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A robust fixed-lag smoothing algorithm for dynamic systems

with correlated sensor malfunctions
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Abstract. A new robust fixed-lag smoothing algorithm for fault-tolerant signal processing in stochastic dynamic systems in the presence of

correlated sensor malfunctions has been developed. The algorithm is developed using a state vector augmentation method and the Gaussian

approximation of the current estimate probability density function. The algorithm can be used in the real-time fault-tolerant control systems

as well as in radar tracking systems working in the complex interference environment. The performance of the developed algorithm are

evaluated by simulations and compared with smoothing and nonlinear filtering algorithms.
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1. Introduction

Fault diagnosis (FD) is defined as the detection and identi-

fication of a faulty element or a malfunctioning component

causing the whole control system failure or malfunction [1–

3]. Existing approaches for the FD can be categorized into the

model-based and model-free methods [3]. The model-free ap-

proaches are based on a physical redundancy, qualitative mod-

els and various computational intelligence techniques, such

as neural networks, fuzzy logic and genetic algorithms [1–6].

The model-based approaches use the state and parameter esti-

mation techniques as well as the parity equations. The model-

based algorithms are derived mainly for the linear systems [4,

7-10]. However, the algorithm may be developed using the

theory of systems with abrupt changes of parameters value or

structure changes. At present, very many methods are used

for the description of models of failures which can be classi-

fied as abrupt changes in system structure or parameters [3,

7, 8, 11–13]. The sensors malfunctions can be modelled as

an abrupt substantial increase of the observation noise level

which are caused by changes of the observation conditions

or by temporal measurement device failures [8, 14-16]. In

practice they are correlated in time. In the fault-tolerant con-

trol systems these malfunctions must not cause considerable

changes in the controlled process. In a case of the undisturbed

linear control system the estimation of the object state vector

can be found using the Kalman filter algorithm [9, 12, 17–

20]. When these conditions cease to be valid it is necessary to

find solution of the problem by means of non-linear filtering

algorithms. At present such algorithms are based on different

non-linear modifications of the Kalman filter or on using the

particle filters [15]. Earlier in [7, 8] a non-linear filtering al-

gorithm robust with respect to independent jumps of noise in

the measurement channel was developed.

The paper deals with the problem of state vector estima-

tion and the sensor failure detection in dynamic systems work-

ing in conditions of frequent correlated sensor interferences

or malfunctions. An application of a fixed-lag smoothing filter

with outlier suppression (FLSOS) [10] with a relatively small

lag time is proposed. These conditions are acceptable if a sys-

tem sample time is small enough. Thus, the objective of the

paper is to present a new sub-optimal fix-lag smoothing esti-

mation algorithm which would be robust with respect to the

presence of the correlated sensor malfunctions under moder-

ate computational burden. The approach which has been used

is based on the methods of a system state vector augmenta-

tion and the Gaussian approximation of the current estimate

probability density function [21].

The developed algorithm can be used in the real-time

fault-tolerant control systems such as aerospace systems as

well as in radar tracking systems working in the changing

interference environment [8, 14, 17, 18].

2. The problem formulation

The system and measurement equations of a discrete-time sto-

chastic control system are supposed to be described by the

following equations:

x(k + 1) = Φ(k + 1, k)x(k) + G(k)w(k), (1)

y(k) = H(k)x(k) + γ(k)v(k), (2)

where x(k) is the object state vector, Φ(k + 1, k) is the tran-

sition matrix, w(k), ν(k) are white Gaussian sequences with

zero mean and covariance matrixes Q(k) and R(k) respec-

tively, y(k) is the measurement vector and H(k) is the obser-

vation matrix, G(k) is n× q matrix, n, q, s are sizes of x(k),
w(k), y(k) vectors.

The malfunctions of the measurement sensors in the ob-

servation equation can be described by a random multiplier

γ(k), which can take on values of 1 when the sensors are in

normal operation and γ0(k) ≫ 1 when they are in the fail-

ure state. Correlation in time of the random sequence γ(k),
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can be described by the stationary Markov chain, of which

initial probability vector pγ(0) and transition matrix pij
γ can

be known or not known to the designer [17]. For the second

order Markov chain they have the following form:

pγ(0) =

[
p1 (0)

pγ0
(0)

]
, pij

γ =

[
p11 p1γ0

pγ01 pγ0γ0

]
. (3)

The Markov chain approach makes it possible to introduce

into consideration correlated outliers acting on the system.

The controlled object state vector can be treated as a con-

ditional mean of the following form:

x̂(k/k + N) = E(x(k)/Y k+N
1 )

= E(x(k)/y(1), ..., y(k), ..., y(k + N))
(4)

which is a fixed-lag smoothing estimate of the state vector

x(k) with N step lag.

