
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 61, No. 4, 2013

DOI: 10.2478/bpasts-2013-0100

A relaxation heuristic for scheduling flowshops

with intermediate buffers

M. MAGIERA∗

AGH University of Science and Technology, Faculty of Management, Department of Operations Research and Information Technology,

30 Mickiewicza Ave., 30-059 Cracow, Poland

Abstract. The paper presents a two-level relaxation heuristic for production planning for multistage flowshop systems with intermediate

buffers. The method concerns unidirectional multistage systems where tasks with respect to many various types of products are performed

simultaneously. The fixed and the alternative production routes are regarded in the method. The top-level is a stage loading, i.e., allocation

of tasks among the stages. The base-level is a task scheduling – allocation of tasks among the stations. The linear mathematical models

of mixed integer programming are used in the method. The time criterion is used in the minimization functions – the minimal schedule is

fixed. The condition that variables are to be integers has been ignored in the heuristic. The relaxed heuristic developed in such a manner

enables obtaining good results in a very short time. This paper discusses the multilevel approach as the developed production scheduling

method serves the purpose of solving relatively large problems. Results of computational experiments with the proposed heuristic method

are presented.

Key words: scheduling, heuristic, linear programming, production planning, decision making, flowshop.

1. Introduction

One of the basic tasks concerning production planning is

building production schedules. These schedules, which take

into consideration specific criteria for breaking down the

tasks, are built for different time horizons. This paper is fo-

cused on short-term planning of product flow through produc-

tion lines. Production schedules are built for different types

of products. The issues presented in the paper, related to task

scheduling theory, mathematical modelling, discrete program-

ming, are included in the field of operational research.

Production schedules, which place the planned tasks (op-

erations) in time and space, are developed on the basis of

one of two possible approaches: monolithic or hierarchical.

The former, a single-level approach, is characterized by si-

multaneous solution of all sub-problems (such as balancing

station workloads, or task scheduling). Owing to global treat-

ment of a problem, best solutions are obtained. However, the

enormous quantity of parameters and variables increases the

amount of time required to perform calculations, and in many

cases precludes solution of relatively large tasks. Therefore, in

the case of significantly-sized tasks, the multilevel, or hierar-

chical, approach is employed. The global problem is divided

into a series of sequentially solved partial tasks. Results ob-

tained at a higher level provide data for a task solved at a lower

level. One drawback of that concept, in comparison with the

single-level approach, is the more significant deviance from

the global optimum.

This paper deals with the application of the hierarchical

approach. A two-level task scheduling algorithm has been de-

veloped. It is used for building schedules of product flow

through unidirectional production lines. The issues of task

scheduling for production systems, related to the algorithm

presented in the paper, was analysed in detailed in, among

others, the works of [1] and [2]. These papers include not on-

ly the description of the issues related to task and resources

distribution, but also the description of systems, applied cri-

teria as well as concepts used in the scheduling algorithms

built for various configurations of production systems.

The algorithm presented in this paper applies to flexible

production systems. Flexibility is understood here as the ca-

pacity of the system for simultaneous short-series (including

single-unit) production of a number of different products at

high performance of the entire system [3]. The paper [3] spec-

ifies typical types of flexibility, both at the level of the ma-

chine as well as at the level of production system management.

It referred to, among others, flexibility of production assort-

ment and flexibility of production volume. These two types

of flexibility specifically refer to production lines for which

the task scheduling algorithm has been developed. These sys-

tems feature the capacity of quick and economic transition do

production of new types of goods (flexibility of production

assortment) and the related production profitability, even with

small volumes (production volume flexibility).

Task scheduling methods may be broken down into two

groups: those which allow determination of optimum solu-

tions (in view of the criteria taken into account) and those

which are used to determine approximate solutions which are

slightly deviated from the optimum.

A large number of task scheduling methods for flow sys-

tems is based on mathematical programming. The developed

algorithm takes advantage of this tool. The problem to be

∗e-mail: mmagiera@zarz.agh.edu.pl

929



M. Magiera

solved was formulated in the form of linear mathematical re-

lationships. The art of building mathematical models is pre-

sented in, among others, [4] and [5].

The first of the models presented in this paper was inspired

with [3] and [6]. These papers present models of discrete op-

timization tasks used for machine load-balancing. For the al-

gorithm presented in this paper, a stage load-balancing model

was built, in which every stage constitutes a set of machines

working in parallel. The other works of the same author [7]

and [8], in which integer programming has also been used, are

similar in terms of the application of the two-level approach

to product flow planning. At the top level of both works, ma-

chine workload is balanced, with scheduling of tasks at the

lower level. These works, related to flexible assembly systems,

cover the issues of the feeder layout. The tasks have been also

emphasised in this paper which require using parts. Unlike

with the concept of task scheduling described in the works

[7] and [8], this paper presents the method in which the al-

location of the tasks to the machines is done as late as at the

level II. This results in better route flexibility. The presented

method differs also with a number of other aspects, e.g. tak-

ing into consideration limited availability of the machines or

setting intermediate buffers loads.

The algorithm presented in the paper is related, however,

to the group of task scheduling methods which enables deter-

mination of approximate solutions. The grounds for building

approximate algorithms and the related issues are described

in [9]. In the mathematical models prepared for the algorithm

presented here, the conditions for discrete decision variables

were rejected. It clearly required building approximation pro-

cedures of the obtained results and verification and modifica-

tion of the obtained solutions. The said activities are charac-

teristic of relaxation heuristics which includes the developed

algorithm.

With the application of the developed heuristic method,

problems of significant scale may be solved in a relatively

short time. Moreover, application of the hierarchical approach

enables taking into consideration a large number of parame-

ters and variables in mathematical relationships built for the

problems solved one by one.

Taking into consideration limited availability of machines

is a characteristic of the developed algorithm. It was inspired

with [10]. Thus, planned demurrage of machines may be tak-

en into account, for example allocated for maintenance or

refitting.

The literature covering the issues of task scheduling for

flow systems is very rich. The works [11] and [12] are ded-

icated to the presentation of the review of the used meth-

ods. The authors of the work [12] have classified these meth-

ods. They have described methods used for determination of

optimum solutions, heuristics, hybrid approaches and simu-

lation/decision support system (DSS). Higher importance of

hybrid methods is indicated in the work, the methods which

use combinations of two or more tools to find the solution.

The classification of the methods used for task scheduling for

multi-stage assembly systems is described in the work [13].

It has to be emphasised here that these methods include also

designing systems, e.g. defining the locations of part feeders

(which is also taken into account in the method described in

this paper) or optimisation of the configuration of a production

line. Among the developed methods for building schedules of

product flow through production lines, heuristics play a ma-

jor part, including those methods which are presented in this

work.

The overview of the used heuristic methods may be found

in [14]. A more recent article covering the review of task

scheduling methods, not only for production systems, is [15].

A clear majority from among over two hundred articles in

its bibliography refers to heuristic algorithms. The authors of

the paper briefly reviewed task scheduling in production par-

allel machines or processor working in parallel. On the basis

of the analyses of over 200 articles, many summaries were

developed. For example, it was proven that mathematical pro-

gramming is related to about 15% of the analysis methods.

The overview of the used task scheduling criteria proved a

major dominance of the scheduling length criterion (this cri-

terion was also taken into account in the algorithm developed

in this paper) over other criteria. A definite majority of the

methods took into account only one criterion. Multicriteria

methods constituted as little as 2% of all those taken into

account.

Many developed algorithms which give very good results

for the applied criteria are developed for a very limited, small

number of machines (as with, for example, [16]) or a num-

ber of stages in flow systems. Examples of such algorithms

for a two-stage system is provided in [17] (where an opti-

mum solution is found), and heuristics described in [18] (in

the first stage here only one machine may be located), where-

as heuristics for three-stage systems are included in, among

others, in [19]. The papers [17–19], just like in case of the

algorithm described in the following sections of this paper,

minimize scheduling length. The algorithm presented in this

paper refers to multistage systems. However, in case of solving

tasks of relatively large scale (including a major number of

stages, machines and products, for which tasks are executed),

a problem arises as regards limited capacity of the employed

software of discrete optimisation packages. However, the cur-

rent development of computer technology and software will

allow solving tasks of ever increasing scale.

