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Abstract. The paper presents a method of determining of the Lyapunov functional for a linear neutral system with an interval time-varying

delay. The Lyapunov functional is constructed for the system with a time-varying delay with a given time derivative, which is calculated on

the trajectory of the system with a time-varying delay. The presented method gives analytical formulas for the coefficients of the Lyapunov

functional.
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1. Introduction

The Lyapunov functionals are used to test the stability of the

systems. For example Fridman [1] introduced the Lyapunov-

Krasovskii functional for examination the stability of the lin-

ear retarded and neutral type systems with discrete and dis-

tributed delays, which were based on equivalent descriptor

form of the original system and obtained delay-dependent

and delay-independent conditions in terms of linear matrix

inequality (LMI). Ivanescu et al. [2] proceeded with the delay-

depended stability analysis for the linear neutral systems, con-

structed the Lyapunov functional and derived sufficient delay-

dependent conditions in terms of linear matrix inequalities

(LMIs). Han [3] obtained a delay-dependent stability criteri-

on for the neutral systems with a time-varying discrete delay.

This criterion was expressed in the form of LMI and was ob-

tained using the Lyapunov direct method. Han [4] developed

the discretized Lyapunov functional approach to investigate

the stability of linear neutral systems with mixed neutral and

discrete delays. The stability criteria, which are applicable

to linear neutral systems with both small and non-small dis-

crete delays, are formulated in the form of LMIs. Han [5]

studied the stability problem of linear time delay systems,

both retarded and neutral types, using the discrete delay N-

decomposition approach to derive some new more general

discrete delay dependent stability criteria. Han [6] employed

the delay-decomposition approach to derive some improved

stability criteria for linear neutral systems and to deduce some

sufficient conditions for the existence of a Lyapunov functional

for a system with k-non-commensurate neutral time delays of

a delayed state feedback controller, which ensure asymptotic

stability and a prescribed H1 performance level of the cor-

responding closed-loop system. Gu and Liu [7] investigated

the stability of coupled differential-functional equations using

the discretized Lyapunov functional method and delivered the

stability condition in the form of LMI, suitable for numerical

computation.

The Lyapunov functionals are also used in calculation of

the robustness bounds for uncertain time delay systems. For

illustration Kharitonov and Zhabko [8] proposed a procedure

of construction of the quadratic functionals for the linear re-

tarded type delay systems which could be used for the robust

stability analysis of time delay systems. This functional was

expressed by means of Lyapunov matrix, which depended on

the fundamental matrix of a time delay system. Kharitonov [9]

extended some basic results obtained for the case of retarded

type time delay systems to the case of neutral type time delay

systems, and in [10] to the neutral type time delay systems

with a discrete and distributed delay. Han [11] investigated

the robust stability of uncertain neutral systems with discrete

and distributed delays, which has been based on the descrip-

tor model transformation and the decomposition technique,

and formulated the stability criteria in the form of LMIs.

Han [12] considered the stability for the linear neutral sys-

tems with norm-bounded uncertainties in all system matrices

and derived a new delay-dependent stability criterion. Neither

model transformation nor bounding technique for cross terms

is involved through derivation of the stability criterion.

The Lyapunov functionals are also used in computation of

the exponential estimates for the solutions of the time delay

systems. For instance Kharitonov and Hinrichsen [13] used the

Lyapunov matrix to derive exponential estimates for the solu-

tions of exponentially stable time delay systems. Kharitonov

and Plischke [14] formulated the necessary and sufficient con-

ditions for the existence and uniqueness of the delay Lyapunov

matrix for the case of a retarded system with one delay. The

numerical scheme for construction of the Lyapunov function-

als has been proposed by Gu [15]. This method starts with the

discretisation of a Lyapunov functional. The scheme is based

on LMI techniques.
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The Lyapunov quadratic functionals are also used to cal-

culation of a value of a quadratic performance index of quality

in the process of the parametric optimization for the time de-

lay systems. One constructs a Lyapunov functional for the

system with a time delay with a given time derivative whose

is equal to the negatively defined quadratic form of a system

state. The value of that functional at the initial state of the

time delay system is equal to the value of a quadratic per-

formance index of quality. For the first time such Lyapunov

functional was introduced by Repin [16] for the case of the

retarded type time delay linear systems with one delay. Re-

pin [16] delivered also the procedure for determination of the

functional coefficients. Duda [17] used the Lyapunov quadrat-

ic functional, which was proposed by Repin in the parametric

optimization process for systems with a time delay of retard-

ed type and extended the results to the case of a neutral type

time delay system in [18]. Duda [19, 20] conducted also the

parametric optimization process for the neutral system with

two non-commensurate delays and a P-controller, to this end

there were used the results presented in [21].

