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Vector analysis of the current commutation in PM BLDC drives
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Abstract. The vector approach in either stationary or synchronous plane is commonly used for the analysis of the AC drives like induction

and PM brushless AC drives whilst it has been hardly ever used for the PM brushless DC (BLDC) drives. A possible reason is that they

require injection of square-wave currents into the motor phases, which are non-sinusoidal in nature. Recently, the PM BLDC drives have

been analyzed by the help of the vector approach in the stationary plane. This paper applies such an approach to an in-depth analysis of the

operation of the PM BLDC drives during the current commutations, illustrating the potentialities of the approach in giving a better insight

into the current transients and the ensuing torque characteristics. At last, two voltage control strategies proposed to eliminate the torque

ripple due to the current commutations are considered, showing that they can be readily understood by the vector approach.
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1. Introduction

PM BLDC drives are characterized by the capability of offer-

ing higher torque and power density compared to other AC

drives of the same size. These features together with compact

structure and cost effectiveness of the motor have made the

PM BLDC drives widely accepted for motorizing many indus-

trial equipment [1–3] and, nowadays, for propelling electric

vehicles [4–6]. PM BLDC drives require injection of square-

wave currents into the motor phases, synchronized with the

flat portion of the trapezoidal back-emf to develop a constant

torque and -at the same time- to maximize the torque-per-

ampere ratio. As the flat portion of the back-emf covers 120◦

electrical angle, the voltage source inverter (VSI) supplying

the motor uses its 120◦ working mode to inject square-wave

currents into the motor phases. Commutation of the phase

currents takes place with an electrical angle periodicity of

60◦ and should be instantaneous [7]. In practice, phase in-

ductances and limited supply voltage yield a finite time for

the commutations and the currents deviate from the required

waveform. Any mismatch in the current waveform impairs the

drive performance as it produces: i) a drop of the speed-torque

characteristic at high speeds that limits the full utilization of

the drive in all the speed range, and ii) the onset of torque rip-

ples over almost all the speed range that give rise to an uneven

motion of the attached mechanical load and an unduly solici-

tation on the rotor bearings [8]. Here, torque ripples designate

the torque pulsations due to the current commutations. Other

types of torque pulsations exist; they are due to the current

oscillations originated by the PWM control of the VSI and

to the cogging phenomena originated by the interaction be-

tween the permanent magnets of the rotor and the slots of the

stator. Torque pulsations due to the current oscillations occur

at high frequencies so that their impact on the load speed is

very much attenuated by the filtering action of the motor-load

inertia whilst torque pulsations due to the cogging phenomena

are minimized with a suitable electromagnetic design of the

motor [9].

Current transients in the PM BLDC drives during the com-

mutations have been explained in [10] for the defined low and

high speed zones. The profiles of the torque developed by the

motor during the commutations have been derived in [11] as

a function of the motor speed by correlating currents, speed

and torque of the motor. All the significant literature on the

matter has approached the analysis of the PM BLDC drives

by means of the phase variables. Recently, this analysis has

been executed by means of the vector representation of the

drive variables in the stationary plane [12].

This paper applies the vector approach to an in-depth

analysis of the operation of the PM BLDC drives during

the current commutations. Organization of the paper is as

follows: Sec. 2 reviews the vector representation of the PM

BLDC drive variables in the stationary plane; Secs. 3 and 4

exploit the vector approach to illustrate the current transients

during the commutations and the ensuing torque characteris-

tics at low and high speeds, respectively; Sec. 5 shows the

potentialities of the vector approach by using it to explain the

rationale behind two voltage control strategies proposed in

the literature to eliminate the torque ripple due to the current

commutations [13, 14]; Sec. 6 concludes the paper.