The algorithm presented here is also adjusted to func-

tioning of assembly systems as a special case of production

systems. The issues related to building assembly schedules are

described in, among others, [3]. For assembly systems, apart

from distribution of tasks among the machines, part feed-

ers are also distributed. Execution of many assembly tasks

requires setting up a corresponding part feeder near the as-

sembly station. A separate group of variables was taken into

account in the developed algorithm, used for distribution of

feeders, just like in [6] and [20]. With this, the algorithm is

also used for supporting assembly systems designing.

The detailed presentation of the developed algorithm is

included in the following sections of the paper. Section 2 is

dedicated to the description of the problem and the concept

of its solution with the two-level approach. Section 3 features

930 Bull. Pol. Ac.: Tech. 61(4) 2013



A relaxation heuristic for scheduling flowshops...

linear mathematical models used in relaxation heuristics de-

scribed in Sec. 4. The results of calculation experiments used

for verification of the developed mathematical models and the

heuristic algorithm are given in Sec. 5.

2. The description of the problem

and the concept of its solution

This section features the description of the problem as well

as the hierarchical method idea used for solution of this prob-

lem. The description of the system configuration is presented

here for which the method has been built. An example of such

a configuration is given in Fig. 1. The markings used in the

description of the problem correspond with the summary of

all the used markings given in Table 1.

The method used for distribution of tasks in time and

space was developed for multistage flow systems. Let V =
{1, . . ., ϑ} be the given set of stages. Every stage constitutes

a set of machines working in parallel. It includes identical

parallel machines, that is machines which perform the same

functions. It means that all the machines within the given

stage v ∈ V are capable of execution of the same types of

tasks and work at the same speeds. Each of the machines

i ∈ I belongs exactly to one stage. The allocation of the ma-

chines to the stages is known from the set D, which is a set

of arranged pairs (i, v), where the machine i belongs to the

stage v. With these machines, tasks of the type j ∈ J shall

be conducted which are assigned to the products k ∈ K . Ob-

viously, for each product k ∈ K not all types of tasks have

to be performed. The set Jk ⊂ K includes the list of types

of tasks executed for the product k ∈ K . Execution of the

tasks for individual products k ∈ K requires also taking into

account sequencing limitations saved in the set Rk. Execution

of some tasks requires using auxiliary equipment, for exam-

ple part feeders. Assembly systems in which part feeders are

used are a good example. Many assembly tasks consist in

adding parts or sets of parts (sub-assemblies) to the parts al-

ready installed. In this case, execution of the assembly task

with a specific machine requires assigning to this machine

a corresponding feeder from which the part to be added is

collected. Execution of the first task, according to the given

assembly sequence, which consists in fixing a base element

in the grip, also requires a feeder from which the base part

is collected. Examples of process tasks which do not require

using part feeders are: welding, pressure welding, soldering,

turning and cutting. Placing a specific feeder in the stage re-

quires a pre-defined work space to be occupied. It means

taking limited space in this stage, which is allocated for set-

ting auxiliary equipment, each of which may take different

space dimensions. Distribution of tasks which require the use

of part feeders requires limited working space to be taken into

account. For this purpose, the set Jc ⊂ J has been defined

which reflects the list of tasks which require the use of part

feeders.

Fig. 1. Diagram of multistage system with intermediate buffers

Table 1

Specification of indexes, input parameters and variables

Indexes: k – product; K ∈ K = {1, . . ., W}

i – machine; i ∈ I = {1, . . ., M} l – time interval; l ∈ L∗ = {1, . . ., H∗}

j – task (type of task); j ∈ J = {1, . . ., N} v – stage; v ∈ V = {1, . . ., ϑ}

Input parameters:

avj – working space of machine in stage v required for execution of task j;

bv – total working space of the machine placed in stage v;

dv – capacity of buffer located before stage v;

gvk – transport time for product k from the stage in which tasks has been completed to stage v;

mv – number of machines in stage v;

pjk – processing time for task j of product k;

ηil = 1, if machine i is accessible in time interval l, otherwise ηil = 0;

D – the set of arranged pairs (i, v), such that the machine i belongs to stage v;

Jk – the set of tasks required for product k, Jk ⊂ J ;

Jc – the set of tasks which require using the feeder for the parts, Jc ⊂ J ;

Rk – the set of pairs of tasks (j, r) for product k, such that task j is executed immediately before task r, j ∈ Jk, r ∈ Jk;

Vj – the set of stages in which the machines are capable of execution of task j;

Variables:

xvj = 1, if type of task j is assigned to stage v ∈ Vj , otherwise xvj = 0 (for the level I);

zvjk = 1, if product k is assigned to stage v to perform task j otherwise zvjk = 0 (for the level I);

qikl = 1, if product k is assigned to machine i in time interval l, otherwise qikl = 0 (for the level II);

yvkl = 1, if product k in time interval l is assigned to intermediate buffer located before stage v, otherwise yvkl = 0 (for the level II);

Bull. Pol. Ac.: Tech. 61(4) 2013 931



M. Magiera

The method has been developed for an unidirectional flow

system. Passing through the given stage, the product only

loads one machine from among those working in parallel.

Thus, there is no necessity to move the product between par-

allel machines which belong to the same stage. Some stages

may be omitted.

As Fig. 1. shows, intermediate buffers of limited capacity

are located between the stages. If the next task for the product

k cannot be executed due to loading of all the machines in

the stage in which the task is to be executed, the product will

stay in the buffer and wait. It is placed in the buffer preceding

the stage in which the next task is to be executed.

For the described flow system, the operation scheduling

task may be presented as follows:

For the given configuration of an unidirectional flow sys-

tem, with the data which describe the stock of machines and

the parameters related to the products which flow through

the system at the same time (given in Table 1), the schedule

of product flow of the lowest possible length has to be de-

veloped. Thus, the problem of optimization has to be solved

which takes into account the time criterion in the form of the

schedule length.

In distribution of tasks in space (assignment to machines)

and in time (defining periods of machine loading with the

assigned tasks), two types of production routes have to be

considered:

• fixed routes: production routes in which each type of tasks

(and, if necessary, the corresponding part feeder) is allo-

cated to the machines of the same stage;

• alternative routes: production routes in which each type

of tasks (and, if necessary, the corresponding part feeder)

is allocated to at least one machine. The machines which

were assigned this type of tasks may thus belong to differ-

ent stages.

Solution of the problem thus requires not only distribu-

tion of the tasks among the machines but also allocation of

the feeders.

In order to visualise the difference between fixed and al-

ternative production routes, the following example may be

used: for the given set of products K = {A, B}, the tasks

have been assigned: JA = {1, 2, 3}, JB = {1, 3, 4}. Thus,

there are 4 types of tasks. However, 5 tasks have to be exe-

cuted, because a type 1 task will be executed twice: once for

the product A and once for the product B. The set of stages

is given: V = {v1, v2}, where every stage includes one ma-

chine. In case of fixed production routes, a type 1 task will

be assigned to the stage v1 or to the stage v2 (to at least one

machine assigned to the stage). It means that the type 1 task

will be executed for both products in the stages v1 or v2. As

compared with alternative routes, apart from allocation of the

type of tasks to one stage, allocation of this type of tasks to

both stages is also allowed. Then, type 1 tasks for individual

products may be assigned to different stages. If, for exam-

ple, a type 1 task consists in execution of a specific welded

connection, welding machines may be located in 2 stages and

both products will be welded at the same time. Each task is

indivisible in time and in space, thus it is executed in one

machine.

Taking into consideration alternative production routes is

mostly related to the necessity of incurring relatively larg-

er costs due to the use of auxiliary equipment, as compared

with fixed routes. However, this type of routes helps build

schedules of relatively shorter length.

The developed heuristic algorithm used to solve the

described problem is based on the hierarchical approach.

A block diagram of the developed two-level method is present-

ed in Fig. 2. At the top level, tasks (operations) are assigned

to stages in such a way as to balance their loads. At the bot-

tom level, tasks are separated in time and space – assigned

to machines belonging to the stages to which the respective

tasks were assigned at the top level.

Fig. 2. Block diagram of the two-level method

Attention should be paid to the fact that at the level I the

problem of balancing stage workload is solved, and not bal-

ancing machine workload. Thus, at the level II there are more

possibilities of distribution of tasks, and they are assigned to

the machines of the stage selected at the level I. The examples

of the tasks of balancing machine workload may be found in:

[3, 9, 20].