The problem can be solved by augmenting the state vec-

tor x(k) and reformulating the problem of smoothing into the

problem of filtering:

xa(k + N) = [xT (k + N)xT (k + N − 1)...xT (k)]T

= [xT
0 (k + N)xT

1 (k + N)...xT
N (k + N)]T

= xa(j) = [xT
0 (j)xT

1 (j)...xT
N (j)]T ,

j = k + N,

(5)

where xa(j) is the augmented state vector and

xi(j) = xi(k+N) = x(k+N−i), i = 0, 1, ..., N. (6)

In new notations the state and observation equations for

the augmented system can be written as:

xa(j + 1) = Φa(j + 1, j)xa(j) + Gaw(j), (7)

y(j) = Ha(j)xa(j) + γ(j)v(j). (8)

where

Φa (j + 1, j) =

[
Φ(j + 1, j) 0n×N ·n

IN ·n×N ·n 0N ·n×n

]
,

Ga =

[
Gn×q

0N ·n×q

]
,

Ha(j) =
[

H(j) 0 s×N ·n

]
.

Now it is easy to notice that the estimate of augmented

state vector x̂a(j/j) contains as its N + 1 component the

unknown estimate of fixed-lag smoothing

x̂N (j/j) = x̂N (k + N/k + N) = x̂(k/k + N), (9)

that immediately follows from (5). Thus for developing the

robust FLSOS we can use the procedure of a robust filter-

ing synthesis presented in [8]. However in [3, 9] the robust

filtering algorithm was developed and analysed only for in-

dependent outliers at the input of the system. Further this

algorithm will be derived for correlated outliers.

3. Main results

The procedure of synthesis of the robust filtering algorithm

is the following. First of all it is necessary to calculate the

estimates of the state vector in known observation channel

conditions, which can be founded using the Kalman filter al-

gorithm [10, 17]:

x̂a(j/j) = x̂a(j/j − 1)

+K1
a (j)[y(j) − Ha(j) x̂a(j/j − 1),

(10)

where index a concerns the augmented system and K1
a (j) is

the Kalman gain matrix in the nominal state.

When the results of observations contain the malfunctions

described by (2) for calculating the system estimation it is

necessary to use a general approach. In this case the dynamic

system state vector estimation can be found as a conditional

mean of the following form [8, 17]:

x̂(k/k) = E[x(k)/Y k
1 ] =

∑

i∈2k

x̂i(k/k)P (Γ
i

k/Y k
1 ), (11)

where Y k
1 = {y(1), y(2), ...y(k)} is the sequence of input da-

ta, P (◦) is conditional probability of the measurement chan-

nel state, Γ
i

k = {γ(1), γ(2), ...γ(k)} denotes the measurement

channel state sequence and

x̂i(k/k) = E[x(k)/Y k
1 , Γ

i

k] (12)

are the partial estimates of the augmented state vector (5) that

are calculated in correspondence with the equation (10) (for

a simplicity of designations the subscript a is eliminated).

The probability density function of the estimates (11) can

not be defined exactly because of infinitely growing memory.

That is why for calculating the probability density function of

f(x(k)/Y k
1 ) it is worthwhile to use the Gaussian approxima-

tion approach [10, 21]. In such an approach the state vector

estimates x̂(k/k) can be expressed as the weighted sum only

of two partial estimates x̂i(k/k) corresponding to presence

and absence of the outliers in the current measurement [8]:

x̂(k/k) =
∑

i∈1,γo

x̂(k/k, γk = i)P (γ(k) = i/Y k
1 ). (13)

The a posteriori probability of the measurement device

state P (γ(k) = 1/Y k
1 ) = p1/k depends on the outlier stochas-

tic characteristics. In general case of the Markov chain when

there exists time correlation between outliers these probabili-

ties can be found as the following:

p1/k =
f(y(k)/γ(k) = 1, Y k−1

1 )p1/k−1∑
i=1,γo

f(y(k)/γ(k) = i, Y k−1
1 )pi/k−1

, (14)

where

f(y(k)/γ(k) = i, Y k−1
1 )

= N{Hx̂(k/k − 1), HP̃ (k/k − 1)HT + i2R(k)}

i = 1, γ0

(15)

denotes the Gaussian density function of the predicted esti-

mates and P̃ (k/k − 1) is the corresponding covariance ma-

trix.
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Recurrent calculations of the a posterior probability of the

measurement device state can be found using the elements of

the Markov chain transition matrix:

p1/k−1 = p1γ0
P [γ(k − 1) = γ0/Y k−1

1 ]

+p11P [γ(k − 1) = 1/Y k−1
1 ].