2. PM BLDC drive

2.1. Operation. Circuital scheme of a conventional PM

BLDC drive is shown in Fig. 1. The DC link of the drive

is powered by the DC voltage source Vd and feeds the PM

BLDC motor through the VSI.
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Fig. 1. Circuital scheme of a PM BLDC drive

Voltage equations for the motor phases are

dij (θe)

dθe

= −
R

ΩeL
ij (θe)

+
1

ΩeL
[vjn (θe) − ej (θe)]
︸ ︷︷ ︸

vjL(θe)

j = a, b, c,
(1)

where j is a generic motor phase, ij , vjn, vjL and ej are the

current flowing into the motor phases, the voltage applied to

the motor phases, the voltage drop across the phase induc-

tances, and the back-emf of the motor phases, respectively, R
and L are the resistance and the mutual-effect inclusive induc-

tance of the motor phases, θe = Ωet is the angular phase in

electrical radians, Ωe = npΩ is the motor speed in electrical

radians per second, np is the number of pole pairs, and Ω is

the motor speed.

The phase voltages vjn are related to the VSI output volt-

ages vjo, measured with respect to the negative rail of the DC

link, by

vjo = vjn + vno (2)

and the phase currents are constrained by the Kirchhoff’s cur-

rent law ∑

j=a,b,c

ij = 0. (3)

The instantaneous electrical power p converted into me-

chanical form and the corresponding motor torque τ can be

expressed as

p (θe) =
∑

j=a,b,c

ej (θe) ij (θe) , (4)

τ (θe) =
p (θe)

Ω
. (5)

Operation of a PM BLDC drive is expounded with the

help of Fig. 2. Back-emfs are trapezoidal with the magnitude

of the flat portions equal to +E or −E and their duration

equal to 2π/3 (electrical) radians. The value of E is given by

E = kΩ, (6)

where k is the motor constant. The phase currents have a

square waveform with pulses of magnitude +I or −I that

are synchronized with the flat portions of the back-emfs. For

motor operation, the phase currents in Fig. 2 have the same

sign as the polarity of the back-emfs.

From Fig. 2, it emerges that the supply period of the motor

can be divided into six supply intervals S1, S2, . . ., and S6 of

the duration of π/3 radians. At the beginning of each supply

interval, one phase starts to conduct (incoming phase) and an-

other one finishes of conducting (outgoing phase). During the

remaining part of the supply interval, only two-phases with

back-emfs of opposite polarities conduct (conducting phases).

To identify the supply interval and, from it, the conducting

transistors of the VSI, the drive control uses the information

delivered by three Hall sensors mounted on the stator and

displaced of 2π/3 electrical radians. The required voltage is

applied to the conducting phases by stepping down the DC

link voltage Vd through the choppering of the conducting tran-

sistors.

Fig. 2. Back-emfs, currents and supply intervals of a PM BLDC drive

2.2. Control system. As Fig. 3 shows, regulation of the phase

currents at the reference value Iref can be accomplished by

the closed-loop control of the DC link current id. In fact,

this current remains equal to the current flowing into a motor

phase when both the conducting transistors are ON; therefore,

if properly sampled, the DC link current gives the feedback

of the phase currents. The current error is processed by a PI

regulator that delivers the required voltage vc for the motor

phases.

Fig. 3. Schematic of the control of a PM BLDC drive
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Application of vc across the phases of the motor is com-

monly attained by chopping only one of the two conducting

transistors to reduce the switching losses; a common strate-

gy is to chop the transistor carrying either the incoming or

the outgoing current. Hereafter, it is assumed that the control

applies the required voltage without any delay.

2.3. Stationary plane representation. Equations of the PM

BLDC motor can be written in terms of the vectors i =
[iαiβ]T , e = [eαeβ ]T , and v = [vαvβ ]T of the currents

and the back-emfs of the motor phases, and the VSI output

voltages in the stationary plane. The vectors, calculated with

a magnitude-invariant transformation, are given by

i (θe) = ia (θe) + j
1
√

3
[ib (θe) − ic (θe)] ,

v (θe) =
2

3

[

vao (θe) −
vbo (θe)

2
−

vco (θe)

2

]

+j
1
√

3
[vbo (θe) − vco (θe)] ,

e (θe) =
2

3

[

ea (θe) −
eb (θe)

2
−

ec (θe)

2

]

+j
1
√

3
[eb (θe) − ec (θe)] .

