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List of Symbols

N – set of natural numbers,

Z – set of integers,

Zn – ring of integers modulo n,

Z∗
n – multiplicative group of the ring Zn,

< n, m > – set of integer greater even to n and less

even to m,

R+ – set of nonnegative real numbers,

ϕ – Euler’s function,

GCD(m, n) – greatest common divisor of two inte-

gers m and n,

#A – number of elements in the finite set A,

#G – order of the finite group G,

E(X) – average of the random variable X ,

D2(X) – variance of the random variable X ,

⊕n – addition modulo n,

⊗n – multiplication modulo n,

−n – subtraction modulo n,

B(X, Y ) – set of all bijections f : X → Y ,

B(X) – σ-field of all Borel sets of a topologi-

cal space X ,

2X – set of all subsets of the set X ,

⌈·⌉ – ceiling function.

1. Introduction

In contemporary electronics, data (like software, measurement

data, transmitted data and also structure of electronic circuits)

can be changed in malicious, frequently dangerous way. Digi-

tal signatures are methods preventing these malicious attacks.

Every digital signature scheme like common hand written

signature under a document has three main properties:

1. the signature of a person A can be created only by the

person A,

2. the signature should be unforgeable,

3. the signature should be verifiable.

Every signature scheme is composed of two algorithms:

algorithm of signing (used by a document Signer) and algo-

rithm of verification (used by a signature Verifier).

There are many different signature schemes. In general

signature schemes are divided into two categories: one-time

signature schemes [1, 2] and multi-use signature schemes [1,

2]. There are also two kinds of signature schemes: signature

with message recovery and signature schemes with appendix

(i.e. without message recovery). There are also special signa-

tures with additional functionality like blind signatures (called

also in blanco signatures), undeniable signature schemes and

fail-stop signatures.

For example, one-time signature schemes are the follow-

ing algorithms: one-time Rabin signatures, one-time Lamport

signatures and one time Matyas-Meyer signatures.

Widely applied in practice multi use schemes are the fol-

lowing: RSA, ElGamal, DSA (Digital Signature Algorithm),

ECDSA (Elliptic Curve DSA), Rabin, Shnore signatures, final-

ly Nyberg-Rueppel class of signatures. Some of them are in-

troduced to the public key cryptography standard IEEE P1363.

Nyberg-Rueppel signature schemes are wide class of dig-

ital signatures with very interesting properties. All Nyberg-

Rueppel signatures are probabilistic in the sense that the sig-

nature depends on a signed document and a random variable.

Security of all Nyberg-Rueppel signatures is based on DLP

(Discrete Logarithm Problem).

We consider in the paper simple particular case of Nyberg-

Rueppel scheme: so called Nyberg-Rueppel scheme without

message recovery (i.e. signature scheme with appendix). In

the sequel we analyze and assess probability of forgery in

this signature scheme and propose simple methods to control

probability of forgery.
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2. Nyberg-Rueppel digital signature scheme

without message recovery

Nyberg-Rueppel digital signature (in the considered in the pa-

per version) is the signature scheme with appendix i.e. without

plain text message recovery. General assumptions are the fol-

lowing. Assume G is a finite group of the order n i.e. n
df
=#G.

Additionally we assume n ≥ 3 to avoid triviality. The plain-

text message m (the message which is signed) is identified

with an element of the group G then m ∈ G.

Assume additionally that f : G → Zn is an arbitrary but

fixed bijection of the group G on the ring Zn of integers

modulo n. Assume also that g ∈ G, g 6= 1 is a generator

of the group G or an element of the sufficiently large order.

We assume for security reasons that the group G and the el-

ement g are chosen in this way that the discrete logarithm

problem (DLP) with the basis g is practically unsolvable in

the group G.

Signer chooses at random a number x ∈ Zn so, that

GCD(x, n) = 1 and x 6= 1. The number x is a private key

and is secret. Now, Signer computes gx ∈ G and publishes

y
df
= gx as a public key. Signer publishes also the order of the

group G i.e. n, bijection f : G → Zn and element g.

If #G = 2 then Z∗
2 = {1} and only possible choice of

x ∈ Z∗
2 is x = 1. Because y = g1 = g everyone knows

immediately the Signer’s private key. Hence the order of the

group G is assumed in the sequel ≥ 3. In practice the order

of the group G is a large number because DLP have to be

unsolvable.

Algorithm of signing a document (a plaintext message m)
i.e. signature generation is shown in Fig. 1. The signed docu-

ment m is an arbitrary element of the group G. The signature

is an ordered pair (a, b) ∈ G × Zn. The document is signed

in similar way like in ElGamal signature scheme. The signed

document is an ordered pair (m, (a, b)). Nyberg-Rueppel sig-

nature verification algorithm is shown in Fig. 2.

Fig. 1. Nyberg-Rueppel signature generation algorithm

Fig. 2. Nyberg-Rueppel signature verification algorithm
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3. Solution of linear congruencies

Theorem 3.1.