There is another method to achieve a value of a quadrat-

ic performance index presented by Górecki and Popek [22]

which bases on a characteristic quasipolynomial. Górecki and

Białas published two articles [23, 24] whose concern relations

between roots of the transcendental equations and their coef-

ficients. These results are helpful in the stability analysis of

the time delay systems.

There are papers whose regard the quadratic Lyapunov

functionals such that their coefficients are given by the ana-

lytical formulas. Duda [25] presented a method of determin-

ing of the Lyapunov functional for a linear dynamical system

with two lumped retarded type time delays in the general case

with non- commensurate delays and presented a special case

with commensurate delays in which the Lyapunov functional

could be determined by solving of the ordinary differential

equations set. Duda [26] presented also a method of deter-

mining of the Lyapunov functional for a neutral system with

k-non-commensurate delays and in [27] for a linear system

with both lumped and distributed delay, and in [28] for a

system with a time-varying delay.

This paper presents a method of determining of the Lya-

punov functional for a linear neutral system with an interval

time-varying delay. The Lyapunov functional is constructed

for the system with a time-varying delay with a given time

derivative which is calculated on the trajectory of the system

with a time-varying delay. We assume that a time derivative

of the Lyapunov functional is a quadratic form. This assump-

tion enables calculation the value of the integral quadratic

performance index for the parametric optimization of a neu-

tral system with an interval time-varying delay. The present-

ed method gives analytical formulas for the coefficients of

the Lyapunov functional. The novelty of the result lies in the

extension of the Repin method to the neutral system with an

interval time-varying delay. To the best of author’s knowledge,

such extension has not been reported in the literature. There

is also presented an example illustrating that method.

2. A mathematical model of a linear neutral

system

The linear neutral systems are often used in control theory

and in a regulation system. For example if we consider the

regulation system with an object with time delay and a PD

regulator we obtain a neutral system.

Let us consider a neutral system with a time-varying de-

lay, whose dynamics is described by the functional-differential

equation (FDE)


















dx(t)

dt
− C

dx(t − τ(t))

dt
= Ax(t) + Bx(t − τ(t))

x(t0) = x0 ∈ R
n

x(t0 + θ) = Φ(θ),

(1)

where t ≥ t0, θ ∈ [−r, 0) , τ(t) is a time-varying delay sat-

isfying the condition 0 ≤ τ(t) ≤ r;
dτ(t)

dt
6= 1 where r is

a positive constant A, B, C ∈ R
n×n and C is non-singular,

x(t) ∈ R
n, Φ ∈ W 1,2 ([−r, 0), Rn).

W 1,2 ([−r, 0), Rn) is a space of all absolutely continuous

functions [−r, 0) → R
n with derivatives in L2([−r, 0), Rn) a

space of Lebesgue square integrable functions on an interval

[−r, 0) with values in R
n.

The norm in W 1,2 ([−r, 0), Rn) is defined by

‖ Φ ‖2
W 1,2=

0
∫

−r

(

‖ Φ(t) ‖2
Rn +

∥

∥

∥

∥

dΦ(t)

dt

∥

∥

∥

∥

2

Rn

)

dt, (2)

where ‖ · ‖Rn is an arbitrary norm in R
n.

The space of initial data is given by the Cartesian product

R
n × W 1,2([−r, 0), Rn).

The theorems of existence, continuous dependence and

uniqueness of solutions of Eq. (1) are given in [29].

One can obtain a solution of FDE (1) using a step method

[29]. The step method is a basic method for solving FDE with

a lumped delay. A solution is found on successive intervals,

one after another, by solving an ordinary equation without

delay in each interval.