(7)

By (7), the voltage equations in (1) become

di (θe)

dθe

= −
R

ΩeL
i (θe) +

1

ΩeL
[v (θe) − e (θe)]
︸ ︷︷ ︸

vL(θe)

(8)

Calculation of the current and back-emf vectors for the wave-

forms in Fig. 2 shows that: i) the current vector i remains

stationary within the supply intervals S1, S2, . . . , and S6, and

coincides with the radii I1, I2, . . ., and I6, respectively, of an

hexagon (current hexagon), ii) the back-emf vector e moves

along the sides of an hexagon (back-emf hexagon) during the

supply intervals, and coincides with the radii E1, E2, . . .,
and E6 of the hexagon at the beginning of the supply in-

tervals. Current and back-emf vectors are traced in Fig. 4

whilst their values as a fraction of I and E are reported in

Table 1.

As an example, in the supply interval S1 the current vec-

tor jumps from I6 (−I, I/
√

3) to I1 (0,−2I/
√

3) at θe = 0
and, after that, stays at I1 within the whole S1. Instead, the

back-emf vector takes the value E1 (−2E/3, −2E/
√

3) at

θe = 0 and moves towards E2 (2E/3, −2E/
√

3) during S1,

reaching E2 at θe = π/3. For given values of I and E, the

magnitude of the current vector remains the same and equal to

2I/
√

3, whereas the magnitude of the back-emf vector under-

goes a continuous change from the maximum value of 4E/3

at the beginning of the supply interval to the minimum val-

ue of 2E/
√

3 at the mid of supply interval and then again to

the maximum value of 4E/3 at the end of the supply inter-

val.

Table 1

Current and back-emf vectors

Supply Interval
Current vectors

as a fraction of I

Back-emf vectors

as a fraction of E

S1 I1 = −j
2
√

3
E1 = −

2

3
− j

2
√

3

S2 I2 = 1 − j
1
√

3
E2 =

2

3
− j

2
√

3

S3 I3 = 1 + j
1
√

3
E3 =

4

3

S4 I4 = j
2
√

3
E4 =

2

3
+ j

2
√

3

S5 I5 = −1 + j
1
√

3
E5 = −

2

3
+ j

2
√

3

S6 I6 = −1 − j
1
√

3
E6 = −

4

3

Power equation in (4) can be expressed in terms of the

inner product of the vectors e and i as

p (θe) =
3

2
e (θe) · i (θe)

=
3

2
[eα (θe) iα (θe) + eβ (θe) iβ (θe)] .

(9)

For the ideal case of instantaneous commutation, during the

interval 0 ≤ θe ≤ π/3 the magnitude of the projection of e

over i is constant and equal to 2E/
√

3. Thus the motor torque

in (5) turns out to be constant and equal to

T = 2kI. (10)

Fig. 4. Current and back-emf vectors in the stationary plane

3. Current commutation

In practice, the incoming and outgoing currents take some

time to get the required magnitude and the current commuta-

tion is not instantaneous. The analysis of the PM BLDC drive

operation during the current commutations is carried out by

supposing that

Bull. Pol. Ac.: Tech. 61(4) 2013 831
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1. the voltage drop across the phase resistances is negligible

compared to the other voltage terms in (8), so that it can

be disregarded,

2. the commutation interval is small compared to the maxi-

mum allowed interval of π/3 [9] so that e remains equal to

the back-emf vector taken at the beginning of the relevant

supply interval.

Above assumptions reduce (8) to

di (θe)

dθe

=
1

ΩeL
[v (θe) − E1]
︸ ︷︷ ︸

vL

(θe) (11)

for the supply interval S1. Equation (11) shows that the change

in the current vector is parallel to vL.

a)

b)

c)

Fig. 5. Current transients during commutation: a) in the low-speed

zone (4E < Vd), b) for 4E = Vd, and c) in the high-speed zone

(4E > Vd)

Let us consider the current commutation taking place at

the beginning of the supply interval S1, which starts at θe = 0

as in Fig. 2. The drive control system turns T4 OFF and T6

ON, and keeps T5 ON. The commutating currents are ib and

ia, with ib that is ingoing and ia that is outgoing, whilst ic is

the non-commutating current. Current ia freewheels through

D1 until it extinguishes.

Generally, the commutation interval is divided into two

subintervals, and the current transients depend on whether the

motor runs in the low-speed zone, which occurs for 4E < Vd,

or in the high-speed zone, which occurs for 4E > Vd [10].