(16)

The state estimation equation with taking into account

Eqs. (10), (13) and (14) can be written as the following:

x̂a(j/j) = x̂a(j/j − 1)

+ [p1/jK
1
a(j) + (1 − p1/j)K

γ
a (j)]

· [y(j) − Ha(j) x̂a(j/j − 1)],

(17)

where prediction estimate is:

x̂a(j/j − 1) = Φa(j, j − 1)x̂a(j − 1/j − 1). (18)

The prediction error covariance matrix can be presented in

the following form:

Pa(j/j − 1) =



P (j, j/j − 1) ... P (j, j − N/j − 1)

P (j − 1, j/j − 1) ... P (j − 1, j − N/j − 1)

... ... ...

P (j − N, j/j − 1) ... P (j − N, j − N/j − 1)


,

(19)

where

P (j − i, j − m/j − 1)

= E{[x(j − i) − x̂(j − i/j − 1)]

· [x(j − m) − x̂(j − m/j − 1)]T }

i = 0, 1, ...N.

(20)

State estimate update can be written as:




x̂(j/j) = Φ(j, j − 1)x̂(j − 1/j − 1) + [p(1/j)·

·K
(1)
0 (j) + (1 − p(1/j))K

(γ)
0 (j)] · z̃(j/j − 1)

x̂(j − 1/j) = x̂(j − 1/j − 1) + [p(1/j)

·K
(1)
1 (j) + (1 − p(1/j))K

(γ)
1 (j)] · z̃(j/j − 1)

........................

x̂(j − N/j) = x̂(j − N/j − 1) + [p(1/j)

·K
(1)
N (j) + (1 − p(1/j))K

(γ)
N (j)] · z̃(j/j − 1)

i = 1, ..., N

(21)

The last element of the state estimate update x̂a(j/j) is

the fixed-lag estimate.

Error covariance update matrix has the same structure as

Eq. (20) with elements:

P (j − i, j − m/j) = P (j − i, j − m/j − 1)

− p(1/j)K
(1)
i (j)H(j)P (j, j − m/j − 1)

− (1 − p(1/j))K
(γ)
i (j)H(j)P (j, j − m/j − 1)

+ (1 − p(1/j))p(1/j)

· [K
(1)
i (j) − K

(γ)
i (j)]S(j)[K(1)

m (j) − K(γ)
m (j)]T

i, m = 0, 1, ..., N,

(22)

where S(j) = z̃(j/j − 1)z̃T (j/j − 1) and z̃(j/j − 1) is the

innovation process.

The filter gain matrix can be calculated as follows:

K(1)
a (j) =

[
K

(1)
0

T
(j) ... K

(1)
N

T
(j)

]T

,

K(γ)
a (j) =

[
K

(γ)
0

T
(j) ... K

(γ)
N

T
(j)

]T

,

K
(1)
i (j) = P (j − i, j/j − 1)HT (j)

·
[
H(j)P (j, j/j − 1)HT (j) + R(j)

]−1
,

K
(γ)
i (j) = P (j − i, j/j − 1)HT (j)

·
[
H(j)P (j, j/j − 1)HT (j) + γ2(j)R(j)

]−1
.

(23)

Fig. 1. Structure of the FLSOS
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The expressions (18)–(23) describe the robust FLSOS. Its

structure is presented in Fig. 1. It consists of the basic subop-

timal non-linear filter of which the matrix gain is determined

by a posteriori probabilities of the sensors state and it also

contains a set of gains K
(1)
1 (j) − K

(1)
N (j), Ndelay elements

and N adding circuits. This filter estimates all components of

the augmented state vector (5).

4. Simulation results

The efficiency of the proposed algorithm was investigated for

dynamical systems of the first and the third orders. The sys-

tem of the first order can be thought of as a model of the

communication or measurement channels objected to abrupt

changes of interferences. The main objective of simulations

were investigation of accuracy of the proposed procedures,

comparative analysis of theirs efficiency in condition of cor-

related changes of interference level, efficiency of malfunction

detection and choice of the time-lag value.

The second example of simulations deals with the prob-

lem of target tracking in radar applications in situations when

the level of interferences changes and delay of estimation re-

sults is acceptable. In this case the system of the third order

was considered. The system of the second order was also in-

vestigated. The algorithm revealed similar properties and is

not presented in this paper.

Example 1.

A first-order dynamic system with the following parame-

ters was considered.