A solution of Eq. (1) is an absolutely continuous function

defined for t ≥ t0 − r with values in R
n.

x(·) ∈ W 1,2([t0 − r,∞), Rn), (3)

where W 1,2([t0 − r,∞), Rn) is a space of all absolutely con-

tinuous functions with derivatives in a space of Lebesgue

square integrable functions on interval [t0 − r,∞) with val-

ues in R
n.

Definition 1. The zero solution of (1) is stable if for any

ε > 0 there is a δ > 0 such that
√

‖ x(t0) ‖2
Rn + ‖ Φ ‖2

W 1,2 < δ

implies ‖ x(t) ‖Rn≤ ε for t ≥ t0.

The zero solution of (1) is asymptotically stable if

‖ x(t) ‖Rn→ 0 as t → ∞

The difference equation associated with (1) is given by

x(t) = Cx(t − τ(t)), t ≥ t0. (4)
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The eigenvalues of the difference Eq. (4) play a funda-

mental role in the asymptotic behavior of the solutions of

the neutral Eq. (1). The difference Eq. (4) is stable when the

spectral radius γ(C) of the matrix C fulfills the condition

γ (C) = sup {| λ |: λ ∈ σ (C)} < 1, (5)

where the spectrum σ (C) is the set of complex numbers λ

for which the matrix λI − C is not invertible.

We introduce a new function y, defined by term

y(t) = x(t) − Cx(t − τ(t)) for t ≥ t0. (6)

Thus the Eq. (1) takes a form



































dy(t)

dt
= Ay(t) + (AC + B)x(t − τ(t))

y(t) = x(t) − Cx(t − τ(t))

y(t0) = x0 − CΦ(−τ(t))

x(t0 + θ) = Φ(θ).

(7)

We assume that the matrix C fulfills the condition (5).

The state of the system (7) is a vector

S(t) =

[

y(t)

xt

]

for t ≥ t0, (8)

where y(t) ∈ R
n, xt ∈ W 1,2([−r, 0), Rn) and xt(θ) =

x(t + θ) for θ ∈ [−r, 0).

The state space is defined by the formula

X = R
n × W 1,2([−r, 0), Rn). (9)

The norm in the state space X is defined by

‖ S(t) ‖2
X=‖ y(t) ‖2

Rn + ‖ xt ‖
2
W 1,2 for t ≥ t0. (10)

The controllability of the systems with time delay is pre-

sented in [30].

3. A Lyapunov functional

Definition 2. A functional V : X → R is positive definite

if and only if it is continuous and V (x) > 0 for x 6= 0 and

V (0) = 0.

A functional V : X → R is negative definite if and only

if it is continuous and V (x) < 0 for x 6= 0 and V (0) = 0.

A functional V : X × [t0,∞) → R is positive defi-

nite if it is continuous and there exists a positive definite

functional W : X → R such that V (x, t) ≥ W (x) and

V (0, t) = W (0) = 0 for x ∈ X and t ≥ t0.

Definition 3. A positive definite functional V : X×[t0,∞) →
R is upper bounded if there exists a positive definite func-

tional W : X → R such that V (x, t) ≤ W (x) for x ∈ X and

t ≥ t0.

Definition 4. We define a time derivative of the functional

V (y(t), xt, t) at (y(t0), Φ, t0) on a trajectory of a system (7)

by the formula

dV (y(t0), Φ, t0)

dt

= lim sup
h→0

1

h
[V (y (t0 + h) , xt0+h, t0 + h)

−V (y(t0), Φ, t0)] .

(11)

Definition 5. We say that V : X×[t0,∞) → R is a Lyapunov

functional if

1. V is a positive definite upper bounded functional

2. V is differentiable

3. A time derivative of V computed according to a formula

(11) on the trajectory of the system (7) is negative definite

Existence of the Lyapunov functional for the system (7)

is a sufficient condition for asymptotic stability of its zero

solution.

From the assumption that the Lyapunov functional is up-

per bounded results that there exists a functional W such that

0 ≤ V (y(t), xt, t) ≤ W (y(t), xt) for t ≥ t0. (12)

When the system (7) is asymptotically stable

lim
t→∞

W (y(t), xt) = 0 implies lim
t→∞

V (y(t), xt, t) = 0.

