general, using more cycles in the excited wave and wider window result in
narrower spectrum. On the other hand, the width of the window in the time domain
should be relatively small to enable the observation of wave reflections from potential
defects located near the excitation point.

Fig. 4. External excitation: a) excitation function and its Fourier transform, b) types and location of
loads.

Rys. 4. Obciążenie zewnętrzne: a) funkcja wzbudzenia oraz jej transformata Fouriera, b) typy i miejsca
przyłożenia obciążenia
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The propagating waves are simulated for different types, locations and directions of
the external excitation. Two types of loads are considered, namely the nodal excitation
load P(t) and the uniformly distributed excitation t(t) along the selected edge of the
panel (Fig. 4b). In addition, the point or given edge can be excited in the direction
perpendicular or parallel to the element edge.

4.2. W      

The single nodal load P(t) was applied in the longitudinal direction at the node A. The
wave propagation in terms of acceleration component along the axis x, for both the
undamaged panel and the panel with the defect, is illustrated in Fig. 5. Application

Fig. 5. Propagation of longitudinal wave in the T-shaped panel in the case of single longitudinal
excitation force (a) undamaged panel, (b) panel with defect.

Rys. 5. Propagacja fali podłużnej w tarczy typu T w przypadku wzbudzenia punktowego w kierunku
podłużnym: (a) tarcza bez uszkodzenia, (b) tarcza z defektem
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of the load at the single point results in propagation of the wavefront in the shape
of a circle. The shape of the incident wave can be observed at time t = 0.06 ms
(Fig. 5a). However, the wave patterns behind the initial wavefront, located between the
wavefront and the edge B − B′, are very complicated due to multiple reflections from
all the horizontal panel edges. The wavefront at t = 0.15 ms, for the undamaged case,
preserves its circular shape. Waves are also propagating in the vertical element of the
joint in the upward direction.

The wave propagation through the T-joint with the defect is given in Fig. 5b. The
initial wavefront at time t = 0.06 ms is identical with the undamaged case. At time
t = 0.12 ms the wavefront passes the defect. Although some reflections from the defect
have occurred, the vertical acceleration distribution within the panel is very similar to
the undamaged case. At time t = 0.15 ms the incident wavefront is travelling in the
right hand side element of the joint. Minor differences in the shape of the wavefront
are visible.

The time histories of the accelerations at the point A, in direction along the axis
x, are given in Fig. 6. Subtraction of the acceleration of the damaged panel from the
record for the undamaged case indicate differences. However, the exposed differences
have very small amplitudes.

Fig. 6. Acceleration time signals in the node A of the T-shaped panel in the case of single longitudinal
excitation force: (a) undamaged panel (b) panel with defect.

Rys. 6. Sygnał przyspieszenia w węźle A w przypadku wzbudzenia punktowego w kierunku podłużnym:
(a) tarcza bez uszkodzenia, (b) tarcza z defektem

The second case concerns the nodal load P (t) applied in the direction along the
axis y, at the nodes B and B’. The acceleration component along y direction in the
undamaged and damaged panel are given in Fig. 7. The acceleration time histories
computed at the point B are plotted in Fig. 8. As in the previous case, the acceleration
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time history does not explicitly indicate either the defect presence or the defect location.
Complicated reflection patterns mask the direct reflections from the defect that could
be used for its detection.

Fig. 7. Propagation of transverse wave in the T-shaped panel in the case of single transverse excitation
force: (a) undamaged panel, (b) panel with defect.

Rys. 7. Propagacja fali poprzecznej w tarczy typu T w przypadku wzbudzenia w postaci pojedynczych
sił w kierunku poprzecznym: (a) tarcza bez uszkodzenia, (b) tarcza z defektem

Fig. 8. Acceleration time signals in the node A of the T-shaped panel in the case of single transverse
excitation force: (a) undamaged panel, (b) panel with defect.

Rys. 8. Sygnał przyspieszenia w węźle A w przypadku wzbudzania w postaci pojedynczych sił
w kierunku poprzecznym: (a) tarcza bez uszkodzenia, (b) tarcza z defektem
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4.3. W      

The uniformly distributed loads t(t) are imposed along the x direction on the whole
left T-joint edge (the node A belongs to this edge). The acceleration component along
the x axis, for the undamaged and damaged panel is given in Fig. 9. The wavefront
at t = 0.06 ms for the undamaged T-joint (Fig. 9a) can be approximated by a line.
Moreover, its amplitude in the whole considered time period is significantly larger than
that of the waves resulting from the horizontal edge reflections. The wavefront remains
its shape after passing the connection with the vertical panel element (at t = 0.12 ms).