Assume a, x, y ∈ Z , m ∈ N , m ≥ 2. If GCD(a, m) = 1
then

ax ≡ ay(modm) if and only if x ≡ y(modm).

If d
df
= GCD(a, m) > 1 then ax ≡ ay(modm) if and only if

x ≡ y(modm/d).

Proof. 1. If GCD(a, m) = 1 then an inverse a−1 of a num-

ber a( mod m) in the ring Zm exists. Hence, multiplying both

sides of the congruence ax ≡ ay(modm) by a−1, we have

a−1ax ≡ a−1ay(modm). Because a−1a(modm) = 1 then

x ≡ y(modm). If x ≡ y(modm) then multiplying both

sides of the congruence by a we obtain ax ≡ ay(modm).

2. Directly from congruence definition we have, that ax ≡

ay(mod m) if and only if
a

d
x ≡

a

d
y

(
mod

m

d

)
. But integers

a

d
and

m

d
are relatively prime because d = NWD(a, m). Ap-

plying then the first part of the theorem we obtain

a

d
x ≡

a

d
y

(
mod

m

d

)
if and only if x ≡ y(modm/d)

and finally we have ax ≡ ay(modm) if and only if x ≡
y(modm/d).�

Corollary. Congruencies can be divided side by side (if di-

vision in Z is possible) by an integer which is relatively

prime with the modulus m ∈ N , m ≥ 2. More precise-

ly, if a, x, y ∈ Z , m ∈ N, m ≥ 2, GCD(a, m) = 1 and

ax ≡ ay(modm) then x ≡ y(modm).

Example. Because 5 ·2 ≡ 5 ·(−4)( mod 6) and GCD(5, 6) =
1, then we have also 2 ≡ (−4)(mod6).

Theorem 3.2. (on solutions of the linear congruence ax ≡
b(modm) for GCD(a, m) = 1).

Assume a, b ∈ Z , m ∈ N , m ≥ 2. If GCD(a, m) = 1
then the congruence ax ≡ b(modm) has a solution x ∈ Z
given by the formula

x = ba−1(modm),

where a−1 is an inverse of the number a(modm) in the ring

Zm. Additionally every number x′ ∈ Z is the congruence

solution if and only if x′ ≡ x(modm).

Proof. 1. We can easily verify that the integer x = ba−1( mod
m) (where a−1 is an inverse of the integer a(modm) in the

ring Zm) is a solution of the congruence ax ≡ b(modm).
Indeed

(a(ba−1(modm))(modm) =

= ((aa−1)(modm)b)(modm) = b(modm)

i.e. ax ≡ b(modm) for x = ba−1(modm).

If x′ is such an integer, that ax′ ≡ b(modm) then

ax′ ≡ b(modm) if and only if ax′ ≡ ax(modm). From

the proved above Theorem 3.1 “on division side by side”

we obtain now, that x′ ≡ x(modm). On the other hand if

x′ ≡ x(modm) then of course x′ is a solution of the con-

gruence ax ≡ b(modm).�

Theorem 3.3. Assume a, b ∈ Z , m ∈ N , m ≥ 2 and denote

by d
df
=GCD(a, m).

1. If d| b then the congruence ax ≡ b(modm) has a so-

lution given by the formula

x =

((a

d

)−1

·
b

d

) (
mod

m

d

)
,

where
(a

d

)−1

is an inverse of the integer
(a

d

)(
mod

m

d

)

in the ring of integers modulo
m

d
and an integer x′ is a

solution of the congruence ax ≡ b(modm) if and only if

x′ ≡ x(modm/d). Additionally in the set Zm we have ex-

actly d solutions of the congruence ax ≡ b(modm).

2. If b is not divisible by d then the congruence ax ≡
b(modm) has no solution.

Proof. Ad 1. Assume d| b (d = GCD(a, m)). If ax ≡
b(modm) then there is k ∈ Z that ax = b + k · m and we

have
a

d
x =

b

d
+ k ·

m

d
. It means that

a

d
x ≡

b

d

(
mod

m

d

)
. If

we have
a

d
x ≡

b

d

(
mod

m

d

)
then of course ax ≡ b(modm)

and finally we obtain

ax ≡ b(modm) if and only if,
a

d
x ≡

b

d

(
mod

m

d

)
.

Because the integers
a

d
and

m

d
are relatively prime then

we have from the previous Theorem 3.2 (on linear congruence

solution), that the congruence
a

d
x ≡

b

d

(
mod

m

d

)
has the so-

lution, x =

((a

d

)−1

·
b

d

) (
mod

m

d

)
, (where

(a

d

)−1

is an

inverse of the number
(a

d

) (
mod

m

d

)
in the ring of integers

modulo
m

d
) and an integer x′ is a solution of the congruence

a

d
x ≡

b

d

(
mod

m

d

)
if and only if, x′ ≡ x

(
mod

m

d

)
.