Hence

∞
∫

t0

dV (y(t), xt, t)

dt
dt

= lim
t→∞

V (y(t), xt, t) − lim
t→t0

V (y(t), xt, t)

= −V ( lim
t→t0

(y(t), xt, t)) = −V (y(t0), Φ, t0).

(13)

We assume that the time derivative of the Lyapunov functional

V is given as a quadratic form

dV (y(t), xt, t)

dt
≡ −yT (t)Gy(t) for t ≥ t0, (14)

where G ∈ R
n×n is a positive definite matrix.

Taking (13) and (14) into account we obtain a relationship

J =

∞
∫

t0

yT (t)Gy(t)dt = V (y0, Φ, t0). (15)

Corollary 6. If we construct a Lyapunov functional such that

its time derivative computed on the trajectory of the system

(7) will be given as a quadratic form (14) we can not only

investigate the system (7) stability but also we can calculate

a value of a square indicator of quality (15) of the parametric

optimization problem.

To calculate the value of the performance index (15),

which is equal to the value of the Lyapunov functional at

the initial state of the system (7), we need a mathematical

formula of the functional.
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4. Main result.

Determination of the Lyapunov functional

Let us consider a quadratic functional on X × [t0,∞), where

X is defined by (9), given by a formula

V (y(t), xt, t) = yT (t)α(t)y(t)

+

0
∫

−τ(t)

yT (t)β (θ + τ(t)) xt(θ)dθ

+

0
∫

−τ(t)

0
∫

θ

xT
t (θ)δ (θ + τ(t), σ + τ(t)) xt(σ)dσdθ

(16)

for t ≥ t0 where α ∈ C1 ([t0,∞), Rn×n);
β ∈ C1([0, τ(t)], Rn×n), δ ∈ C1(Ω, Rn×n), Ω =
{(θ, σ) : θ ∈ [0, τ(t)], σ ∈ [θ, 0]} ; 0 ≤ τ(t) ≤ r, where

C1 is a space of all continuous functions with continuous

derivative.

Conjecture 7. We introduce a procedure of determination of

the functional (16) coefficients to obtain the Lyapunov func-

tional.

We compute the time derivative of the functional (16) on

the trajectory of the system (7) according to the formula (11)

dV (y(t), xt, t)

dt
= yT (t)

[

AT α(t) + α(t)A +
dα(t)

dt

+β(τ(t))

]

y(t) + yT (t)

[

(

α(t) + αT (t)
)

(AC + B)

+β (τ(t)) C + β(0)

(

dτ(t)

dt
− 1

)

]

xt (−τ(t))

+

0
∫

−τ(t)

yT (t)

[

AT β (θ + τ(t)) +
dβ (θ + τ(t))

dt

−
dβ (θ + τ(t))

dθ
+ δT (θ + τ(t), τ(t))

]

xt(θ)dθ

+

0
∫

−τ(t)

xT
t (−τ(t))

[

(AC + B)
T

β (θ + τ(t))

+CT δT (θ + τ(t), τ(t)) + δ (0, θ + τ(t))

·

(

dτ(t)

dt
− 1

)

]

xt(θ)dθ +

0
∫

−τ(t)

0
∫

θ

xT
t (θ)

·

[

dδ (θ + τ(t), σ + τ(t))

dt
−

∂δ (θ + τ(t), σ + τ(t))

∂θ

−
∂δ (θ + τ(t), σ + τ(t))

∂σ

]

xt(σ)dσdθ

(17)

for t ≥ t0 where α ∈ C1 ([t0,∞), Rn×n); β ∈
C1([0, τ(t)], Rn×n); δ ∈ C1(Ω, Rn×n); Ω =
{(θ, σ) : θ ∈ [0, τ(t)], σ ∈ [θ, 0]}; 0 ≤ τ(t) ≤ r.

The time derivative of the Lyapunov functional should be

negative definite, therefore we identify the coefficients of the

functional (16) assuming that the time derivative (17) satisfies

the relationship (14).