Tasks solved at the individual levels have been expressed

in the form of mathematical relationships. They use symbols

contained in Table 1.

A production schedule with the shortest possible

makespan is sought. The makespan has been divided into

unitary time intervals l, where l ∈ L∗ = {1, . . ., H∗}. Taking

into consideration too high a number of the time intervals

may result in a major increase in the size of the problem,

which may result in a relatively long calculation time or lack

of the possibility of finding any solution to the problem due

to limited possibilities of the discrete optimization packets.

A low value of the time intervals may result in the inability

to solve the problem when machines should be loaded for a

longer time. In order to avoid these unfavourable cases, the

built procedure for determination of the number of the time

intervals H (H ≤ H∗), taken into account in the prepared

mathematical models. The number of the analysed time in-

tervals H has been verified in the calculation experiments

described in Sec. 5.

The number of those time intervals H is determined ac-

cording to the following procedure:

1. Following (1), determine δk – total processing time for

product k.

δk =
∑

j∈Jk

pjk; k ∈ K (1)

932 Bull. Pol. Ac.: Tech. 61(4) 2013



A relaxation heuristic for scheduling flowshops...

2. On the basis of the relationship (2) determine the average

time of machine loading (without transport times), rounded

off to the nearest integral number.

δ̄ = round




∑
k∈K

δkmin

M


 (2)

3. For each machine i estimate its minimum loading ωi, which

takes into consideration the limited availability of the ma-

chines. For this purpose, assume i := 1 and execute the

following:

(a) Assume ωi := 1 and go to Step 3b.

(b) If the condition (3) is met for machine i, go to Step

3d, otherwise go to Step 3e.

ωi∑

τ=1

ηiτ = δ (3)

(c) If ωi < H∗ (H∗ – the number of time intervals) as-

sume ωi := ωi+1 and return to Step 3b. If ωi = H∗

and the condition (3) is not met, increase the value

H∗ in order to allow the executing of all the assem-

bly tasks or increase the availability of the machine

in the following periods.

(d) If i < M (M – the number of the machines), go back

to Step 3a; otherwise go to Step 4, which will take in-

to account the determined values ωi for i = 1, . . ., M
constitute the estimate of the minimum loading for

individual machines.

4. Estimate, according to (4), the value of loading for the most

loaded machine.

CLB
max = max

i∈I
ωi (4)

5. The number of the analysed time intervals H , where

H ≤ H∗, meets the condition (5):

H = round
(
1.2 · CLB

max

)
(5)

L = {1, . . ., H} – the set of time intervals, regarded in the

algorithm, L ⊂ L∗.

3. The linear mathematical models

The three linear mathematical models are presented in this

section. The mixed integer programming is used in the ap-

proach. The M1a and M1b models have been built for the

level I of the method. They are used for load balancing of

stages and distribution of tasks between stages. The M2 mod-

el for dedicated is for the level II. Tasks assigned to the stages

(at the level I) are distributed among the machines. This mod-

el is dedicated for construction of schedules of product flow

through production lines.

Models. M1a (for fixed routes) and M1b (for alternative

routes). Balancing stage workloads.

Minimize:

Pmax (6)

subject to:
∑

j∈J

∑

k∈K

pjk
mv

zvjk +
∑

l∈L, l≤λ

∑

i∈I,(i,v)∈D

(1 − ηil) ≤ Pmax;

v ∈ V
(7)∑

v∈V

zvjk = 1; j ∈ Jk; k ∈ K (8)

∑

ε∈V :ε≥v

xεr ≥ xvj ; k ∈ K; (j, r) ∈ Rk; v ∈ V

for the M1a model only

(9a)

∑

v∈V :v≤ε

xvj ≥ xεr; k ∈ K; (j, r) ∈ Rk; ε ∈ V

for the M1a model only

(9b)

∑

ε∈V :ε≥v

zεrk ≥ zvjk; k ∈ K; (j, r) ∈ Rk; v ∈ V

for the M1b model only

(9c)

∑

v∈V :v≤ε

zvjk ≥ zεrk; k ∈ K; (j, r) ∈ Rk; ε ∈ V

for the M1b model only

(9d)

zvjk ≤ xvj ; v ∈ V ; j ∈ Jk; k ∈ K (10)
∑

v∈Vj

xvj = 1; j ∈ J

for the M1a model only

(11a)

∑

v∈Vj

xvj ≥ 1; j ∈ J

for the M1b model only

(11b)

∑

j∈Jc

avjxvj ≤ bvmv; v ∈ V (12)

xvj = 0; j ∈ J ; v /∈ Vj (13)

xvj , zvjk ∈ {0, 1} ; j ∈ J, k ∈ K, v ∈ V. (14)

In the linear mathematical M1 model presented above, the

load of the most loaded stage (6), determined according to (7),

is minimized. The second component of the inequality (7) al-

lows for a limited availability of machines in the makespan

estimated according to (4). The remaining constraints guar-

antee: (8) – allocation of all tasks among the stages; (9) –

maintenance of sequence limitations and unidirectional flow,

where the constraints (9.a) and (9.b) refer to fixed production

routes, and (9.b) and (9.c) to alternative routes: each type of

the tasks which is executed as the next one is allocated to

the same stage in which the previous task was executed or to

a stage of a higher number; (10) – allocation of products to

stages to which relevant tasks were allocated; (11.a) – alloca-

tion of each type of tasks to one stage only – constructed for

the M1a model; (11.b) – allocation of each type of tasks to

at least one stage – for the M1b model; (12) – maintenance

of the limited machine working space; (13) – elimination of

assignment of tasks to inappropriate stages; (14) – binary of

decision-making variables.

Bull. Pol. Ac.: Tech. 61(4) 2013 933



M. Magiera

The constraints (9), ensuring such allocation of the tasks

to the stages which ensure maintaining of the given order

limitations have been separately formulated for fixed routes

(9.a and 9.b) and for alternative routes (9.c) and (9.d). The

relationships (9.c) and (9.d) are also true in case of fixed

routes. However, it is not necessary to use them in case of

fixed routes, for which the given type of tasks is assigned

only to one stage. Through this stage, all the products flow

to which this type of tasks is assigned. Thus, while building

the discussed constraints related to fixed routes, taking into

account the xvj variable will be sufficient. In case of alter-

native routes, it is not sufficient, thus the zvjk variable has

been taken into account, because the product k, for which the

task j is executed, flows through one of the stages to which

this type of tasks is assigned, and thus stage is marked with

index v.

The solution of the problem formulated for M1 is the

input for the task scheduling problem. The equality (15) de-

scribes the new parameter tvk – production time for tasks of

the product k for the stage v.

tvk =
∑

j∈Jk

pjkzvjk; k ∈ K; v ∈ V . (15)

Model M2 constructed for task scheduling (for the level II):

Minimize: ∑

i∈I

∑

k∈K

∑

l∈L

l qikl (16)

subject to:
∑

i∈I, (i,v)∈D

∑

l∈L

qikl = tvk; v ∈ V ; k ∈ K
(17)

∑

k∈K

qikl ≤ ηil; i ∈ I; l ∈ L (18)

qikl + qτkf ≤ 1; k ∈ K;

(τ, v) , (i, v) ∈ D; i 6= τ ; l, f ∈ L
(19)

lqikl − fqikf ≤ tvk − 1 + α (1 − qikf ) ; (i, v) ∈ D;

l, f ∈ L ; l > f ; k ∈ K
(20)

∑
i∈I, (i,v)∈D

∑
l∈L

lqikl

tvk
−

∑
τ∈I ,(τ,ε)∈D

∑
l∈L

lqτkl

tεk

−
tvk + tεk

2
≥ gvk;

k ∈ K; ε, v ∈ V ; ε < v; tεk, tvk > 0;

(21)

∑
i∈I, (i,v)∈D

∑
l∈L

lqikl

tvk
−

∑
τ∈I ,(τ,ε)∈D

∑
l∈L

lqτkl

tεk

−
tvk + tεk

2
− gvk =

∑

l∈L

yvkl;

k ∈ K; v ∈ V − {1} ; ε ∈ V ;

tεk, tvk > 0; ε < v;
v∑

ψ=ε

tψk = tvk + tεk

(22)

lyvkl ≥

∑
f∈L

∑
τ∈I, (τ,ε)∈D

fqτkf

tεk

+
tεk + 1

2
+ gvk − α (1 − yvkl)

k ∈ K; l ∈ L; v ∈ V − {1} ;

