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STABILITY OF A MICRO-HETEROGENEOUS
PLATE BAND

M. CHALECKI', G. JEMIELITA?

The paper presents a certain way which determines the critical buckling force for a micro-heterogeneous FGM
plate band. A stiffness matrix of an individual cell of such band, different for various cells, has been determined.
The obtained matrix can also be treated as a variable stiffness matrix of a “superelement” in the Finite Element
Method. A computational algorithm for the critical force as well as the way of testing of its correctness has also
been presented. The results obtained for various support conditions have been compared to the values known

from the literature. The influence of the number of cells on the critical buckling force has been investigated.
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1. INTRODUCTION

In the paper, a problem of buckling of a micro-heterogeneous FGM-like plate band with
the heterogeneity of features along the direction of action of large axial forces is considered (it has
been assumed in the paper that this is the direction of x-axis). In the second direction (y) the band
is homogeneous. This problem is described by the partial differential bending equation of plate with
a variable stiffness D*P® with participation of large axial forces S® ([1] — with the assumption

of zero transverse loads and compressing axial forces):

(1.1) (D*P W,10)s0p + S Woop =0
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If the band stiffness and boundary conditions do not depend on the y variable, Eq. (1.1) can be

written in a form:

62w(x)

ox? =0

(12) az(D(x)azw(x,t)J-kS

D(x) denotes a plate stiffness, defined as

E(x)?

b= 121-v2(x)’

In the case of periodically heterogeneous materials (FGM-like materials) the highly oscillating
variability (jump discontinuity) of the band stiffness makes Eq. (1.2) very hard to solve (if not
impossible to solve) by means of classical methods of analysis of differential equations. This
problem is usually overcome by application of various techniques of homogenization — in last years
mainly the tolerance averaging technique [2], but also the asymptotic homogenization, the method
of effective modules, etc.

Jedrysiak [2] pondered natural vibrations of a micro-heterogeneous thin plate band with the use of
the tolerance modeling, whereas Wierzbicki et al. [3] stated as follows: “From among many known
ways of the modeling of problems of the mechanics of periodic media, the tolerance modeling
stands out due to relative simplicity of consideration of the scale effect. This advantage of the
tolerance modeling resulted in the description and solution of many problems of the mechanics of
heterogeneous media. Unfortunately, we can obtain here only approximate solutions, for which we
do not know effective methods to evaluate the accuracy of the obtained solutions”.

Disagreeing with the above statement, the Authors decided to prove that in the case of the problems
presented in [2], [4], [5], [8], [9] a solution can be obtained which is exact [6] or formally exact [7]
within the framework of the theory of thin plates.

The microperiodic FGM-like plate band is modeled as a system with properties changing in a
discrete way between two levels — micro and macro. This paper presents that it is possible to obtain
an exact solution to the problem of seeking of critical buckling force with the use of methods of
structural mechanics. The aim of the paper is the exact calculation of the critical buckling force for
a thin plate band with a microstructure showed in Fig. 1. According to the Author’s knowledge,
there are no items in the accessible literature where the problem of buckling of such band would be

solved in the way allowing obtaining an exact solution.
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2. BASIC ASSUMPTIONS

Let us consider a Kirchhoff’s plate band with the width L and thickness /4, having a microstructure
presented in Fig. 1. Along the x-axis, the plate band consists of N bands (cells, elements) with a

constant width equal to
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Fig 1. Plate band with FGM-like microstructure

Each band (cell) with the width / consists of three parts (subcells) and two materials: 1 (matrix) and

2 (inclusion) with stiffnesses D1 i D2 respectively (Fig. 2), wherein

Fig 2. Dimensions of the cell of a number [/]
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2.2) D =D ),Dzan,D>O,n>O

and n denotes a stiffness coefficient (any positive non-zero real number).