From Eqs. (17) and (14) we obtain the set of equations

AT α(t) + α(t)A +
dα(t)

dt
+ β(τ(t)) = −G, (18)

(

α(t) + αT (t)
)

(AC + B) + β (τ(t)) C

+β(0)

(

dτ(t)

dt
− 1

)

= 0,
(19)

AT β (θ + τ(t)) +
dβ (θ + τ(t))

dt

−
dβ (θ + τ(t))

dθ
+ δT (θ + τ(t), τ(t)) = 0,

(20)

(AC + B)
T

β (θ + τ(t)) + CT δT (θ + τ(t), τ(t))

+δ (0, θ + τ(t))

(

dτ(t)

dt
− 1

)

= 0,
(21)

dδ (θ + τ(t), σ + τ(t))

dt
−

∂δ (θ + τ(t), σ + τ(t))

∂θ

−
∂δ (θ + τ(t), σ + τ(t))

∂σ
= 0

(22)

for t ≥ t0; θ ∈ [−τ(t), 0]; σ ∈ [θ, 0] where 0 ≤ τ(t) ≤ r.

We introduce the new variables

ξ = θ + τ(t), (23)

η = σ + τ(t). (24)

We calculate the derivatives

dδ (θ + τ(t), σ + τ(t))

dt
=

dδ(ξ, η)

dt

=
∂δ(ξ, η)

∂ξ

dτ(t)

dt
+

∂δ(ξ, η)

∂η

dτ(t)

dt
,

(25)

∂δ (θ + τ(t), σ + τ(t))

∂θ
=

∂δ(ξ, η)

∂θ
=

∂δ(ξ, η)

∂ξ
, (26)

∂δ (θ + τ(t), σ + τ(t))

∂σ
=

∂δ(ξ, η)

∂σ
=

∂δ(ξ, η)

∂η
, (27)

dβ (θ + τ(t))

dt
=

dβ(ξ)

dξ

∂ξ

∂t
=

dβ(ξ)

dξ

dτ(t)

dt
, (28)

dβ (θ + τ(t))

dθ
=

dβ(ξ)

dξ

∂ξ

∂θ
=

dβ(ξ)

dξ
. (29)

The formula (22) takes the form

∂δ(ξ, η)

∂ξ
+

∂δ(ξ, η)

∂η
= 0, (30)

for t ≥ t0; θ ∈ [−τ(t), 0]; σ ∈ [θ, 0]; ξ ∈ [0, τ(t)] ,
η ∈ [ξ, τ(t)] where 0 ≤ τ(t) ≤ r.

The formula (20) takes the form
(

dτ(t)

dt
− 1

)

dβ(ξ)

dξ
+ AT β(ξ) + δT (ξ, τ(t)) = 0. (31)

The formula (21) takes the form

(AC + B)T
β(ξ) + CT δT (ξ, τ(t))

+ δ (0, ξ)

(

dτ(t)

dt
− 1

)

= 0.
(32)
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The solution of Eq. (22) is given by a formula

δ (θ + τ(t), σ + τ(t)) = δ (ξ, η)

= f(ξ − η) = f (θ − σ)
(33)

for t ≥ t0; θ ∈ [−τ(t), 0]; σ ∈ [θ, 0]; 0 ≤ τ(t) ≤ r; where

f ∈ C1 ([−r, r], Rn×n).

From formula (31) we get

δT (ξ, τ(t)) = fT (ξ − τ(t))

= −

(

dτ(t)

dt
− 1

)

dβ(ξ)

dξ
− AT β(ξ)

(34)

We put the term (34) into (32). After calculations we get

CT dβ(ξ)

dξ
=

(

dτ(t)

dt
− 1

)

−1

BT β(ξ) + δ (0, ξ) . (35)

From the relation (34) we can determine the term

δ(0, ξ) = f(−ξ)

f(−ξ) =

(

dτ(t)

dt
− 1

)

dβT (−ξ + τ(t))

dξ

−βT (−ξ + τ(t)) A

(36)

and put it into (35). In this way we get the formula

CT dβ(ξ)

dξ
−

(

dτ(t)

dt
− 1

)

dβT (−ξ + τ(t))

dξ

=

(

dτ(t)

dt
− 1

)

−1

BT β(ξ) − βT (−ξ + τ(t)) A

(37)

for ξ ∈ [0, τ(t)] where 0 ≤ τ(t) ≤ r.

We determine the formula (37) for the new variable

−ξ + τ(t). After calculations we obtain the formula

(

dτ(t)

dt
− 1

)

dβ(ξ)

dξ
−

dβT (−ξ + τ(t))

dξ
C

=

(

dτ(t)

dt
− 1

)

−1

βT (−ξ + τ(t))B − AT β(ξ).