Then the congruence ax ≡ b(modm) has the solution

x =

((a

d

)−1

·
b

d

) (
mod

m

d

)
and the integer x′ is a so-

lution of the congruence ax ≡ b(modm) if and only if,

x′ ≡ x
(
mod

m

d

)
.

The last congruence is fulfilled for exactly d numbers x′

from the set Zn (x′ = x+k ·
m

d
for k = 0, 1, ..., d−1). Then

in the set Zm we have exactly d solutions of the congruence

ax ≡ b(modm).

Ad. 2. Assume inversely, that there is a solution x of

the congruence ax ≡ b(modm). Then there is k ∈ Z that

ax = b + k · m and ax − k · m = b. The left side of the last

equality is divisible by d (where d = GCD(a, m)) but the

right side is not, which is impossible. Hence the assumption

that the congruence ax ≡ b(modm) has a solution leads to

contradiction.�
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4. Some basic theorems

The following simple fact from commutative ring theory is

very useful in the sequel.

Fact 4.1

Assume Zn is a ring of integers modulo n and a ∈ Zn.

An element a ∈ Zn is invertible in the ring Zn if and

only if GCD(n, a) = 1.

Proof. see [3–5].

Theorem 4.2. Assume G is a finite group of the order n ≥ 3,

m ∈ G is a signed plain text message, x ∈ Z∗
n is a private

key, g ∈ G, g 6= 1 is an arbitrary fixed element of the group

G, y
df
= gx is a public key and f : G → Zn is a bijection. If

the Nyberg-Rueppel signature is correctly computed i.e.

a = g−k · m, (1)

b = k−1 ⊗n (1 −n f(a) ⊗n x), (2)

where k ∈ Z∗
n is an arbitrary element chosen from Z∗

n then

verification formula y−f(a) · ab = mb · g−1 is fulfilled.

Proof. From properties of raising to a power in groups we

have:

y−f(a) · ab = g−xf(a) · (g−k· · m)b =

= g−xf(a) · g−k·b · mb = g−xf(a)−k·b · mb.

It follows from the Lagrange theorem that for every element

a ∈ G we have a#G = 1 i.e. an = 1. Then for arbitrary

r ∈ Z we have

ar = ar( mod n). (3)

From (2) we obtain that the following equality is fulfilled

1 = f(a) ⊗n x ⊕n k ⊗n b. Then from (3) we have:

g−xf(a)−k·b = g(−xf(a)−k·b)( mod n) = g−1

and finally we obtain:

y−f(a) · ab = g−xf(a)−k·b · mb = g−1 · mb. �

Theorem 4.3. If f : G → Zn is a bijection and x ∈ Z∗
n is

a fixed element of the multiplicative group Z∗
n then for every

c ∈ Zn the function β : G ∋ a → g(a) = (c−n f(a)⊗n x) ∈
Zn is a bijection, in particular the function h : G ∋ a →
h(a) = (1 −p f(a) ⊗n x) ∈ Zn is a bijection.

Proof. If x ∈ Z∗
n then from the Theorem 3.2 we obtain di-

rectly that the function

γ1 : G ∋ a → γ1(a) = f(a) ⊗n x ∈ Zn

is a bijection. The function

γ2 : Zn ∋ z → γ2(a) = c −n z ∈ Zn

is also a bijection then β = γ2(γ1) as a superposition of two

bijections is a bijection.�

Corollary 4.4. Under assumptions of the theorem 4.3 the

number of elements a ∈ G for which GCD(1 −n f(a) ⊗n

x, n) = 1 is exactly even to ϕ(n), where ϕ : N → N is the

Euler’s function.

Proof. A number of invertible elements in the ring Zn is equal

to ϕ(n). The function h : G∋a→g(a)=(1−pf(a)⊗nx)∈Zn

from the Theorem 4.3 is a bijection then the number of el-

ements a ∈ G for which GCD(1 −n f(a) ⊗n x, n) = 1 is

exactly even to ϕ(n).�

Theorem 4.5. Assume G is a finite group of the order n ≥ 3,

m ∈ G is a signed plain text message, x ∈ Z∗
n is a Signer’s

private key, g ∈ G, g 6= 1 an arbitrary fixed element of the

group G, y
df
= gx and f : G → Zn is a bijection then:

1. If b is the second coordinate of the Nyberg-Rueppel sig-

nature (a, b) of the plain text message m ∈ G (more strictly b
is computed as b = k−1⊗n(1−pf(a)⊗nx) for chosen at ran-

dom k ∈ Z∗
n, the fixed private key x ∈ Z∗

n and a = g−k · m)
then b ∈ Z∗

n if and only if GCD(1 −n f(a) ⊗n x, n) = 1.