ε ∈ V ; tεk, tvk > 0; ε < v;

(23)

∑
f∈L

∑
i∈I, (i,v)∈D

fqikf

tvk
−

tvk − 1

2
− lyvkl ≥ 1;

k ∈ K; l ∈ L; v ∈ V − {1} ; tvk > 0

(24)

∑

k∈K, tvk>0

yvkl ≤ dv; v ∈ V \ {1} ; l ∈ L (25)

qikl, yvkl ∈ {0, 1} ; i ∈ I; k ∈ K; l ∈ L; v ∈ V. (26)

Parameter α, used in the notation of certain constraints of

the presented models, is any integer which fulfils the follow-

ing inequality: α > H . The minimized sum (16) guarantees

formation of shortest possible schedules. It also guarantees

obtaining relatively short times of completing tasks for indi-

vidual products. Further mathematical relationships guaran-

tee: (17) – division of all tasks between machines; (18) –

loading a machine during its availability in a given moment

with a maximum of one task; (19) – product flow through a

maximum of one machine in a given stage.

Another constraint (20) ensures integrity of the tasks in

time and space: each task for the given product is executed

in one machine on the continuous basis, that is it cannot be

interrupted. It is assigned to the consecutive time intervals

whose number is equal to tvk: the time of loading the stage

v by the product k. The task is assigned to one of the ma-

chines assigned to the stage v. If the tasks are executed for

the product k assigned to the machine i ((i, v) ∈ D) and

it begins in the time interval f , and ends in the time inter-

val l, then qikl = qikf = 1, and also qikr = 1 for r ∈ L,

where: f < r < l. Then, the relationship is maintained:

lq ikl − fqikf ≤ tvk – 1, presented in the constraint (20).

The component α(1 − qikf ) included in the constraint (20)

makes it condition to be met also when the product k is as-

signed to another machine, then qikf = 0, and the right side

of the inequality takes a significant value.

In the constraints (21)–(24) the times have been taken in-

to account for the beginning svk and the ending cvk of the

execution of the tasks in the machine for the product k in the

stage v. They may be defined as follows:

svk =

∑
i∈I:(i,v)∈D

∑
l∈L

lqikl

tvk
−

tvk
2

+
1

2
;

cvk =

∑
i∈I:(i,v)∈D

∑
l∈L

lqikl

tvk
+

tvk
2

−
1

2
;

v ∈ V ; k ∈ K; tvk > 0.

The constraint (21) ensures maintaining the order of execu-

tion of the tasks in an unidirectional flow system. The prod-

uct flowing through the production system brings load on the

934 Bull. Pol. Ac.: Tech. 61(4) 2013



A relaxation heuristic for scheduling flowshops...

machines placed in the stages with increasing values of stage

indexes v. Let the product k brings load first in the stage ε,

and then in the stage v (ε < v). The relationship is important

here between svk, the time of beginning the execution of the

task for the product k in the stage v and cεk, the time of

ending the execution of the task in the stage ε. The transport

time between the stages has to be taken into account in the

developed relationships, marked gvk.

The developed relationship comes in the form: svk−cεk ≥
1 + gvk for k ∈ K , ε, v ∈ V , where ε < v (an unidirectional

flow).

After entering the defined times for the beginning and the

ending of the execution of the tasks, this relationship takes

the form:

∑
i∈I:(i,v)∈D

∑
l∈L

lqikl

tvk
−

tvk
2

+
1

2

−




∑
τ∈I:(τ,ε)∈D

∑
l∈L

lqτkl

tεk
+

tεk
2

−
1

2


 ≥ 1 + gvk;

k ∈ K; ε, v ∈ V ; ε < v; tεk, tvk > 0

and after reduction of similar phrases, the constraint re-

sults (21).

Another group of constraints (22)–(25) is related to using

intermediate buffers. If the analysed constraint (21) is met

in the form of the equality, that is if: svk − cεk = 1 + gvk
for k ∈ K , ε, v ∈ V , where ε < v, then the tasks for the

product k in the stage v are executed directly after the end

of the tasks in the stage ε, and the break between the tasks

is dedicated only for the transport of the product. However, if

the constraint (21) is not met as the equation, then a certain

sum may be added to the right side of the inequality, so as to

obtain equality. This added sum represents a number of time

intervals in which the buffer set before the stage v is load-

ed by the product k, awaiting the execution of the following

tasks. In this way, based on the modification of the condition

(21), the constraint (22) has been built. It is used solely for

the determination of the number of time intervals in which

the product k is waiting in the buffer before the stage v for

the execution of further tasks. The constraints (23) and (24)

make it certain that the buffers were loaded in the proper time

intervals. The condition (23) guarantees that the product loads

the buffer directly after the completion of the previous task

and after transporting it to the buffer before the stage in which

the next task is to be executed. For this reason, the right side

of the inequality (23) takes into account the time of comple-

tion of the previous task and the transport time. At the same

time, the condition (24) must be met, ensuring placement of

the product in the buffer directly before the execution of the

following task. Limited capacity of the intermediate buffers is

not exceeded owing to the constraint (25). The last constraint

of the model M2 (26) ensures binarity of decision variables.

4. The relaxation heuristic

The following is two-level heuristic of production scheduling

for flowshop systems with intermediate buffers:

• Level I (stage load balancing)

Step 1. Assume iteration number e := 1 and solve the

problem (6)–(13) – constructed for the M1 model (without

constraint (14)) – it’s the linear relaxation of M1. Let the

used linear relaxation be marked: LP(M1a) for fixed produc-

tion routes, LP(M1b) for alternative production routes. Deter-

mine heuristic solutions:

x̃evj := xvj ; v ∈ V ; j ∈ J – assignments types of tasks

to stages;

z̃evjk := zvjk; v ∈ V ; j ∈ J ; k ∈ K – assignments tasks

for products to stages.

Go to step 2.

Step 2.

a) Assume: e := e + 1. Determine allocations of tasks and

products to stages in accordance with (27).

x̃evj = round
(
x̃e−1
vj

)
, zevjk = round

(
ze−1
vjk

)
;

j ∈ J ; k ∈ K; v ∈ V.
(27)

If the routes are alternative then go to step 2c. If the routes

are fixed and if constraint (28) is fulfilled, go to step 2c,

otherwise, go to step 2b.
∑

v∈Vj

x̃evj = 1; j ∈ J (28)

b) Assume: e := e + 1. For the each of j types of tasks

which do not fulfil constraint (28) select only one stage v∗
in accordance with lexicographical order: 1 – stage of the

largest value x̃e−1
vj (j ∈ J), 2 – stage of the smallest index

v. Assume x̃ev∗j = 1 for j type of task, go to step 2c.

c) If constraint (12) for xvj := x̃evj (j ∈ J) is fulfilled

for each stage v, go to step 3; otherwise, for each stage

which did not fulfil condition (12) determine coefficients

of additional cut-off constraints. Those coefficients: Cv =
{j : ξvj = 1} ⊂ J meet condition (29) [6]. Return to step

1 and solve the task formulated there complemented with

additional constraints (30), developed for stages v which

did not meet constraint (12).
∑

j∈J

avjξj ≥ bv + 1 ∧
∑

j∈J

(
1 − xevj

)
ξvj < 1;

ξvj ∈ {0, 1}

(29)

∑

j∈Cv

xvj ≤ Cv − 1; v ∈ V (30)

Step 3. Check whether all the tasks assigned to the prod-

ucts have been assigned to the stages: reviewing the alloca-

tions according to the increasing indexes. If any task for the

product k has not been assigned, it should be assigned to the

stage with the least load, to which the possibility of execution

of the task of this type has been assigned, and this allocation

will not prevent maintaining of order limitations.