(38)

In this way we obtained the set of differential equations



















































CT dβ(ξ)

dξ
−

(

dτ(t)

dt
− 1

)

dβT (−ξ + τ(t))

dξ

=

(

dτ(t)

dt
− 1

)

−1

BT β(ξ) − βT (−ξ + τ(t)) A
(

dτ(t)

dt
− 1

)

dβ(ξ)

dξ
−

dβT (−ξ + τ(t))

dξ
C

=

(

dτ(t)

dt
− 1

)

−1

βT (−ξ + τ(t))B − AT β(ξ)

(39)

for t ≥ t0, ξ ∈ [0, τ(t)] where 0 ≤ τ(t) ≤ r with the initial

conditions β (0) and β (τ (t)).

We can reshape the set of Eqs. (39) to the form















































































CT dβ(ξ)

dξ
C −

(

dτ(t)
dt

− 1
)2 dβ(ξ)

dξ

=

(

dτ(t)

dt
− 1

)

AT β(ξ) +

(

dτ(t)

dt
− 1

)

−1

BT β(ξ)C

−βT (−ξ + τ(t)) (AC + B)

CT dβ(−ξ + τ(t))

dξ
C −

(

dτ(t)

dt
− 1

)2
dβ(−ξ + τ(t))

dξ

= βT (ξ) (AC + B) −

(

dτ(t)

dt
− 1

)

AT β(−ξ + τ(t))

−

(

dτ(t)

dt
− 1

)

−1

BT β(−ξ + τ(t))C

(40)

for t ≥ t0, ξ ∈ [0, τ(t)] where 0 ≤ τ(t) ≤ r with the initial

conditions β (0) and β (τ (t)).

There holds the relationship between β(ξ) and β(−ξ +
τ(t))

β (ξ) |
ξ= τ(t)

2

= β (−ξ + τ (t)) |
ξ= τ(t)

2

. (41)

We calculate the derivative of Eq. (19) with respect to t

(

dα(t)

dt
+

dαT (t)

dt

)

(AC + B) +
dβ(τ(t))

dt
C

+
dβ(0)

dt

(

dτ(t)

dt
− 1

)

+
d2τ(t)

dt2
β(0) = 0,

(42)

where

dβ(0)

dt
=

dβ(ξ)

dξ

dτ(t)

dt

∣

∣

∣

∣

∣

ξ=0

, (43)

dβ(τ(t))

dt
=

dβ(ξ)

dξ

dτ(t)

dt

∣

∣

∣

∣

∣

ξ=τ(t)

. (44)

From Eq. (40) it results that

CT dβ(0)

dt
C −

(

dτ(t)

dt
− 1

)2
dβ(0)

dt

=
dτ(t)

dt

(

dτ(t)

dt
− 1

)

AT β(0) +
dτ(t)

dt

(

dτ(t)

dt
− 1

)

−1

·BT β(0)C −
dτ(t)

dt
βT (τ(t)) (AC + B) ,

(45)

CT dβ(τ(t))

dt
C −

(

dτ(t)

dt
− 1

)2
dβ(τ(t))

dt

=
dτ(t)

dt
βT (0) (AC + B) −

dτ(t)

dt

(

dτ(t)

dt
− 1

)

AT β(τ(t))

−
dτ(t)

dt

(

dτ(t)

dt
− 1

)

−1

BT β(τ(t))C.

(46)

From Eq. (18) we obtain

dα(t)

dt
= −AT α(t) − α(t)A − β(τ(t)) − G. (47)
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We put the term (47) into Eq. (42). After calculations we

get
[

AT
(

α(t) + αT (t)
)

+
(

α(t) + αT (t)
)

A
]

(AC + B)

+
(

β(τ(t)) + βT (τ(t))
)

(AC + B) −
d2τ(t)

dt2
β(0)

−
dβ(τ(t))

dt
C −

dβ(0)

dt

(

dτ(t)

dt
− 1

)

= −
(

G + GT
)

(AC + B) .