2. For every (a, b)∈G×Zn, if GCD(1−nf(a)⊗nx, n)=1
(or equivalently b ∈ Z∗

n) then we can find only one ordered

pair (m, k) ∈ G × Z∗
n that

a = g−k · m, (4)

b = k−1 ⊗n (1 −n f(a) ⊗n x). (5)

In other words there is only one plain text message m ∈ G
and one random value k ∈ Z∗

n that the Nyberg-Rueppel sig-

nature computed for m ∈ G and k ∈ Z∗
n (and for the fixed

Signer’s private key x ∈ Z∗
n) gives (a, b) ∈ G × Zn.

Then there is no plain text message m′ ∈ G, m′ 6= m, for

which the Signer’s signature is equal to (a, b). As a result the

signature forgery is impossible.

3. If g ∈ G is a generator of the group G then for every

(a, b) ∈ G × Zn: if GCD(1 −n f(a) ⊗n x, n) = d > 1
then there are at least two different plain text messages

m, m′ ∈ G, m 6= m′ having the same signature (a, b).

Proof. Ad. 1. ⇐ If we have k ∈ Z∗
n and 1−n f(a)⊗n x ∈ Z∗

n

then from (5) we obtain b ∈ Z∗
n.

⇒If we have b ∈ Z∗
n, k ∈ Z∗

n then from (5) we obtain

that 1−p f(a)⊗n x is invertible. Hence GCD(1−n f(a)⊗n

x, n)=1.

Ad. 2. If GCD(1−n f(a)⊗n x, n) = 1 then we can solve

in unique way in Zn Eq. (5) with an unknown k. (see the

Theorem 3.2). Having k ∈ Z∗
n, we compute from Eq. (4) the

unique value m ∈ G.

Ad. 3. From the Theorem 3.3 we obtain that Eq. (5) (with

an unknown k) has d different solutions in Zn and from

Eq. (4) we obtain d different plain text messages which fulfill

the Eq. (4).

Two possible situations (forgery impossible, forgery pos-

sible) as mentioned in the Theorem 4.5 are shown in Fig. 3.
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Fig. 3. Two possible situations a) and b) for a) forgery is impossible for b) forgery is possible, different messages can have the same signature,

the function h : G → Zn is given for a ∈ G with the formula h(a) = 1 − pf(a) ⊗n x ∈ Zn

Theorem 4.6. Assume Gis a group of the order n ≥ 3, g ∈ G,

g 6= 1, m ∈ G, k ∈ Z∗
n, f : G → Zn is a bijection, y is a pub-

lic key (y
df
= gx, for a private key x ∈ Z∗

n) and a ∈ G, b ∈ Z∗
n

(b ∈ Z∗
n or equivalently GCD(1 −n f(a) ⊗n x, n) = 1).

Assume additionally that m′ ∈ G is a unique plain text

message which gives the signature (a, b) ∈ G × Z∗
n for the

private key x ∈ Z∗
n, (existence and uniqueness of m′ for every

(a, b) ∈ G×Z∗
n see the Theorem 4.5). If m ∈ G denotes the

message obtained by Verifier for verification (i.e (m, (a, b)))
then the verification formula

m′ = m (6)

can be in equivalent way written as

y−f(a) · ab = mb · g−1. (7)

In other words: the problem “if (a, b) ∈ G×Z∗
n is a signature

written (by a person with a private key x) under the plain text

message m” is equivalent to fulfillment of the formula (7).

Proof. 1. From the Theorem 4.5 we obtain that for the given

ordered pair (a, b) ∈ G × Z∗
n there is a unique ordered pair

(m′, k) ∈ G × Z∗
n for which we have

a = g−k · m′, (8)

b = k−1 ⊗n (1 −n f(a) ⊗n x). (9)

We assume that GCD(1 −n f(a) ⊗n x, n) = 1 then

1 −n f(a) ⊗n x ∈ Z∗
n. A product of two invertible numbers

from Z∗
n is invertible then b is invertible i.e. b ∈ Z∗

n.

From (9) we have

k = b−1 ⊗n (1 −n f(a) ⊗n x). (10)

On the other hand we have from (8)

m′ = gk · a

and using (10) we obtain

m′ = a · gb−1
⊗n(1−nf(a)⊗nx). (11)

2. Verification of the signature (m, (a, b)) is simply veri-

fication if m′ = m.

Using (11) we can write down equivalently equation

m′ = m as

a · gb−1
⊗n(1−nf(a)⊗nx) = m.

If we raise both sides of this equation to the power b ∈ Z∗
n

then we equivalently have

ab · gb⊗nb−1
⊗n(1−nf(a)⊗nx) = mb.

It can be written as

ab · g1−nf(a)⊗nx = mb.

Because gn = 1 then equivalently we have

ab · g · g−f(a)x = mb.

The above equation can be equivalently written as

(gx)−f(a) · ab = g−1mb.

But the public key y = gx then finally we have

y−f(a) · ab = g−1mb.

In short, verification if m′ = m is equivalent to verification

if y−f(a) · ab = g−1mb.�

It is important that in the verification formula (7) we have

no secret private key x.

5. Probability of forgery

From the Theorem 4.5 we obtain directly the following corol-

lary.