Bull. Pol. Ac.: Tech. 61(4) 2013 935



M. Magiera

Following (31), determine the total time of performing a

task for product k in stage v, and go to step 4.

tvk =
∑

j∈Jk

pjk z̃
e
vjk; v ∈ V ; k ∈ K (31)

• Level II (distributing tasks in time and space) [21]:

Step 4. Solve the problem contained in mathematical mod-

el (16)–(25). It’s the linear relaxation of M2 without constraint

(26) about binary decision variables. Determine heuristic so-

lutions:

q̃eikl := qikl; i ∈ I; k ∈ K; l ∈ L – assignments

products to machines in time intervals;

ỹevkl := yvkl; v ∈ V ; k ∈ K; l ∈ L – assignments

products to machines in time intervals.

Assume: e := e + 1. Using (32) and (33), determine ini-

tial solution: seik , ceik – times of beginning and ending of task

performance for the product k on the machine i.

q̃eikl = round
(
q̃e−1
ikl

)
; i ∈ I, k ∈ K, l ∈ L (32)

seik = min
l∈L

(lq̃eikl)

for q̃eikl = 1, ceik = seik + pjk − 1; i ∈ I; k ∈ K.
(33)

Having determined machine loads in accordance with (34),

go to step 5.

q̃eikl =

{
1, if seik ≥ l ≤ ceik
0, otherwise

; i ∈ I; k ∈ K; l ∈ L.

(34)

Step 5.

a) In order to verify separation of task performance, assume

i := 0 and go to step 5b.

b) Assume i := i + 1 and l := 0, and go to step 5c.

c) Let l := l + 1. If constraint (18) is fulfilled, go to step 6,

if not – go to step 5d.

1. From among products which do not fulfil constraint (18)

for qikl = q̃eikl (k ∈ K), select only one product k∗ in ac-

cordance with lexicographical order: 1 – product which

did not fulfil those constraints in the previous iteration and

thus was not selected, 2 – product of the smallest non-zero

value seik, 3 – product of the smallest index k.

Assume e := e+1. Let ĵ mean an task performed in time

interval l on machine i with respect to product k∗. Apply-

ing constraint (35), determine the number of time intervals

β during which product k∗ requires machine load i(during a

period from l until machine load i by that product ends) and

elements of set K̃. Having modified the schedule in accor-

dance with (36) and updated times seτk, ceτk (τ ∈ I, k ∈ K)
in accordance with (33), go to step 6.

β = ce−1
ik∗ − l + 1; K̃ : K̃

=
{
k ∈ K\ {k∗} : q̃e−1

ikr = 1 r ∈ 〈l, l + β − 1〉; k ∈ K
}

,
(35)

q̃eτkr=





q̃e−1
τkr

for
(
(τ ∈ I\ {i} , k ∈ K) ∨

(
τ = i, k ∈ K\K̃

))

q̃e−1
τkf for τ = i, k ∈ K̃,

where: r ≥ l + β, f = r − β

;

r ∈ L.
(36)

Step 6. In order to verify the order of task performance,

check whether seik = l for product k which loads machine i
in time interval l. If not – proceed to step 7, if yes – check

whether constraint (37) occurs. If that constraint is fulfilled,

go to step 7; otherwise, assume e := e+1 and determine β –

minimum number of time intervals by which seik needs to be

increased in order to fulfil the relationship in question. Mark

the analyzed product k and having modified the schedule in

accordance with (38) and updated the times of task start and

end on the basis of (37), go to step 7.

seik − ceτk ≥ 1 + gvk for (i, v) , (τ, ε) ∈ D,

when

v∑

ψ=ε

tψk = tvk + tεk,
(37)

qeτkr=






qe−1
τkr

for
(
(τ ∈ I\ {i} , k ∈ K) ∨

(
τ = i, k ∈ K\K̃

))

qe−1
τkf forτ = i, k = k,

when: r ≥ l + β, f = r − β

;

r ∈ L.
(38)

Step 7. Halt condition for the previous phases of sched-

ule modification is checked here. If l < max
τ∈I, k∈K

ceτk, go to

step 5c, if not – check relationship: i < m. If the relation is

fulfilled, go to step 5b; otherwise, go to step 8.

Step 8. Availability of buffers and machines is verified

here. For that purpose, the loads of each machines and buffers

in subsequent time intervals are reanalyzed. The following are

checked in succession:

a) availability of a buffer in time interval l, which is located

before stage v – relationship (25) is checked;

b) availability of machine i in time interval l – on the basis

on the value of parameter ηil.

For each of the above points the value of parameter β is

determined, by which such schedule modification (operation

“shift”) should be made which would ensure non-disturbance

of the limited buffer capacities (point a) or availability of

a machine for loading by a given product, beginning from

time interval l (point b). Before each schedule modifica-

tion, e := e + 1 shall be assumed. Modification should be

made analogously to relationship (36), (38). After each mod-

ification, the start and end times of loading individual ma-

chines with given products should be updated in accordance

with (33).

Verification of the last time interval for a machine with the

highest index shall end the algorithm. Start and end times of

936 Bull. Pol. Ac.: Tech. 61(4) 2013



A relaxation heuristic for scheduling flowshops...

loading individual machines with products should and sched-

ule length Ch
max are determined in accordance with relation-

ship (39).

shik = seik; chik = ceik for i ∈ I; k ∈ K; l ∈ L;

Ch
max = max

i∈I, k∈K
chik.

(39)

5. Calculation experiments

The presented two-level heuristic has been verified by means

of calculation experiments. This section describes one of the

experiments. The results of the other ones are presented in

the final part of the section.

The following example is used not only to show the func-

tioning of relaxation heuristics, but also to visualise the dif-

ferences between fixed and alternative production routes.

A 3-stage unidirectional flow system is given with

the configuration presented in Fig. 1 (Sec. 2). A set of

stages has thus the form of: V = {v1, v2, v3}. Machines

i ∈ I = {m1, m2, m3, m4, m5} are spaced in the stages.

Their belonging to the stages is known due to the set of

lines D, defined in Table 1. This set comes in the form:

D = {(m1, v1), (m2, v2), (m3, v2), (m4, v3), (m5, v3)}. The

assumption has been made that all the machines are avail-

able within the analysed time intervals. There are interme-

diate buffers between the stages, with identical capacities:

d2 = d3 = 3. Tasks have to be performed for 5 products

j ∈ K = {k1, k2, k3, k4, k5}. Tasks of the type j ∈ J =
{o1, o2, o3, o4, o5, o6} are assigned to the products. The as-

signment of the tasks to specific products and the sequences

for the execution of these tasks (limitations of order) are

known due to the following graphs:

for product k1: L → o3 → o4 → o1 → o2 → o6 → U
for product k2: L → o4 → o5 → o1 → o2 → o6 → U
for product k3: L → o3 → o1 → o2 → U
for product k4: L → o3 → o4 → o1 → o5 → o2 → U
for product k5: L → o5 → o1 → o6 → o2 → U ,

where L/U denotes loading/unloading operations.

The times for the execution of individual tasks j for the

given products k are entered in the matrix form:

[pjk] =




2 2 3 3 4

3 3 2 2 2

1 0 2 2 0

1 2 0 2 0

0 3 0 3 4

3 3 0 0 2




.

Different times for the execution of the tasks of the same type

for different products result from the fact that the times are

added here which are related to the preparation of the product

for the execution of the task, e.g. the time necessary for the

orientation of the product. pjk = 0 means that no j type tasks

are executed for the product k.

The execution of the tasks of each type requires assign-

ment of the relevant part feeder (J = Jc). The parameters

which describe the feeders and the available working space

for the individual stages are as follows (pursuant to the mark-

ings presented in Table 1):

[avj ] =




1 2 1 2 1 1

1 2 1 2 1 1

1 2 1 2 1 1


 , [bv] =




10

8

8


 .

The technical possibilities of the individual machines assigned

to the given stages are known from the sets of the stages Vj ,
to which the machines capable of the execution of the j type

tasks belong: Vo1 = {v2, v3}; Vo2 = {v2, v3};Vo3 = {v1, v2};

Vo4 = {v1, v2, v3}; Vo5 = {v1, v2, v3}; Vo6 = {v2, v3}.

The adopted markings for the stages: v1 . . . v3, of the ma-

chines: m1, . . . , m5 are used to ensure legibility of the de-

scription of the task at hand. In the files of the data prepared

for discrete optimisation packages, the machines, stages or

time intervals are to be marked with consecutive natural num-

bers. This is due to the necessity of multiplying the variables

by the indexes in some constraints, e.g. (9), (20)–(24).