(48)

The matrix α(t), the initial conditions of the system (40)

and
dβ(0)

dt
,

dβ(τ(t))

dt
we obtain by solving the set of alge-

braic Eqs. (48), (19), (45), (46) and (41). We write that set of

the equations below
[

AT
(

α(t) + αT (t)
)

+
(

α(t) + αT (t)
)

A
]

(AC + B)

+
(

β(τ(t)) + βT (τ(t))
)

(AC + B) −
d2τ(t)

dt2
β(0)

−
dβ(τ(t))

dt
C −

dβ(0)

dt

(

dτ(t)

dt
− 1

)

= −
(

G + GT
)

(AC + B) ,

(49)

(

α(t) + αT (t)
)

(AC + B) + β (τ(t)) C

+β(0)

(

dτ(t)

dt
− 1

)

= 0,
(50)

CT dβ(0)

dt
C −

(

dτ(t)

dt
− 1

)2
dβ(0)

dt

=
dτ(t)

dt

(

dτ(t)

dt
− 1

)

·AT β(0) +
dτ(t)

dt

(

dτ(t)

dt
− 1

)

−1

BT β(0)C

−
dτ(t)

dt
βT (τ(t)) (AC + B) ,

(51)

CT dβ(τ(t))

dt
C −

(

dτ(t)

dt
− 1

)2
dβ(τ(t))

dt

=
dτ(t)

dt
βT (0) (AC + B)

−
dτ(t)

dt

(

dτ(t)

dt
− 1

)

AT β(τ(t))

−
dτ(t)

dt

(

dτ(t)

dt
− 1

)

−1

BT β(τ(t))C,

(52)

β (ξ) |
ξ= τ(t)

2
= β (−ξ + τ (t)) |

ξ= τ(t)
2

. (53)

Having the solution of the set of differential equations (40)

and taking into account the formulas (23), (33) and (36) we

can get the matrices

β (θ + τ(t)) = β (ξ) |ξ=θ+τ(t), (54)

δ (θ + τ(t), σ + τ(t)) = f (σ − θ) , (55)

where

f(ρ) = −

(

dτ(t)

dt
− 1

)

dβT (ρ + τ(t))

dρ

−βT (ρ + τ(t)) A

(56)

for t ≥ t0; θ ∈ [−τ(t), 0]; σ ∈ [θ, 0] where 0 ≤ τ(t) ≤ r.

In this way we obtained all coefficients of the functional

(16). This coefficients depend on the matrices A, B and C

of the system (7). The time derivative of the functional (16)

is negative definite. When the matrices α(t), β(θ + τ(t)) and

δ (θ + τ(t), σ + τ(t)) for t ≥ t0; θ ∈ [−τ(t), 0]; σ ∈ [θ, 0] are

positive definite the functional (16) becomes the Lyapunov

functional.

The Lyapunov functional for a neutral system with an in-

terval time-varying delay given by formula (16) is more gen-

eral than the functional proposed by Repin [16].

Example 8. Let us consider a system described by equation



















dx (t)

dt
− c

dx (t − τ(t))

dt
= ax (t) + bx (t − τ (t))

x(t0) = x0

x (t0 + θ) = Φ(θ) ∈ R

(57)

t ≥ t0; Φ ∈ W 1,2([−r, 0), R); x (t) ∈ R; a, b, c ∈ R;θ ∈
[−r, 0) ;| c |< 1; τ(t) is a time-varying delay satisfying the

condition 0 ≤ τ(t) ≤ r;
dτ(t)

dt
6= 1; where r is positive

constant.

We can reshape the Eq. (57) to the form


































dy(t)

dt
= ay(t) + (ac + b)x(t − τ(t))

y(t) = x(t) − cx(t − τ(t))

y(t0) = x0 − cΦ(−τ(t))

x(t0 + θ) = Φ(θ)

(58)

t ≥ t0; Φ ∈ W 1,2([−r, 0), R); x (t) ∈ R; a, b, c ∈ R;| c |< 1;
θ ∈ [−r, 0);τ(t) is a time-varying delay satisfying the condi-

tion 0 ≤ τ(t) ≤ r;
dτ(t)

dt
6= 1; where r is positive constant.