The current transients in the two speed zones and for 4E = Vd

are shown in Fig. 5, where the two commutation subintervals

are marked with #1 and #2 and the duration of the com-

mutation interval is denoted with θcℓ and θch, respectively.

Hereafter, quantities pertinent to the low-speed zone are iden-

tified with the subscript l and those to the high-speed zone

with the subscript h.

3.1. Current transients in subinterval #1. During subinter-

val #1, all the three motor phases conduct and the VSI exerts

the maximum effort to the motor for the commutating cur-

rents to reach the required magnitudes, i.e. it is vao = Vd,

vbo = 0 and vco = Vd. From (7), the vector of the VSI output

voltages during subinterval #1 is

V 1 =

(
1

3
− j

1
√

3

)

Vd. (12)

The vector has fixed magnitude and is aligned along E2. By

(11) and (12), the vector of the voltage drops across the phase

inductances is

V L,1 = V 1 −E1 =
1

3
(Vd + 2E)− j

1
√

3
(Vd − 2E) . (13)

The vector in (13) has a slope of

m1 = −
√

3

(
Vd − 2E

Vd + 2E

)

(14)

which is a function of E and, therefore, depends upon the

motor speed Ω.

Integration of (11) with the initial condition i(0) = I6

leads to the current vector i during subinterval #1

i1 (θe) =
1

ΩeL

[
1

3
(Vd + 2E) − j

1
√

3
(Vd − 2E)

]

θe + I6.

(15)

From (14) and (15) it can be concluded that the current vector

during subinterval #1 moves towards I1 along a straight line

with the slope in (14). So, as shown in Fig. 6, there are three

possible trajectories of the tip of the current vector: i) in the

low speed zone, i.e. for 4E < Vd , m1 is less than −1/
√

3 and

the tip of i1 moves along a line like x, which has an angular

slope in the range from −π/6 to – π/3, ii) for 4E = Vd, m1

becomes equal to −1/
√

3 and the tip of i1 moves along the

line joining I6 and I1, which has an angular slope of −π/6,

and iii) in the high speed zone, i.e. for 4E > Vd, m1 becomes

greater than −1/
√

3 and the tip of i1 moves along a line like

w, which has an angular slope in the range from 0 to −π/6.

Subinterval #1 ends in three possible modes: i) for 4E <
Vd, the incoming current ib reaches the required magnitude

832 Bull. Pol. Ac.: Tech. 61(4) 2013
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−I at the angle θi before that the outgoing current ia van-

ishes (Fig. 5a); ii) for 4E = Vd, ib reaches −I at the same

angle that ia vanishes and the commutation completes at the

end of the subinterval #1, (Fig. 5b), iii) for 4E > Vd, ia van-

ishes at the angle θo before that ib reaches −I (Fig. 5c). In

both the modes i) and iii), the commutation continues with

a second subinterval where ia vanishes (mode i) and ib gets

the required magnitude (mode iii); at the completion of this

subinterval, denoted with #2, commutation is completed and

the current vector becomes equal to I1. Subinterval #2 lasts

θci = θcl – θi in mode i) and θco = θch − θo in mode iii).

Fig. 6. Current vector trajectories during subinterval #1

3.2. Current transients in low-speed zone. During subin-

terval #1 the tip of the current vector moves along a line like

x, as explained in the previous Subsection. At the end of the

subinterval #1, the current of phase b reaches the required

magnitude −I , i.e. it is ibl (θi) = −I , while the current of

phase a is still flowing.

During subinterval #2, the drive control system regulates

ib at −I by applying the voltage vbo = Vd −E at the output b
of the VSI, while the other two outputs of the VSI are kept at

the same voltages as before, i.e. it is vao = Vd, and vco = Vd,

for ia to vanish. The vectors of the VSI output voltages and

the voltage drops across the phase inductances are expressed

as

V 2ℓ
=

(
1

3
− j

1
√

3

)

E, (16)

V
L,2ℓ

=

(

1 + j
1
√

3

)