Fig. 9. Propagation of longitudinal wave in the T-shaped panel in the case of linearly distributed
longitudinal loads: (a) undamaged panel, (b) panel with defect.

Rys. 9. Propagacja fali podłużnej w tarczy typu T w przypadku podłużnego wzbudzenia równomiernie
rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem
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Fig. 9b shows the accelerations for the case of the damaged T-joint. At time t = 0.12
the reflection from the defect is clearly visible and its wavefront travels towards the
point A. At t = 0.15 ms the reflected wave front has a circular shape that is similar to
the wave front generated when the point load is applied.

Fig. 10. Acceleration time signals at the node A of the T-shaped panel in the case of linearly distributed
longitudinal loads: (a) undamaged panel, (b) panel with defect.

Rys. 10. Sygnał przyspieszenia w węźle A w przypadku podłużnego wzbudzenia równomiernie
rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem

Fig. 11. Acceleration time signals at the node C of the T-shaped panel in the case of linear distributed
longitudinal loads: (a) undamaged panel; (b) panel with defect.

Rys. 11. Sygnał przyspieszenia w węźle C w przypadku podłużnego wzbudzenia równomiernie
rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem
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The accelerations time histories of the undamaged and damaged panels at the nodes
A and C are given in Fig. 10 and Fig. 11, respectively. In the case of the uniformly
distributed excitation, the presence and location of the defect can be easily calculated.
The acceleration of the damaged joint at the point A shows arrival of the wave of large
amplitude, reflected from the defect at the time of about 0.2 ms. The time required
to travel from the point A to the defect and back allows, for known wave velocity,
simple calculation of the defect location. However, the presence of the defect cannot
be computed from accelerations at the point C. The time histories for the undamaged
and damaged panel are different, but the only clear indication of the defect is the
change of amplitudes of the wavefront arriving at the point C.

In the next example, the uniformly distributed excitation is imposed in the y di-
rection along the edge with the node A. The transverse wave for the undamaged panel
has also the distinct wavefront, which, in its middle part, can be represented by a line
(Fig. 12a). The wave propagation in the damaged T-joint is given in Fig. 12b. The
reflection from the defect is clearly visible.

Fig. 12. Propagation of transverse wave in the T-shaped panel in the case of linearly distributed
transverse loads: (a) undamaged panel, (b) panel with defect.

Rys. 12. Propagacja fali podłużnej w tarczy typu T w przypadku poprzecznego wzbudzenia
równomiernie rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem

The time histories of the vertical acceleration component are given in Fig. 13 and
Fig. 14 for the nodes A and C, respectively. In this case, the defect location can be
computed from accelerations at the points A or C. The acceleration at the point A shows
the distinct wave appearing at time 0.3 ms. This wave comes from the reflection from
the defect. Knowing the wave velocity for the transverse waves makes the computation
of the defect location possible. The defect is also noticeable from the acceleration
record at the point C. The wave at time about 0.6 ms represents the wave that travels
from the point A to the point C, then reflects itself from the edge, travels to the defect,
reflects from the defect, and finally arrives back at the point C. The time for this whole
trip allows to calculate the defect location. Note that the amplitude of the first wave at
the point C is smaller here than the amplitude in the undamaged case.
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Fig. 13. Acceleration time signals at the nodeA of the T-shaped panel in the case of linearly distributed
transverse loads: (a) undamaged panel, (b) panel with defect.

Rys. 13. Sygnał przyspieszenia w węźle A w przypadku poprzecznego wzbudzenia równomiernie
rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem

Fig. 14. Acceleration time signals at the nodeC of the T-shaped panel in the case of linear distributed
transverse loads: (a) undamaged panel; (b) panel with defect.

Rys. 14. Sygnał przyspieszenia w węźle C w przypadku poprzecznego wzbudzenia równomiernie
rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem
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The last two examples show the wave propagation for the uniformly distributed
excitation placed on the upper edge of the vertical element. Simulation results for
excitation in the longitudinal direction (along the y axis) is given in Fig. 15 and
Fig. 16. As in the previous examples, the wave is travelling mainly within the excited
element of the panel. The acceleration response at the point D, for the damaged panel
shows the arriving wave at time 0.2 ms that appears due to the reflection from the
defect.