For these data, relaxation heuristics has to be used for both

types of production routes. The obtained solutions have to be

compared with the results received based on the use of the

presented linear mathematical models M1a, M1b and M2.

In order to solve the task, the linear mathematical de-

pendencies have been encoded in the AMPL mathematical

programming language [22]. The GNU Linear Programming

Kit (GLPK) software has been used for the calculations.

• Level I:

The workload balancing for the machines allocated to the

particular stages has been solved here. On the basis of the

relationship (5) and the data, the number of the time intervals

taken into account has been determined, which is H = 13 for

fixed production routes, and H = 14 for alternative routes.

The calculations for the level I heuristic method did not re-

quire increasing the number of the analysed time intervals.

The results of the linear relaxation in the M1a model (for

fixed routes) are given in Table 2. Table 3 presents the results

of the linear relaxation for the M1b model. This table gives

the values of the variables which determine the layout of the

feeder and of the variables used for assigning individual tasks

for the products flowing through the system. For fixed pro-

duction routes, an identical solution has been received as in

the case of the solution of the problem formulated in the M1a

model with binary decision variables. The allocation of the

products to the machines is consistent with the layout of the

part feeders: the allocation of the tasks types to the machines.

Each task type has been assigned precisely to one stage. Ta-

ble 3, on alternative routes, compares the solution determined

with heuristics with the results obtained from using the M1b

model with binary variables. The use of the M1b model has

enabled such a solution in which the differences between the

loads in the individual machines are smaller than in case of

application of linear relaxation of this LP(M1a) model. At-

tention should be paid to the fact that the stage v1 includes

only one machine, because its load is smaller than the loads

in the other stages.

Bull. Pol. Ac.: Tech. 61(4) 2013 937



M. Magiera

Table 2

Comparison of the solutions – the level I – for the fixed routes

Using LP(M1a) – the linear relaxation of the M1a Using the M1a model

Stage Task assignments round (exvj) Task assignments Workload

Stage v1

o3

o4

x13 = 1
x14 = 1

o3

o4

10

(1 machine)

Stage v2

o1

o5

x21 = 0.92 ≈ 1
x25 = 0.92 ≈ 1

o1

o5

24

(2 machines)

Stage v3

o2

o6

x32 = 1
x36 = 1

o2

o6

20

(2 machines)

Table 3

Comparison of the solutions – the level I – for the alternative routes

Using LP(M1a) – the linear relaxation of the M1b model Using the M1b model

Stage
Task

assignments
round (exvj)

Product

assignments
round

�ezvjk

�
Workload

Task

assignments

Product

assignments
Workload

Stage v1

o3

o4

x13 = 1
x14 = 0.88 ≈ 1

o3: k1, k3, k4

o4: k1, k2, k4

z131 = z133 = z134= 1

z141 = z142 = z144 = 0.881
10

o3

o4

o5

o3: k3

o4: k2

o5: k2, k5

11

Stage v2

o1

o2

o5

o6

x21 = 0.88 ≈ 1
x22 = 0.88 ≈ 1
x25 = 0.88 ≈ 1
x26 = 0.88 ≈ 1

o1: k2, k4, k5

o2: k2, k4

o5: k2, k4, k5

o6: k5

z212 = z214 = z215 = 0.88 ≈ 1
z222 = z224 = 0.88 ≈ 1
z254 = z255 = 0.88 ≈ 1,

z252 = 0.42∗

z265 = 0.88 ≈ 1

26

o1

o2

o3

o4

o5

o6

o1: k1, k2, k4, k5

o2: k4

o3: k1, k4

o4: k1, k4

o5: k4

22

Stage v3

o1

o2

o6

x31 = 1
x32 = 1
x36 = 1

o1: k1, k3

o2: k1, k3, k5

o6: k1, k2

z311 = z313 = 1
z321 = z323 = z325 = 1

z361 = z362 = 1
18

o1

o2

o5

o6

o1: k3

o2: k1, k2, k3, k5

o6: k1, k2, k5

21

∗ In case of the variables which specify the allocation of the task o5 for the product k2, all the resulting values of the variable zvjk were lower than 0.5

and their values amounted to: z152 = 0.46, z252 = 0.42, z352 = 0.12. The task o5 for the product k2 is the only task which was not assigned to any

stage on the basis of the rule of approximations. On the basis of the verification of allocation of products to the stages, described in step 3 of the heuristics,

this task has been assigned to the stage v2, the only stage which was assigned the possibility of execution of the o5 type tasks (x25 = 0.88).

The comparison of the solutions determined with heuris-

tic, after the application of linear relaxation M1a and M1b,

shows that balancing machine workload in case of fixed pro-

duction routes is more difficult than when the given type of the

task may be assigned to different stages, as given in Table 3.

This verification covered also the constraint (12), which

verifies working space of the machines placed in the individ-

ual stages. It has been met, thus there is no need to enter

additional cutting off constraints and the problem assigned to

the level II method may be solved.

• Level II:

The level II of the method employs the results of the task

solved at the level I, given in Table 2 and in Table 3. On the

basis of these results and the given times pjk (processing time

for the task j of the product k), the times may be determined

for the loads in the individual stages by the products flowing

through the system. The parameter tvk is used for this pur-

pose, determined on the basis of Eq. (15). Table 4 constitutes

the summary of the results obtained at the level I. It is used

for verification and not only for allocation of the tasks to the

individual products, but also for the determination of load

times in the individual stages by the products. These times,

marked tvk , are summarised in the bottom part of the table,

for both types of production routes. Table 4 includes the in-

formation that tasks for the given product executed within the

given stage are not separated with the tasks assigned to other

products. Thus, the stage load times may be summed up by

different tasks assigned to the same product. In Table 4, in

the parentheses, the summed times pjk are given. At the level

II of the method, each set of these different tasks, assigned to

the same product, is regarded as a one separate task.

The data given in Table 4 include also the parameters

gvk: the times for transporting the product k from the stage in

which the previous task was completed to the stage v. gvk = 0
means that there is no transport of the product to the stage v
from the machines assigned to the other stages.

The received schedules of product flow through the sys-

tem are given in Fig. 3. Figure 3a presents the schedule for

fixed production routes built with heuristic. The same length

of scheduling Cmax = 21 as in the case of the successive use

of the models M1a and M2 has been determined with binary

decision variables. All the conditions verified in the steps 4–8

have been met, thus the schedule did not have to be modified.

The time of the calculations, obtained with a INTEL T1300

1.66 MHz processor computer, was: 2s with heuristics, and

2066s in case using mathematical models: M1a, M2. The cal-

culations for the level II take much more time than in case of

the time of solving the tasks formulated for the level I.

938 Bull. Pol. Ac.: Tech. 61(4) 2013



A relaxation heuristic for scheduling flowshops...

Table 4

Input data for the level II: the assignments of tasks for products to stages and the parameters: tvk , gvk

For the fixed routes For the alternative routes

Using M1a or LP(M1a) Using LP(M1b) – heuristic Using M1b (binary variables)

Stages k1 k2 k3 k4 k5 k1 k2 k3 k4 k5 k1 k2 k3 k4 k5

Stage v1

o3(1)
o4(1)

t11 = 2

o4(2)

t12 = 2

o3(2)

t13 = 2

o3(2)
o4(2)

t14 = 4

o3(1)
o4(1)

t11 = 2

o4(2)

t12 = 2

o3(2)

t13 = 2

o3(2)
o4(2)

t14 = 4

o4(2)
o5(3)

t12 = 5

o3(2)

t13 = 2

o5(4)

t15 = 4

Stage v2

o1(2)

t21 = 2

o1(2)
o5(3)

t22 = 5

o1(3)

t23 = 3

o1(3)
o5(3)

t24 = 6

o1(4)
o5(4)

t25 = 8

o1(2)
o2(3)
o5(3)

t22 = 8

o1(3)
o2(2)
o5(3)

t24 = 8

o1(4)
o5(4)
o6(2)

t25=10

o1(2)
o3(1)
o4(1)

t21 = 4

o1(2)

t22 = 2

o1(3)
o2(2)
o3(2)
o4(2)
o5(3)

t24=12

o1(4)

t25 = 4

Stage v3

o2(3)
o6(3)

t31 = 6

o2(3)
o6(3)

t32 = 6

o2(2)

t33 = 2

o2(2)

t34 = 2

o2(2)
o6(2)

t35 = 4

o1(2)
o2(3)
o6(3)

t21 = 8

o6(3)

t32 = 3

o1(3)
o2(2)

t33 = 5

o2(2)

t35 = 2

o2(3)
o6(3)

t31 = 6

o2(3)
o6(3)

t32 = 6

o1(3)
o2(2)

t33 = 5

o2(2)
o6(2)

t35 = 4

[tvk] =

264 2 2 2 4 0

2 5 3 6 8

6 6 2 2 4

375 [tvk] =

264 2 2 2 4 0

0 8 0 8 10

8 3 5 0 2

375 [tvk ] =

264 0 5 2 0 4

4 2 0 12 4

6 6 5 0 4

375
[gvk] =

264 0 0 0 0 0

1 1 1 1 0

1 1 1 1 1

375 [gvk] =

264 0 0 0 0 0

0 1 0 1 0

2 1 2 0 1

375 [gvk] =

264 0 0 0 0 0

0 1 0 0 1

1 1 2 0 1

375

Fig. 3. Schedules for the fixed routes (Figure a) and for the alternative

routes (Figure b and Figure c)