E. (17)

Both the vectors have a magnitude that depends on the speed

and a slope that is independent of the speed. In particular, the

slope of the vector in (17) is

m2ℓ =
1
√

3
(18)

that, as shown in Fig. 7, is the same as the line s. Substitu-

tion of (17) into (11) and integration of (11) give the current

vector in subinterval #2

i2ℓ (θe − θi) =

(

1 + j
1
√

3

)
E

ΩeL
(θe − θi) + i1ℓ(θi)

θe > θi,

(19)

where i1ℓ(θi) is the current vector at the end of subinterval

#1. The angle θi can be obtained by calculating the current

vector at θe = θi by means of the first equation in (7), which

becomes

i1ℓ(θi) = ia (θi) + j
1
√

3
[−2I + ia (θi)] . (20)

Then, by equating the real and imaginary parts of (20) to (15),

also calculated at θe = θi, the values of θi and ia (θi) can be

obtained. In particular, θi results in

θi =
3ΩeLI

2 (Vd − E)
. (21)

Finally, substitution of (21) into (15) yields i1ℓ(θi).
The trajectory of the tip of the current vector in subinter-

val #2, i.e. of i2ℓ (θe − θi), is a straight line having the slope

in (18). Since the current vector coincides with I1 at the end

of subinterval #2, and the slope of the vector I21 = I2 − I1

is the same as (18), the trajectory is represented by the line

s of Fig. 7 that passes through the tips of the vectors I1 and

I2. Thus, it can be stated that subinterval #1 ends when the

line x intersects the line s.

Subinterval #2 finishes when the current vector reaches

I1. This occurs when the current of the phase a vanishes.

Being ia equal to the real part of the current vector, the du-

ration of subinterval #2 can be obtained by equating to zero

the real part of (19) calculated at θe = θcl. It is

θci ≡ θcℓ − θi =
ΩeLI

2E

(
Vd − 4E

Vd − E

)

(22)

and, from (21) and (22), the duration of the commutation

interval is

θcℓ =
ΩeLI

2E
≡

npLI

2k
. (23)

Fig. 7. Phase vectors during subinterval #2 in low-speed zone

It is worth to note that the commutation interval does not

depend on the motor speed and, furthermore, it coincides with

the commutation interval as obtained for 4E = Vd.

The transients of the phase currents in the low-speed zone

drawn in Fig. 5 (a) can be readily found by projecting the cur-

rent vector on the axes a, b, and c of Fig. 7.
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3.3. Current transients in high-speed zone. During subin-

terval #1 the tip of the current vector moves along a line like

w, as explained in Subsec. 3.1). At the end of the subinterval

#1, the current of phase a vanishes, i.e. it is iah (θo) = 0,

while the current of phase b is still on the way to get the

required magnitude. This means that at θe = θo the real part

of the current vector becomes zero and hence subinterval #1

finishes when the line w intersects the current vector I1.

The angle θo is found by equating to zero the real part of

(15) calculated at θe = θo and is equal to

θo =
3ΩeLI

Vd + 2E
. (24)

Substitution of θe = θo in (15) results in only imaginary part

and gives the current vector at the end of subinterval #1; it is

i1h (θo) = −j

[

4

(
Vd − E

Vd + 2E

)]
I
√

3
. (25)

As anticipated, the vector is aligned along I1 and has a mag-

nitude lower than 2I/
√

3.

During subinterval #2, the control system does not chop

the VSI transistors T6 and T5 but keeps them ON to facilitate

the incoming current to reach the required magnitude. Then

only the legs b and c of the VSI conduct and the voltage of

the neutral point of the motor with respect to o is Vd/2. Let

us suppose that the leg a is fictitiously chopped at the voltage

of vao = ea + Vd/2 so as to maintain the zero current con-

dition for the phase a. The other output voltages of the VSI

are vbo = 0 and vco = Vd. Thus the vector of the output VSI

voltages can be determined and results in

V 2h = −
2

3
E − j

1
√

3
Vd (26)

whilst the vector of the voltage drops across the phase induc-

tances becomes

V L,2h = −j
1
√

3
(Vd − 2E). (27)

The two voltage vectors in (26) and (27) have both the mag-

nitude and the slope that depend on the motor speed.