Corollary 5.1. If G is a finite cyclic group of the order n ≥ 3,

g 6= 1, g ∈ G is a generator of the group G, x ∈ Z∗
n is a fixed

private key of Signer and f : G → Zn a fixed arbitrary bijec-

tion then for every a ∈ G: Nyberg-Rueppel signature (a, b) is

unforgeable if and only if GCD(1 −n f(a) ⊗n x, n) = 1.

In other words if an element 1 −n f(a) ⊗n x is invert-

ible (or equivalently GCD(1−n f(a)⊗n x, n) = 1) then the

signature (a, b) is unforgeable.

The element 1−nf(a)⊗n x ∈ Zn is invertible if and only

if b ∈ Zn (the second coordinate of signature) is invertible.

The random element k ∈ Z∗
n has no influence on invertibility

of the element 1 −n f(a) ⊗n x.

We have only ϕ(n) elements a of the group G for which

the element 1 −n f(a) ⊗n x ∈ Zn is invertible. Denote

A
df
={a ∈ G; GCD(1 −n f(a) ⊗n x, n) = 1}, of course

#A = ϕ(n). For every a ∈ A forgery is not possible.

Assume that assumptions o the Corollary 5.1 are fulfilled

and we have defined two random variables X1 and X2 (see

Bull. Pol. Ac.: Tech. 62(4) 2014 821
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the Appendix A). The random variable X1 describes choos-

ing at random value k ∈ Z∗
n and the random variable X2

describes choosing a plain text message m. From the Theo-

rem A4 (from the Appendix A) it follows that if one of these

random variables has a uniform probability distribution and

X1, X2 are independent then the random variable g−X1 ·X2

(which describes computation of the first coordinate of the

Nyberg-Rueppel signature) has a uniform probability distri-

bution on G. Hence a probability, that the first coordinate

g−X1 ·X2 of the Nyberg-Rueppel signature belongs to G\A,

is even to 1 − ϕ(n)/n i.e.

P (g−X1 · X2 ∈ G\A) = 1 −
ϕ(n)

n
,

In other words, probability of forgery is exactly even to

1 − ϕ(n)/n.

Because the value 1 − ϕ(n)/n describes probability of

forgery it is important to choose the appropriate n so that

1 − ϕ(n)/n would be small.

Theorem 5.2. If r ∈ N is a fixed natural number and

n = pk1

1 · pk2

2 · ... · pkr

r , where p1, p2, ..., pr are primes

p1 < p2 < ... < pr and k1, k2, ..., kr ∈ N then

lim
p1,p2,...,pr→+∞

ϕ(n)

n
= 1.

Proof. It is a direct conclusion from basic properties of the

Euler’s function ϕ.

ϕ(n)

n
=

ϕ(pk1

1 · pk2

2 · ... · pkr

r )

pk1

1 · pk2

2 · ... · pkr

r

=

=
ϕ(pk1

1 ) · ϕ(pk2

2 ) · ... · ϕ(pkr

r )

pk1

1 · pk2

2 · ... · pkr

r

=

=
(p1 − 1)pk1−1

1 · (p2 − 1)pk2−1
2 · ... · (pr − 1)pkr−1

r

pk1

r · pk2

2 · ... · pkr

r

=

=

(
1 −

1

p1

) (
1 −

1

p2

)
· ... ·

(
1 −

1

pr

)
.

Then

lim
p1,p2,...,pr→+∞

ϕ(n)

n

= lim
p1,p2,...,pr→+∞

(
1 −

1

p1

)(
1 −

1

p2

)
· ... ·

(
1 −

1

pr

)
= 1.

But in general the following well known property holds.

Theorem 5.3. If ϕ is the Euler function then

lim inf
n→∞

ϕ(n)

n
= 0 and lim sup

n→∞

ϕ(n)

n
= 1.

Proof. see [3, 4, 6].

Theorem 5.4. Assume B(G, Zn) is the set of all bijections

f : G → Zn from the group G of the order n ≥ 3, to the ring

Zn and (B(G, Zn), 2B(G,Zn), P ) is a probabilistic space. If

the probability distribution P is a uniform on B(G, Zn) then

for every fixed a ∈ G and every fixed x ∈ Z∗
n we have:

P ({f ∈ B(G, Zn); GCD(1−nf(a)⊗nx, n) = 1}) =
ϕ(n)

n
,

where ϕ is the Euler function.

Proof. 1. The function h : Zn → Zn defined with the formula

h(z) = 1 −n z ⊗ x is a bijection. Denote B = h−1(Z∗
n), of

course #B = ϕ(n).
2. Assume we have fixed a ∈ G and x ∈ Z∗

n then: a bi-

jection f : G → Zn fulfills the condition

GCD(1 −n f(a) ⊗n x, n) = 1 if and only if f(a) ∈ B.