The Lyapunov functional is given by a formula

V (y (t) , xt, t) = α(t)y2 (t)

+

0
∫

−τ(t)

β (θ + τ(t)) y (t)xt (θ) dθ

+

0
∫

−τ(t)

0
∫

θ

δ (θ + τ(t), σ + τ(t)) xt (θ) xt (σ) dσdθ,

(59)

where

xt ∈ W 1,2([−r, 0), R),

xt(θ) = x(t + θ) for θ ∈ [−r, 0).

We obtain the coefficients of the functional as below.
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The Eq. (40) takes the form








dβ(ξ)

dξ
dβ (−ξ + τ(t))

dξ









=

[

p1 −p2

p2 −p1

] [

β(ξ)

β (−ξ + τ(t))

]

(60)

for t ≥ t0, ξ ∈ [0, τ(t)] 0 ≤ τ(t) ≤ r, where

p1 =

(

dτ(t)

dt
− 1

)

a +
bc

dτ(t)
dt

− 1

c2 −

(

dτ(t)

dt
− 1

)2 , (61)

p2 =
ac + b

c2 −

(

dτ(t)

dt
− 1

)2 . (62)

The fundamental matrix of the differential Eq. (60) is given

by formula

Q =





chλξ +
p1

λ
shλξ −

p2

λ
shλξ

p2

λ
shλξ chλξ −

p1

λ
shλξ



 , (63)

where

λ =

√

√

√

√

√

√

b2 − a2
(

dτ(t)
dt

− 1
)2

c2 −
(

dτ(t)
dt

− 1
)2

(

dτ(t)

dt
− 1

) . (64)

Hence
[

β(ξ)

β(−ξ + τ(t))

]

= Q(ξ)

[

β(0)

β(τ(t))

]

(65)

for t ≥ t0, ξ ∈ [0, τ(t)] where 0 ≤ τ(t) ≤ r.

We need the initial conditions of the set of differential

Eqs. (60) to obtain

β(θ + τ(t)) = β (ξ) |ξ=θ+τ(t), (66)

δ (θ + τ(t), σ + τ(t)) = f (σ − θ) , (67)

f(ρ) = −

(

dτ(t)

dt
− 1

)

dβ(ρ + τ(t))

dρ
− aβ (ρ + τ(t)) (68)

for t ≥ t0; θ ∈ [−τ(t), 0]; σ ∈ [θ, 0] where 0 ≤ τ(t) ≤ r.

The initial conditions of the differential Eq. (60) and the

coefficient α(t) we get by solving of a set of Eqs. (49) to (53)

which take the form as below

4a (ac + b)α(t)

+

(

−cp2
dτ(t)

dt
−

d2τ(t)

dt2
− p1

dτ(t)

dt

(

dτ(t)

dt
− 1

))

β(0)

+

(

2 (ac + b) + cp1
dτ(t)

dt
+ p2

dτ(t)

dt

(

dτ(t)

dt
− 1

))

β(τ(t))

= −2w (ac + b) ,
(69)

2 (ac + b)α(t) +

(

dτ(t)

dt
− 1

)

β(0) + cβ(τ(t)) = 0, (70)

(

ch
λτ(t)

2
+

p1 − p2

λ
sh

λτ(t)

2

)

β(0)

+

(

p1 − p2

λ
sh

λτ(t)

2
− ch

λτ(t)

2

)

β(τ(t)) = 0.

(71)

Fig. 1. Parameter α(t)

Fig. 2. Parameter β(ξ)

The figures show graphs of functions α(t) and β(ξ),
obtained with the Matlab code, for given values of para-

meters a = −1, b = −0.5, c = 0.5, w = 1, τ(t) =
r
(

1 − exp
(

− t
T

))

, r = 0.5, T = 1 of the system (57).

From figures implies that the system (58) is stable for

given values of parameters a, b, c because α(t) and β(ξ) are

positive.
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5. Conclusions

The paper presents the procedure of determining of the coef-

ficients of the Lyapunov functional given by formula (16) for

a linear system with an interval time-varying delay, described

by Eq. (7). This article extends the method presented by Re-

pin to the neutral system with an interval time-varying delay.

The presented method allows achieving the analytical formu-

las on the coefficients of the Lyapunov functional, which can

be used to examine the stability of the time delay systems

with an interval time-varying delay and in the process of the

parametric optimization for calculation of the square index of

the quality given by formula (15).
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