The performance of the proposed FLSOS was investigat-

ed by simulation of the first-order process (1) with Φ = 1,

H = 1, Q(k) = 1, Td = 0.1s. The observation channel (2)

is assumed to be described by R(k) = 25 when the outliers

are absent and R(k) = γ(k) · 25 when they are present. The

random multiplier γ(k)=10 is supposed to be described by

Markov chain with the following initial probability matrix P0

and transition matrix Pij :

P0 =

[
P1

Pγ

]
=

[
0.9

0.1

]
,

Pij =

[
P11 Pγ1

P1γ Pγγ

]
=

[
0.9 0.8

0.1 0.2

]
.

The performance of the proposed method was investigated

by using 1000 Monte Carlo runs.

The main results of the simulation are presented in

Fig. 2–6. In Figs. 2 and 4 all the outlier sequences were the

same (outliers arising at k = 9, 14 15 16 17 21 28 39 53

54) and are marked by arrows in the bottom part of figures.

Results presented in the other figures are obtained for outlier

sequences randomly generated in each simulation and results

are averaged. The efficiency of the proposed fix-lag smoothing

filter with outlier suppression (FLSOS) was compared with

three algorithms: linear fixlag smoothing filter (FLS) [10],

Kalman Filter (KF) [10], Kalman Filter with outlier suppres-

sion (KFOS) [8].

Fig. 2. Estimate RMS error for different filtering algorithms (fixed

outliers position)

Fig. 3. Estimate RMS error for different filtering algorithms (time-

averaged outliers position)

Fig. 4. A posteriori probability of the outlier absence
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Fig. 5. RMSE of FLSOS for different time lag (time-averaged outliers

position)

Fig. 6. RMS error as a function of time lag N

The estimation root mean square (RMS) errors for dif-

ferent filtering algorithms are presented in Fig. 2 for fixed

outliers position and in Fig. 3 for time-averaged outliers po-

sition. This results show that efficiency of outlier elimination

procedure is about 2.4 for both KF and FLS.

The Fig. 4 shows a posteriori probability of the outlier

absence calculated according to (10). These results show that

the procedure of outlier detection is rather reliable.

Figure 5 presents root mean square errors of the FLSOS

for different time lag. The final dependences of estimation

accuracy from time lag N at the given time steps (k = 10,

20, 30, 40) are presented in Fig. 6. As can be seen in this

case smoothing gives the accuracy gain of state estimation of

about 30%.

Example 2.

A third order dynamic system with the following parame-

ters is considered.

Φ =




1 Td T 2
d /2

0 1 Td

0 0 1


 , Td = 0.1,

Gw =
[

0 0 1
]T

, Q(k) = 1,

H =
[

1 0 0
]
, R(k) = 25.

The observation channel noise is assumed to be described

by covariance R(k) = 25 when the outliers are absent and

R(k) = γ(k) · 25 when they are present. The random multi-

plier γ(k) is described by Markov chain with the same para-

meters as in Example 1.

Fig. 7. RMS range estimation errors (time-averaged outliers position)

Fig. 8. RMS velocity estimation errors (time-averaged outliers posi-

tion)
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In Fig. 7–9 RMS errors of range, velocity and accelera-

tion estimates for different filtering algorithms are presented

(for time-averaged outliers position). This results show that

efficiency gain of FLSOS procedure is about 22% to 50% in

comparison with the KFOS.

Fig. 9. RMS acceleration estimation errors (time-averaged outliers

position)

The final dependences of range, velocity and acceleration

estimation accuracy from time lag N at the given time mo-

ments (k = 10, 20, 30, 40) are presented in Fig. 10. As can be

seen in this case smoothing gives the accuracy gain of state

estimation of about 50% for range, 50% for velocity and 30%

for acceleration.

Fig. 10. Relative RMS estimation errors of range, velocity and ac-

celeration for FLSOS as a function of time lag N

5. Conclusions

The paper presents a new suboptimal non-linear algorithm for

state estimation in the presence of changing interferences and

outliers. The algorithm is based on the non-linear smoothing

fix-lag procedure with adaptive change of the filter matrix

gain. It contains a mechanism of outliers or malfunction de-

tection which makes it possible to employ it for sensors failure

detection. The algorithm reveals a good performance and re-

quires a moderate computational burden. As it follows from

the simulation results the proposed algorithm reveals much

better performance than traditional filters. The performance

gain depends on interference level and filter bandwidth and

practically does not change in time. It is worthy to emphasize

that the efficiency of the proposed filter does not consider-

ably differ from the optimal filter with known noise covari-

ance matrix and at the same time it is robust with respect to

observation conditions. But such an algorithm can be used

only in the systems where time delay of estimates is accept-

able.
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