3. It follows from the p. 2 that the number of all bi-

jections f ∈ B(G, Zn) fulfilling the condition GCD(1 −n

f(a) ⊗n x, n) = 1 is equal to ϕ(n) · (n − 1)! on the other

hand #B(G, Zn) = n! then:

P ({f ∈ B(G, Zn); GCD(1 −n f(a) ⊗n x, n) = 1}) =

=
ϕ(n) · (n − 1)!

n!
=

ϕ(n)

n
.

6. Simple methods to improve

the Nyberg-Rueppel signature scheme

and control probability of forgery

We propose in the sequel two methods to control probabili-

ty of forgery in the Nyberg-Rueppel signature schemes. The

first is based on the Theorem 5.4 and Bernoulli process, the

second is based on the Theorem 6.1 formulated below.

The first method which allows to control probabil-

ity of forgery. Assume (B(G, Zn), 2B(G,Zn), P ) proba-

bilistic space with the uniform probability distribution P on

B(G, Zn). If a ∈ G is a fixed element of the group G and

x ∈ Z∗
n is a fixed element of Z∗

n then using the Theorem 5.4

we can define a sequence of independent random variables:

X1, X2, ..., Xs, ...

with values in the set {0, 1} in the following way. Assume we

do a series of independent experiments. In every experiment

we choose at random a bijection f from the set B(G, Zn)(with

the uniform distribution). For every i ∈ N : Xi = 1 if and

only if in the i-th experiment we have chosen a bijection

f : G → Zn so that GCD(1 −n f(a) ⊗n x, n) = 1.

From the Theorem 5.4 it follows that the sequence

of independent random variables (Xi)
∞
i=1 is a Bernoul-

li stochastic process defined on the probabilistic space

(B(G, Zn), 2B(G,Zn), P ) with probability of success equal

to
ϕ(n)

n
it means that for every i ∈ N we have

P (Xi = 1) =
ϕ(n)

n

and

P (Xi = 0) = 1 −
ϕ(n)

n
.

Introduce now, the random variable Y defined on the prob-

abilistic space (B(G, Zn), 2B(G,Zn), P ),with values in the set

N ∪ {+∞} in the following way. We have defined above a

Bernoulli process (Xi)
∞
i=1 of independent experiments. For

every s ∈ N ∪ {+∞}, Y = s if and only if the condi-

tion GCD(1 −n f(a) ⊗n x, n) = 1 is true the first time in

the s-th experiment, Y = +∞ if and only if the condition

GCD(1 −n f(a) ⊗n x, n) > 1 is true in every experiment.
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Equivalently

Y = s

if and only if X1 = 0, X2 = 0, ..., Xs−1 = 0, Xs = 1

Y = +∞

if and only if for every i ∈ N , Xi = 0.

The random variable Y is a time till the first success in

the Bernoulli process then it has geometrical distribution and

we have (see [3]): for every s ∈ N

P (Y = s) =

(
1 −

ϕ(n)

n

)s−1

·
ϕ(n)

n
, (12)

E(Y ) =
n

ϕ(n)

and D2(Y ) =

(
1 −

ϕ(n)

n

)
·

n2

(ϕ(n))2
.

(13)

Proposed method is based on random choosing a bijec-

tion f : G → Zn from the set B(G, Zn) (with the uniform

probability distribution on B(G, Zn)) and next verifying if

GCD(1 −n f(a) ⊗n x, n) = 1.

If GCD(1 −n f(a)⊗n x, n) = 1 then we have found the

appropriate bijection.

If GCD(1 −n f(a) ⊗n x, n) > 1 then we repeat the ran-

dom choosing.

In short, we try at random some different independent

bijections (a sequence of bijections) till the first success.

From the formulas (13) we have that the average time till

the first success (i.e. the first bijection fi : G → Zn that

GCD(1 −n fi(a) ⊗n x, n) = 1) is equal to
n

ϕ(n)
.

The second method which allows to control probability of

forgery

The second (deterministic) method which allows to con-

trol probability of forgery is based on the following theorem.

Theorem 6.1.

Assume G is a finite group of the order n, n ≥ 3 and

x ∈ Z∗
n is a fixed element of the multiplicative group Z∗

n.

For every n ∈ N there is a finite sequence of r bijections

f1, f2, ..., fr , where for every i ∈< 1, r >, fi : G → Zn

with the following property:

for every a ∈ G there is i ∈< 1, r > that

GCD(1 −n fi(a) ⊗n x, n) = 1.

The smallest r from the above theorem is equal to

⌈
n

ϕ(n)

⌉
≥2.

Proof. 1. It is possible to write down the set G as a sum of

r subsets A1, A2, ..., Ar

G =

r⋃

i=1

Ai,

where r =

⌈
n

ϕ(n)

⌉
and for every i ∈< 1, r > we have

#Ai = ϕ(n) and additionally for every i, j ∈< 1, r − 1 >,

i 6= j we have Ai ∩ Aj = ∅. It means that A1, A2, ..., Ar−1

are disjoint in pairs. As the the last subset Ar we can take

every set which fulfils two conditions: #Ai = ϕ(n) and

G\
r−1⋃
i=1

Ai ⊆ Ar .