The widths of the band element 7/, /') are calculated as:
=g, 1=l

The fraction coefficients dj ], E_,[zj J'and the width /77 of the band element are determined from the
formulas
1 L

23) W= %(1——;‘11) = =123, N =2 e =

=

A band element with the width /! can be treated as a bar element with the section F=/h x b,

b=1m. To obtain the critical buckling force for the microperiodic band with the width L, the

stiffness matrix for a typical bar element (cell) with the length /U1 = 2[1[/ 1y 12[’ l'is to be determined.
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Fig 3. Dimensions of the bar superelement

As a typical band element with the width /) consists of three bands with a various width, the bar

element with the width /¥ will be denoted as “superelement” consisting of three elements (Fig. 3).
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3. STIFFNESS MATRIX OF A BAND ELEMENT [J]

Let us consider a bar element fixed on both ends, the bar having a jump-type variable stiffness and

whose nodes (j— 1) and () are subjected to displacements (rotations and relocations) (p[j.{]l, (pg-/ ],

WE{]I s W_E«j ] (Fig.4).

Fig 4. Computational model of the superelement (band element — periodicity cell)

Using the well known stiffness matrices of the bar element fixed on both sides (transformation

formulas), after the elimination of the rotation angles and relocations of the nodes 1 and 2 of the
element [j], we obtain the following dependence between the node forces ¢[,le R ¢Ef ], W][[ }, Wj[j ]
(]

and the rotation angles ¢4, (p[jj ] as well as the relocations wEf_]l , wb[].j I,

(3.1 ol —g Uyl
where
. kyy ki,  —ky . ¢[,j_]1 | 0,
(3.2) KUl = kyy,  ky ks, ol = ¢5_/] , (p[l] | o,
—his —hs o ks IWH yl!
) . ) ) } - .
(33) \V[l] :2(\‘/[/] _WE/—]I)’ le[j] :_IW/[{}’ \V[jj_]l — ; 1 , \II[/J] :T‘/’
(34) K, = pilsl)  ellsl! b Ul all gl 4l

- ] - T+ -+ ,
=l elf T el 2 )
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The functions ocgcj ], Bg(j ], GECJ ] are described as (k= 1, 2)

;] sin GLj] - G;{j]COSGLj] 0l chj] _sin G;(j]

Z(I—COSGE!.])— GEJ] sinc[’] ’ Bk ok 2(1—coscs£/])—cgf] SiIlGE(j] ’

ol =l gl

where

(3.6) ng] =§Ej]6, G[zj]zi,[zj]cs \F, G:l\/g,
n D

D is measured in Nm, o is a dimensionless quantity and S is a critical buckling force being sought.

The coefficients Al[j ], Agj ],Bl[j ],ng ],Cl[j ],Cg" ] for a given element (cell) of a number j depend on
the parameters j, N, n. The form of these coefficients is quite complicated (each of them occupies
ca. %4 + 1 side of A4 sheet), therefore the formulas for these coefficients will not be presented in this

paper.

4. BAND STIFFNESS MATRIX

ol o [ Bl ,l,-, o2l vl [N]
0 1 2 3P j j#1 ' ' N-3 N-2 N-1 N
DR R P R N L L1 L et 1

Fig. 5. Schematic section of a plate band
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The band under consideration consists of N elements with N + 1 nodes. Fig. 5 schematically shows
a band section with N cells. The unknowns are generalized node displacements @;, w; or @;,

y; = wj/l. For any node j (1 <j<N- 1), two equilibrium equations can be written
Ul gl = Ul ol 2
(4.1) oUleoll =0, whlawll=o0, j=123...N-1,

which comprise five unknown generalized displacements Pits ®jr P \V[j ], \V[f“]A Finally we

obtain the set of 2(N — 1) equations with 2(N — 1) unknowns. This set will be written in the form
4.2) Ko=0,dimK=2(N-1)x2(N-1),dime=2(N-1) x 1,

where K is the band stiffness matrix with the elements being a function of a value of ¢ being sought
(given by formula (3.6)3), whereas ¢ is a one-column matrix of generalized displacements.
The structure of the matrices K and ¢ is presented below (the empty cells are equal 0). As the

matrix K is symmetric, we present only its upper part.