From (11) and (27), the current vector is given by

i2h(θe−θo) = −j
1
√

3

(
Vd − 2E

ΩeL

)

(θe−θo)+i1h(θo). (28)

Equations (25) and (28) point out that the tip of the current

vector moves along the imaginary axis as shown in Fig. 8.

Magnitude of the vector increases and then the tip continues

to advance along I1 until it reaches the tip of I1 at θe = θch.

Duration of subinterval #2 is obtained by equating (28) at I1.

It is

θco ≡ θch − θo =
2ΩeLI (4E − Vd)

(Vd − 2E) (Vd + 2E)
(29)

and, from (24) and (29), the duration of the commutation

interval is

θch =
ΩeLI

Vd − 2E
. (30)

The transients of the phase currents in the high-speed zone

drawn in Fig. 5 (c) can be readily found by projecting the cur-

rent vector on the axes a, b, and c of Fig. 8. As discussed in

[9], in high-speed zone i2h must equate I1 within θe = π/3

to get the required current reference at least at the end of the

allowed commutation interval, i.e. of the supply interval.

Fig. 8. Phase vectors during subinterval #2 in high-speed zone

4. Effects of current commutations

on motor torque

The instantaneous motor torque during current commutations

can be still calculated by (5) and (9). For the current commu-

tation occurring at the beginning of supply interval S1, the

instantaneous motor torque can be expressed as

τ (θe) =
3

2Ω
E1 · i (θe) . (31)

By (31), the torque changes during the commutation interval.

The change is proportional to the projection of [i(θe)−I1] on

E1 and, by accounting of the expressions of i(θe), the change

is a linear function of θe.

In the low-speed zone, the projection of i(θe) on E1 is

greater than the projection of I1 and the instantaneous mo-

tor torque has a positive dip. The torque ripple, which is the

absolute of the maximum excursion, is equal to

TRℓ =

∣
∣
∣
∣

3

2

{
E1 · [i1ℓ(θi) − I1]

Ω

}∣
∣
∣
∣
. (32)

After some manipulations the following expression is obtained

for (32)

TRℓ =
npI

Ωe

[
(Vd − 4E)E

Vd − E

]

. (33)

In the high-speed zone, the projection of i(θe) on E1 is lower

than the projection of I1 and the instantaneous motor torque

has a negative dip. The torque ripple is now equal to

TRh =

∣
∣
∣
∣

3

2

{
E1 · [i1h(θo) − I1]

Ω

}∣
∣
∣
∣
. (34)

After some manipulations the following expression is obtained

for (34)

TRh =

∣
∣
∣
∣

2npI

Ωe

[
(4E − Vd)E

Vd + 2E

]∣
∣
∣
∣
. (35)

834 Bull. Pol. Ac.: Tech. 61(4) 2013



Vector analysis of the current commutation in PM BLDC drives

From Figs. 7 and 8, it can be easily realized that the torque

ripple in both the low-speed and high-speed zones is propor-

tional respectively to the maximum swing of the current of

phase c.

Due to the torque dip, the motor torque, defined as the

average value of the instantaneous motor torque over a supply

period, changes with respect the expected value in (10), by

increasing in the low-speed zone and decreasing in the high-

speed zone. The terms in excess and in defect can be found

by calculating the average value of the torque dip over the

supply interval π/3. It comes out

∆Tℓ =
3

π

1

2
TRℓθcℓ, (36)

∆Th = −
3

π

1

2
TRhθch. (37)

By substituting (23) and (33) into (36), and (30) and (35) into

(37), the following expressions can be obtained for the two

terms

∆Tℓ =
3npLI2

4π

[
Vd − 4E

Vd − E

]

, (38)

∆Th = −
3npLI2

π

[
(4E − Vd)E

(Vd + 2E) (Vd − 2E)

]

. (39)

5. Exemplification

To demonstrate the potentialities of the vector approach in

analyzing the operation of a PM BLDC drive, two control

techniques of the VSI during the current commutations are

considered, that have been proposed to eliminate the torque

ripple produced by the commutations in the low-speed zone

[13] and in the high-speed zone [14], respectively.