The allocation of products between the machines in the

individual stages, with the alternative production routes tak-

en into account, is visualised in Figs. 3b and 3c. Figure 3b

refers to the developed relaxation heuristic. The development

of the solution presented in Fig. 3b required modification of

the preliminary solution, the one developed in the step 4 of

the heuristic. In the primary solution, the allocation of the

product k4 to the machine m2 (stage v2) in the time intervals

1–18 has been determined. In the previous stage v1, the tasks

for this product end in the time interval 10. The value of the

parameter gvk, which defines the time for transport of this

product (k4) to the stage (v2), in which the following tasks

are executed, is 1. Thus the condition (37) has not been met,

for which there are: sik = 11 (the beginning time of the ex-

ecution of the task for the product k in the machine i) and

cτk = 10 (the ending time of the execution of the task for the

product k in the machine τ ) where the product k first loads

the machine τ , and then the machine i. Thus the condition:

sik − cτk ≥ gvk + 1 (condition (37)) has been maintained,

because the dependence: 11−10 ≥ 1+1 is not true. It would

be met, had the right side of the inequality been lower by 1.

It means that the allocations of the tasks to the machine m2,

beginning with the time interval 11, have to be “moved” by

β = 1 units – according to the dependency (38). In accor-

dance with the heuristic, the successive time intervals in the

next machines are verified. One more modification of the pre-

liminary solution had to be done in the discussed example.

The product k1 was assigned to the machine m5 (the stage v3)
in the time intervals 6–13. The previous tasks for the product

k1 have been assigned to the machine m1 (the stage v1) in

the time intervals 3 and 4. After completion of the tasks in

the time interval 4, however, taking into consideration 2 time

intervals (that is the time intervals 5 and 6) for transport of

the product between the stages is required. According to the

relationship (38) the schedule is modified (“moved” by β = 1
time interval), as a result of which the tasks for the product

k1 in the machine m5 are executed in the time intervals 7–14,

with the tasks for the product k5 afterwards (Fig. 3b).

Bull. Pol. Ac.: Tech. 61(4) 2013 939



M. Magiera

Figure 3c presents the obtained scheduling of the tasks

for alternative routes. The schedule given in it has been built

based on the models M1b and M2 (with binary variables). A

longer schedule (Cmax = 21) has been obtained as compared

with relaxation heuristics in which LP(M1b) and LP(M2) was

used. This less beneficial solution may be justified with the

fact that the solution was also obtained with the approxima-

tion method. The decomposition of the global problem into

two tasks solved in succession does not guarantee obtaining

an optimum solution, as it has been proven in the presented

example. The same length of the schedule was determined as

with fixed production routes. The advantage of the solution

comes in the fact that intermediate buffers are not used. To

achieve this, a larger number of the feeders should be used

than with fixed production routes. Reduction of buffer loads

may be also achieved with modification of the minimised ob-

jective function (16), taking into account buffer loads with

particular products in it. In this case, the objective function

takes the form (40):

Minimize:
∑

i∈I

∑

k∈K

∑

l∈L

lqikl +
∑

v∈V

∑

k∈K

∑

l∈L

yvkl. (40)

In the comparisons of the schedules presented for fixed

production routes (Fig. 3a) and alternative production routes

(Fig. 3b), determined based on the presented heuristic, one

has to take note of the fact that the difference between the

lengths of these schedules depends obviously on the data, es-

pecially on the sequences of task execution. For example, if

the task o6 for the product k1 was executed as the first one

(and not the last one), all the types of the tasks for fixed routes

would have been assigned to one stage (with two machines:

in this example). With such data, the schedule for alternative

routes would be considerably shorter from the solution for

fixed production routes.

The compliment to the solution presented in Fig. 3 comes

with Table 5, in which the assignments of the types of the

tasks to the machines are given, that is the layout of the feed-

ers. In the data presented at the beginning of the description

of the example, it has been stated that each type of tasks re-

quires a feeder. All the part feeders assigned to the machines

have been used. The markings of the products are given in

the parentheses to which these tasks have been assigned.

The other calculation experiments covered 4 groups of

tasks. For each one of the groups, 30 examples were solved.

Parameters of those groups and findings are presented in Ta-

ble 6. Ten problems were run for each set of parameters. The

findings include average values of two indexes, which were

determined for each test task. The indexes serve the purpose

of algorithm assessment, which is performed at two levels:

the quality of findings (makespan) and the amount of time

calculations require. The indexes, which are defined below,

enable comparison of the described heuristic conception of

schedule formation with the two-level method which gener-

ates an optimal solution at each level. At each level of that

method a linear programming task is solved (level I: model

M1a or M1b, level II: model M2). Index h has been ascribed

to he heuristic solution, and index O to the solution using

models: M1 (M1a or M1b) and M2.

The indexes are as follows:

w1 =
Ch

max − CO
max

CM
max

; w2 =
CO

max − CLB
max

CLB
max

;

w3 =
CH

max − CLB
max

CLB
max

; w4 =
CPUh

CPUO
,

where Ch
max, CO

max – makespans determined by means of

the following algorithms: heuristic (in accordance with rela-

tionship (39)), using linear mathematical models: M1 (M1a

or M1b) and M2; CPUh, CPUO computational times for

methods: heuristic, using models: M1 (M1a or M1b) and M2;

CLB
max – lower bound on makespan determined by relationship

(4).

Table 5

Assignments of the types of tasks and products to machines

The fixed routes The alternative routes

Stages Machines
Using the heuristics

with LP(M1a) and LP(M2)
or M1a and M2

Using the heuristics

with LP(M1b) and LP(M2)

Using M1b and M2

(binary variables)

Stage v1 m1

o3 (k1, k3, k4),
o4 (k1, k2, k4)

o3 (k1, k3, k4),
o4 (k1, k2, k4)

o3(k3),
o4 (k2),

o5 (k2, k5)

Stage v2 m2

o1(k1, k2, k4),
o5 (k2, k4)

o1(k4, k5),
o2 (k4),

o5 (k4, k5),
o6 (k5)

o1(k1, k5),
o3 (k1),
o4 (k1)

m3

o1(k3, k5),
o5 (k5)

o1 (k2),
o2 (k2),
o5 (k2)

o1(k2, k4),
o2 (k4),
o3 (k4),
o4 (k4),
o5 (k4)

Stage v3 m4

o2(k2, k3),
o6(k2)

o1 (k3),
o2 (k3),
o6 (k2)

o2(k1, k5),
o6(k1, k5)

m5

o2(k1, k5),
o6(k1, k5)

o1 (k1),
o2 (k1, k5),

o6 (k1)

o1 (k3),
o2 (k2, k3),

o6 (k2)

940 Bull. Pol. Ac.: Tech. 61(4) 2013



A relaxation heuristic for scheduling flowshops...