2. Now, we can define r bijections h1, h2, ..., hr, where

for every i ∈< 1, r > , hi : G → Zn and hi(Ai) = Z∗
n.

3. For every bijection hi : G → Zn we can choose a

bijection fi : G → Zn in this way that for every a ∈ G,

we have hi(a) = 1 −n fi(a) ⊗n x. It is possible because we

can take for every a ∈ G, fi(a)
df
=(hi(a)−n 1)⊗n x−1, where

x−1 is an inverse in the multiplicative group Z∗
n. The function

fi : G → Zn is a bijection as superposition of 3 bijections.

4. From the point 1, we obtain now that for every a ∈ G
there is i ∈< 1, r > that hi(a) ∈ Z∗

n or equivalently

1 −n fi(a) ⊗n x ∈ Z∗
n. Then finally we have found a finite

sequence of r bijections f1, f2, ..., fr, that for every a ∈ G
there is i ∈< 1, r > that GCD(1 −n fi(a) ⊗n x, n) = 1.

5. It is obvious that if h̃1, h̃2, ..., h̃s is an arbitrary finite

sequence of s bijections h̃i : G → Zn then the smallest num-

ber s for which the following condition (14)

s⋃

i=1

h̃−1
i (Z∗

n) = G (14)

is fulfilled is equal to

⌈
n

ϕ(n)

⌉
(of course

⌈
n

ϕ(n)

⌉
≥ 2).

Equivalently the condition (14) can be written in the follow-

ing way

∀
a∈G

∃
i∈<1,s>

h̃i(a) ∈ Z∗

n. (15)

If we assume that for every a ∈ G we have h̃i(a) =
h(a) = 1−n fi(a)⊗n x then the condition (15) we can write

in the form

∀
a∈G

∃
i∈<1,s>

1 −n fi(a) ⊗n x ∈ Z∗

n (16)

i.e.

∀
a∈G

∃
i∈<1,s>

GCD(1 −n fi(a) ⊗n x) = 1. (17)

Then in short: for the given finite sequence f1, f2, ..., fs of s
bijections fi : G → Zn the smallest number s for which the

condition (16) is fulfilled is equal to

⌈
n

ϕ(n)

⌉
.�

That is easy to verify that for the group G of the order

n = 2 the thesis of the above theorem is also fulfilled, but in

the paper we assume for uniformity reason that n ≥ 3.

Of course we have

∀
i∈<1,r>

∀
a∈Ai

GCD(1 −n fi(a) ⊗n x, n) = 1,

where A1, A2, ..., Ar ⊆ G are subsets of G defined in the

proof of the Theorem 6.2 or equivalently

∀
i∈<1,r>

∀
a∈Ai

1 −n fi(a) ⊗n x ∈ Z∗

n.

The algorithm of the proposed method repeats the idea of the

Theorem 6.1 proof.
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1. Like in point 1 of the proof, we choose in arbitrary way

sequence of r subsets A1, A2, ..., Ar

G =

r⋃

i=1

Ai,

where r =

⌈
n

ϕ(n)

⌉
and for every i ∈< 1, r > we have

#Ai = ϕ(n) and additionally for every i, j ∈< 1, r − 1 >,

i 6= j we have Ai ∩ Aj = ∅. It means that A1, A2, ..., Ar−1

are disjoint in pairs. As the the last subset Ar we can take

every set which fulfils two conditions: #Ai = ϕ(n) and

G\
r−1⋃
i=1

Ai ⊆ Ar.

2. Using A1, A2, ..., Ar we find a finite sequence of r bi-

jections f1, f2, ..., fr, with the property, that for every a ∈ G
there is i ∈< 1, r > that GCD(1 −n fi(a) ⊗n x, n) = 1.

3. Then we apply sequentially bijections f1, f2, ..., fr ver-

ifying for i = 1, 2, ..., r if GCD(1−n fi(a)⊗n x, n) = 1. The

first i ∈< 1, r > for which GCD(1 −n fi(a) ⊗n x, n) = 1
gives a bijection fi used to sign a document m.

7. Conclusions

1. We can easily assess probability of possible forgery in

Nyberg-Rueppel signature schemes.

2. Security of the Nyberg-Rueppel signature scheme depends

on the order n of the group G. Then the order of the group

G have to be carefully chosen.

3. In the paper two simple methods of fully reliable Nyberg-

Rueppel like signature schemes were proposed. The first,

probabilistic is based on the Bernoulli stochastic process

and is reliable from probabilistic point of view. The sec-

ond method is deterministic and works always correctly.

The essence of the presented two methods is that we are

changing the bijection f so that forgery would be impossi-

ble. As a result the bijection f is not a universal parameter

for the signature scheme like in classical Nyberg-Rueppel

methods and the the chosen bijection f have to be added

as a third coordinate to the signature. Then a signed plain

text message has the shape (m, (a, b, f)).