5.1. Low-speed zone. The control technique in [13] propos-

es to slow down reaching of the required magnitude from the

incoming current ib by forcing it to have a magnitude comple-

mentary to that one of the outgoing current ia, i.e. by taking

constant the sum of the magnitudes of ib and ia and equal to

the required current magnitude −I . To fulfill this condition,

[13] chops the transistor T6 of the incoming phase during the

commutation interval with the following duty-cycle:

δℓ =
4E

Vd

. (40)

The VSI output voltages are then: vao = Vd, vbo = (1−δl)Vd,

vco = Vd. By (7) and (11), the vectors of the VSI output

voltages and the voltage drops across the phase inductances

become

V 1ℓ =

[
1

3
− j

1
√

3

]

4E, (41)

V L,1ℓ =

[

1 − j
1
√

3

]

2E. (42)

Note that the voltage vector in (41) has the same direction as

V 1 in (12) and a magnitude scaled of δl. As it can be recog-

nized from Fig. 9, this control technique forces the voltage

vector (42) to stay in parallel to the line joining I6 and I1

irrespectively from the motor speed, so that the current vector

during the commutation moves along this line and its mag-

nitude does not exhibit any positive swing. The commutation

interval spans only subinterval #1 as the incoming current

reaches the required magnitude at the same time as the out-

going current vanishes, and the commutation angle is still

given by (23). Clearly, the duty-cycle in (40) can be applied

only for 4E < Vd, i.e. for δl < 1, and hence this technique is

effective only in the low-speed zone.

Fig. 9. PM BLDC control techniques to eliminate torque ripple

5.2. High-speed zone. The control technique in [14] pro-

poses to slow down vanishing of the outgoing current ia by

forcing it to have a magnitude complementary to that one of

the incoming current ib, i.e. by taking constant the sum of

the magnitudes of ib and ia and equal to the required cur-

rent magnitude −I . To fulfill this condition, [15] chops the

transistor T4 of the outgoing phase during the commutation

interval with the following duty-cycle:

δh =
4E

Vd

− 1. (43)

The VSI output voltages are then: vao = (1− δh)Vd, vbo = 0,

vco = Vd. By (7) and (11), the vectors of the VSI output

voltages and the voltage drops across the phase inductances

become

V 1h =

(

Vd −
8

3
E

)

− j
1
√

3
Vd, (44)

V L,1h =

(

1 − j
1
√

3

)

(Vd − 2E) . (45)

Note that direction of the vector in (44) depends on the mo-

tor speed; in spite of this, the vector in (45) is parallel to the

line joining I6 and I1 irrespectively from the motor speed, as

shown in Fig. 9, so that the current vector during the commu-

tation moves along this line and does not exhibit any swing.

Therefore this control technique operates in a similar way that

the technique in the low-speed zone but with the difference

of chopping the output VSI voltage of the outgoing phase in-

stead of the incoming one. As above, the commutation interval

spans only subinterval #1 as the incoming current reaches the

required magnitude at the same time as the outgoing current

vanishes. Here, instead, the commutation angle changes with

the speed and is still given by (30). As an example, Fig. 10
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gives the trajectory on the α, β plane of the current vector

obtained without and with the control technique during the

current commutations at high speeds. The curves, obtained by

simulation, clearly show the beneficial effect of the control.

The duty-cycle in (43) can be applied only for 4E > Vd

and up to 2E = Vd, i.e. for δh < 1, and hence this technique

is effective only in the high-speed zone. Note that extension

of (44)–(46) to the case of 2E = Vd leads to the situation

where the DC link voltage is not more able to inject any cur-

rent into the motor phases as the voltage drop on the phase

inductances is zero.

Fig. 10. Example of α, β plane trajectory of the current vector with-

out (orange line) and with (blue line) VSI control during the current

commutations at high speed

6. Conclusions

The current transients during the commutations of the PM

BLDC drives have been analyzed in the stationary plane with

the help of the vector representation of the drive variables.

Vectors of the VSI output voltages and the voltage drops on

the phase inductances have been calculated and utilized to

get the current vector trajectories for different motor speeds

as well as to find out the commutation intervals. The results

of the analysis have been used to obtain the motor torque and

the torque ripples due to the current commutations. Lastly,

the vector approach has been applied to two control tech-

niques of the PM BLDC drives with the end of explaining

how they operate to eliminate the torque ripples due to the

current commutations.
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