Fig. 15. Propagation of longitudinal wave in the T-shaped panel in the case of linearly distributed
longitudinal loads: (a) undamaged panel, (b) panel with defect.

Rys. 15. Propagacja fali podłużnej w tarczy typu T w przypadku podłużnego wzbudzenia równomiernie
rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem

Fig. 16. Acceleration time signals for the T-shaped panel in the case of linearly distributed longitudinal
loads: (a) undamaged panel, (b) panel with defect.

Rys. 16. Sygnały przyspieszenia w przypadku podłużnego wzbudzenia równomiernie rozłożonego
wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem
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The simulation results for the excitation in the transverse direction, with respect
to the vertical element, are given in Fig. 17 and Fig. 18. The acceleration time history
at the point D indicates the defect position since the reflected wave at time 0.33 ms is
recognized.

Fig. 17. Propagation of transverse wave in the T-shaped panel in the case of linearly distributed
transverse loads: (a) undamaged panel, (b) panel with defect.

Rys. 17. Propagacja fali poprzecznej w tarczy typu T w przypadku poprzecznego wzbudzenia
równomiernie rozłożonego wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem

Fig. 18. Acceleration time signals for the T-shaped panel in the case of linearly distributed transverse
loads: (a) undamaged panel, (b) panel with defect.

Rys. 18. Sygnały przyspieszenia w przypadku poprzecznego wzbudzenia równomiernie rozłożonego
wzdłuż krawędzi: (a) tarcza bez uszkodzenia, (b) tarcza z defektem
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5. C

In this paper, simulations of the wave propagation with assumption of the plane stress
for damage detection in the T-joint panel were studied. The presented formulation and
the numerical results support the following conclusions:
– the temporal integration conducted by the dedicated integration scheme is suffi-

ciently efficient for the analyzed T joint panel;
– the spectral elements with Gauss-Legendre-Lobatto nodes for the plane stress model

allows to simulate and trace complicated phenomena of the elastic wave propagation
in the T-joint panels;

– the element matrices are integrated with the quadrature rule in which the number of
integration points equals the number of element nodes; therefore, the mass matrix
is always diagonal with all the elements positive.

– application of the load in the form of modulated waves imposed at the structure
single point cannot be used for effective damage detection method;

– the simulations have shown that the application of the excitation uniformly distri-
buted along the selected edge of the joint provide the effective damage detection
method;

– for a reliably defect detection it is necessary to generate a wavefront with a linear
shape. In such a case the reflections from the defect significantly affect the wave
patterns making the defect detection possible;

– the effective diagnostic method requires a distinct wave fronts, with relatively large
amplitudes with respect to the secondary reflected waves,

– a proper selection of the sensor location improves the search of the defect location.
For T-joint, the most effective is application of the transverse excitation uniformly
distributed at the joint edge (both receivers at A and C give information on the
defect location).

Future numerical analyses for the damage detection systems based on guided waves
in steel joints should be directed to a more realistic modelling of the joint damage as
well as to search of the optimal transducers placement.
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WYKRYWANIE USZKODZEŃ W TARCZY TYPU T Z UŻYCIEM ANALIZY
PROPAGACJI FAL W PŁASKIM STANIE NAPRĘŻENIA

S t r e s z c z e n i e

W pracy zaprezentowano podejście obliczeniowe do analizy propagacji fal w płaskim stanie naprężenia.
Problem brzegowo-początkowy podlega przestrzennej aproksymacji z użyciem wielowęzłowych, izopara-
metrycznych, czworobocznych elementów klasy C0. Macierze elementowe są całkowane numerycznie za
pomocą kwadratury Gauss-Legendre-Lobatto. Aproksymację w dziedzinie czasu wykonano za pomocą
algorytmu Newmarka. Symulacje numeryczne przeprowadzono dla tarczy w kształcie litery T dla róż-
nych przypadków wzbudzania fali. W pracy wykazano, że dla celów diagnostyki najlepszym rodzajem
obciążenia jest obciążenie liniowe równomiernie przyłożone do krawędzi tarczy.
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