Table 6

Specification of parameters of groups of tasks and computational results

Gr.
Parameters of groups For fixed routes [%] For alternative routes [%]

M ϑ N W H Ψ w1 w2 w3 w4 w1 w2 w3 w4

1 4 2 6 3 18 8 6.4 4.4 5.8 0.60 5.1 4.0 4.6 0.67

2 5 2 8 4 20 10 6.7 4.3 5.7 0.56 5.8 4.2 4.8 0.64

3 5 3 10 6 25 12 7.8 6.2 7.1 0.48 8.2 5.1 6.1 0.60

4 6 3 12 7 30 12 9.9 6.5 7.7 0.45 9.0 5.9 7.6 0.59

Numbers of: M – machines, ϑ – stages, N – types of tasks, W – types of products, H – time intervals, Ψ – sum of capacity of intermediate

buffers.

Findings of calculation experiments contained in Table 6

indicate significant reduction of calculation time when using

two-level heuristics with respect to the alternative concep-

tion – successively solved integer programming tasks, in the

case of which optimum solutions are generated at every lev-

el. The reduction amounted to approximately 0.5–0.7%, i.e.

solutions were generated approximately 140–200 times faster

than in the case of the two-level method with binary decision-

making variables (see the index w4). However, that advantage

is achieved at the expense of a minor deviance from the op-

timum. This is indicated by the average values of index w1,

which did not exceed 10% for alternative routes and 9% for

fixed routes. The maximum value of the index w1 reached

12.7%. The average values of indexes w2 and w3 present dif-

ferences between scheduling for fixed and alternative routes.

The computational time for loading machines with alternative

production routes is longer than in the case when we use fixed

routes. The makespans was shorter about 7–12% for systems

with alternative routes than for fixed routes. For the test prob-

lems, the CPU run time for the two-level approach with the

presented heuristic was no longer than a several minutes (for

the largest problems) on a PC 1.66 MHz.

The volume of test problem groups have been adjusted

to the calculation capacity of the available discrete optimiza-

tion packages which constitute an IT tool necessary to solve

discrete optimization tasks (formulated in the models: M1a,

M1b, M2).

6. Conclusions

The developed algorithm and the mathematical models built

for it may be used for various types of simulations. Taking into

consideration fixed and alternative production routes enables

testing of the effect of route type on sequencing of tasks. It

is significant especially in a case of assembly systems, where

allocation of feeders to machines are not only related to the ne-

cessity of involving additional activities, but, sometimes, also

costs related to feeder placement. Assignment and placement

of feeders is also related to the necessity of considering limit-

ed working space in individual work stations. The conducted

calculation experiments proved returning shorter schedules in

a case of alternative routes (as compared with fixed routes),

however, the analysis of costs takes it also into account, for

example, costs related to operational use or the necessity of

purchasing auxiliary equipment.

An application of the two-level approach allowed solu-

tions of tasks of a relatively larger scale as compared with the

monolithic approach. In each level of the method, a smaller

number of parameters and variables in the formulated mathe-

matical relationships have been taken into account. With the

linear relaxation of the tasks of mathematical programming,

problems are solved in a relatively short time. It is conducive

for the possibility of re-scheduling. In case of breakdowns of

any machine or when a new, urgent order has to be considered,

the data are updated and the problem is solved again.

For the tasks of relatively smaller scales, it is recommend-

ed to solve the problem based on the built discrete optimisa-

tion tasks mathematical models. These models may be, obvi-

ously, modified and expanded. For example, some parameters

may be taken into account in the models, which define prior-

ities of executing tasks for individual products. Many formu-

lated mathematical relationships may be used for building the

task scheduling algorithm based on the monolithic approach.

Development of computer technology and software offers

good perspectives for discrete optimisation, including solving

problems of task scheduling formulated in the linear mathe-

matical models. The currently applied task scheduling algo-

rithms for production lines are properly modified and used in

other fields, as well. For example, economic conditions relat-

ed to, among others, the so-called globalisation have affected

the necessity of task scheduling in support of supply chains.

It requires building of the product flow schedule not only by

production plants within the supply chain, but also between

production plants, where transport tasks are sequenced. De-

velopment of optimisation methods and their application in

new areas are reflected in, among others, [23] and [24], which

presents continued major importance and new areas of appli-

cation of heuristic algorithms.

REFERENCES

[1] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Węglarz,

Handbook Scheduling, Springer, Berlin, 2007.

[2] M. Pindeo, Scheduling: Theory, Algorithms, and Systems, Pren-

tice Hall, Upper Saddle, 2002.

[3] T. Sawik, Production Planning and Scheduling in Flexible As-

sembly Systems, Springer-Verlag, Berlin, 1999.

[4] Y. Pochet and L.A. Wolsey, Production Planning by Mixed

Integer Programming, Series in Operations Research and Fi-

nanccical Engineering, Springer, New York, 2006.

Bull. Pol. Ac.: Tech. 61(4) 2013 941



M. Magiera

[5] G. Schmidt, “Modelling production scheduling systems”, Int.

J. Production Economics 46–47, 109–118 (1996).

[6] T. Sawik, “Simultaneous loading, routing, and assembly plan

selection in a flexible assembly system”, Math. Comput. Mod-

elling 28 (9), 19–29 (1998).

[7] T. Sawik, “Balancing and scheduling or surface mount tech-

nology lines”, Int. J. Production Research 40 (9), 1973–1991

(2002).

[8] T. Sawik, “Loading and scheduling of a flexible assembly sys-

tem by mixed integer programming”, Eur. J. Operational Re-

search 154 (1), 1–19 (2004).

[9] T.F. Gonzales, Handbook of Approximation Algorithms and

Metaheuristics, Chaoman and Hall/CRC, New York, 2007.

[10] G. Schmidt, “Scheduling with limited machine availability”,

Eur. J. Operational Research 121, 1–15 (2000).

[11] T. Kis and E. Pesch, “A review of exact solution methods for

the non-pre-emptive multiprocessor flowshop problem”, Eur.

J. Operational Research 164 (3), 592–608 (2005).

[12] I. Ribas, R. Leinstein, and J.M. Framinan, “Review and clas-

sification of hybrid flowshop scheduling problems from a pro-

duction system and a solution procedure prespective”, Com-

puters & Operations Resarch 37 (8), 1439–1454 (2010).

[13] D. Quadt and H. Kuhn, “A taxonomy of flexible flow line

scheduling procedures”, Eur. J. Operational Research 178 (3),

686–698 (2007).

[14] R. Linn and W. Zhang, “Hybrid flow shop scheduling: a sur-

vey”, Computers & Industrial Engineering 37, 57–61 (1999).

[15] R. Ruiz and J.A. Vázquez-Rodriguez, “The hybrid flow shop

scheduling problem”, Eur. J. Operational Research 205 (1),

1–18 (2010).

[16] M. Sterna, “Dominance relations for two-machine flow shop

problem with late work criterion”, Bull. Pol. Ac.: Tech. 55 (1),

59–69, (2007).

[17] M. Haouari, L. Hidri, and A. Gharbi, “Optimal scheduling of a

two-stage hybrid flow shop”, Math. Meth. Operations Research

64 (1), 107–124 (2006).

[18] H. Allaoui and A. Artiba, “Scheduling two-stage hybrid flow

shop with availability constraints”, Computers & Operations

Research 33 (5), 1399–1419 (2006).

[19] Ch. Koulamas and G.J. Kyparisis, “ The three-stage assem-

bly flowshop scheduling problem”, Computers & Operations

Research 28 (7), 689–704 (2001).

[20] T. Sawik, “Hierarchical approach to production scheduling in

make-to-order assembly”, Int. J. Production Research 44 (4),

801–830 (2006).

[21] M. Magiera, “Two-level of production scheduling for flow-shop

systems with intermediate storages”, Total Logistic Manage-

ment 1, 101–110 (2008).

[22] R. Fourer, D. Gay, and B. Kernighan, AMPL, A Modelling Lan-

guage for Mathematical Programming, Duxbury Press, Pacific

Grove, 2003.

[23] J. Kwiecień and B. Filipowicz, “Firefly algorithm in optimiza-

tion of queuing systems”, Bull. Pol. Ac.: Tech. 60 (2), 363–368

(2012).

[24] R. Nowotniak and J. Kucharski, “GPU-based tuning of

quantum-inspired genetic algorithm for combinatorial opti-

mization problem”, Bull. Pol. Ac.: Tech. 60 (2), 323–330

(2012).

942 Bull. Pol. Ac.: Tech. 61(4) 2013