Appendix

Random variables with values in groups

Definition A.1 (topological group)

Assume (G, ·) is a group and (G, T ) is a topological

space, where T ⊆ 2G is a topology. The group G is called

a topological group iff the following two conditions are ful-

filled:

1. the product · : G×G → G is a continuous mapping of

G × G onto G,

2. the inversion G ∋ x → x−1 ∈ G is a continuous map-

ping of G onto G.

A topological group is also in natural way a measurable

space (G, B(G)), where B(G) is a σ – field of Borel sub-

sets of G. Hence we can define random variables with values

in G.

In the paper we are interested in finite groups for which

we admit that T = 2G and B(G) = 2G. Then every finite

group can be treated as a topological group and measurable

space.

Definition A.2 (convolution of two finite measures)

Assume G is an Abelian topological group and µ1 and µ2

are two finite measures on the measurable space (G, B(G))
and (G × G, B(G) × B(G), µ1 × µ2) is a product of two

spaces with measure: (G, B(G), µ1) and (G, B(G), µ2). As-

sume additionally that µ is an induced measure by the con-

tinuous mapping f : G × G(x, y) → x · y ∈ G i.e. for every

A ∈ B(G) we have µ(A) = µ1 × µ2(f
−1(A)). The measure

µ is called a convolution of two measures: µ1 and µ2 and is

denoted by µ1 ∗ µ2 i.e. µ = µ1 ∗ µ2.

Theorem A1.

Assume G is an Abelian topological group and µ1 and µ2

are two finite measures on the measurable space (G, B(G)).
If µ = µ1 ∗ µ2 then

1. The function f : G ∋ x → µ1(A · x−1) ∈ R+ is µ2

integrable and the function g : Gx → µ2(A · x−1) ∈ R+ is

µ1 integrable

2. for every A ∈ B(G) we have

µ(A) = µ1 ∗ µ2(A) =

∫

G

µ1(A · x−1)µ2(dx) =

=

∫

G

µ2(A · x−1)µ1(dx).

Proof. See [7].

Theorem A2.

Assume X1 and X2 are independent random variables de-

fined on a probabilistic space (Ω, M, P ) and with values in

an Abelian topological group G. If PXi
denotes a probability

distribution of the random variable Xi for i = 1, 2 then

1. Y
df
=X1 · X2 is a random variable

2. the probability distribution PY of the random variable

Y is given by the following formula

PY = PX1
∗ PX2

.

Proof. See [8].

Definition A.3 (uniform probability distribution on a group

G).

Assume X is a random variables defined on a probabilis-

tic space (Ω, M, P ) and with values in an Abelian topological

group G. We say that the random variable X has a uniform

probability distribution iff for every A ∈ B(G) and every

x ∈ G we have

PX(A) = PX(A · x),

where PX denotes a probability distribution of the random

variable X .

Theorem A3.

Assume X1 and X2 are independent random variables

defined on a probabilistic space (Ω, M, P ) and with values
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in an Abelian topological group G. If PXi
denotes a prob-

ability distribution of the random variable Xi for i = 1, 2
and one of the probability distributions PX1

,PX2
is uniform

then a random variable Y
df
=X1 · X2 has the uniform distrib-

ution.

Proof. Assume PX1
is the uniform probability distribution

then from theorems A1 and A2 we obtain for every A ∈ B(G)

PY (A) = PX1
∗ PX2

(A) =

∫

G

PX1
(A · x−1)PX2

(dx) =

=

∫

G

PX1
(A)PX2

(dx) = PX1
(A)

∫

G

1PX2
(dx) = PX1

(A).

Then the random variable Y
df
=X1 · X2 has the uniform

distribution.�

The above theorem is frequently used in cryptography in

the case when the Abelian group G is finite.

For the finite cyclic group G, the following simple fact

is true. If g ∈ G is a generator of the finite cyclic group G,

the order of G is equal to n and X is a random variable with

uniform probability distribution on the ring Zn then a random

variable gX has a uniform probability distribution on G.

Theorem A4.

Assume we have two independent random variables X1

and X2 defined on a probabilistic space (Ω, M, P ). Assume

additionally that g ∈ G is a generator of the finite cyclic group

G, an order of G is equal to n ≥ 2, X1 is a random variable

into the ring Zn and X2 is a random variable with values

in the group G. If one of the random variables X1, X2 has

a uniform probability distribution (X1 on Zn or X2 on G)

then a random variable gX1 · X2 has a uniform probability

distribution on G.

Proof. A finite cyclic group is Abelian as in the Theorem A3.

Hence if the random variable X2 has a uniform probability

distribution on G then from theorem A3 we obtain that the

probability distribution of the random variable gX1 · X2 is

uniform. If the random variable X1 has the uniform probabil-

ity distribution on Zn then the random variable gX1 has the

uniform distribution on G and from Theorem A3 we have that

the probability distribution of the random variable gX1 · X2

has a uniform probability distribution on G.�
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