di

O PO 1 )
a'b di ¢ ida
a b dic d Pn-2
a” dyic” PNt
g h 2y,

Py3

s ymme t ry

2y 3
h PATSY
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The matrix K consists of four band submatrices. Individual terms are equal:

. . ; 1 1 > . .
0 =k kG, =L, kD = Do kB0 ),

. . i 1 1 3 . . . )
0 =k k. =0, 4k €= 0 k)l =k =k,

. . ; 1 1 3 . ) . .
&0 =k k", 0= =0, Y, = 0 kY A <KD, A =k,

i i+1 ] 2 " N-1 i i
gV =k} +k57, g :§6p +k3, g :§n8k kG0, B =k

where the superscript in the terms a + /# denotes the submatrix row number and in the terms & — the
band cell (element) number (hence, e.g. the term fi is in the 3™ row of the lower left submatrix, so it
requires to take the term ki3 for the cell with j = 3, whereas the term f> in the same row — the term
k13 for the cell with j = 4). The terms k are given by Eqs (3.4).

Special attention must be paid to the first and the last element, i.e. for j =1 and j = N. The terms &;
and & take the value (Eqs (2.3)): forj=1 &, = %, & =0;forj=NE =0,¢&, :%. The first

cell has the constant stiffness D, the last one — the constant stiffness D, =nD. Moreover, these
cells in general are not supported as in Fig. 3 because the left support of the first cell (point 0 in Fig.
5) and the right support of the last one (point N in Fig. 5) can be supported in any way. For the
transformation formulas for the first and the last cell, depending on their supports.

The terms a’, a’’, ¢’, ¢”’, e’, e’’, g’, g’ concern the first and the last cell. Depending on support

conditions, the coefficients o+ 3 contained there are equal:

— for a fixed boundary:

a, =alo), oy =oc[\/(%} 0, =6(c), 6, _e[\]‘ﬁ], 5, =260(c)- o, &, _29(\%}22,

— for a hinged boundary:
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— for a fixed boundary with the possibility of transverse movement:

(¢

G'I? :(X‘H(G)’ Olg =(X"[\/7],9p9k5p5k0,
n

— for a free boundary:

Op = a"(0), oy = (1”'[6] 0y =0r=8,=8=0,
Jn
. ,___o’sinc .
where o and 0 are given by Eqgs (3.4), whereas: o'=————, a’” = o ctgo, a’”’ = —G tgo.

Sin G — G COSG

5. DETERMINATION OF APPROXIMATED VALUE

OF CRITICAL BUCKLING FORCE

From the condition Det K =0, for the given N and m, we can determine the value of ¢ and then —
from the Eq. (3.2) — values of critical buckling force. For a microperiodic plate band, the matrix K
is in general of large size, its terms depend on the quantities given by Eqs (3.4) in a very
complicated way and additionally those quantities depend on the value of o, so the functional
dependence f (0) = Det K is extremely intricate and the determination of subsequent zeros can take
a lot of time even for computers with a good processor (but the most probable is that the
calculations will shut down due to complete occupancy of operational memory). Therefore, the best
way is to assume an initial value oo for the given parameters n, N and, for a given step of increase
of this initial value, after the determinant value has changed the sign, apply the secant method for
finding such a value of oy which implies DerK(ox) = 0. This value can be determined with any
required accuracy.

Having the critical value o determined, the critical buckling force can be calculated from formulas

(3.6)3 and (2.1) which yield

(5]) Skr:Gkrizckri
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where D — according to Fig. 2 and formulas (2.2) — is the stiffness of the first subcell and the
reference stiffness.

As example, the calculations for a 6-cell plate (N = 6) fixed on the left end and supported on hinge
on the right end were performed (Fig. 6a). The stiffness coefficient was taken as n=5. It can be

estimated with high accuracy that DerK = 0 for cu = 0,97805 hence the critical force is equal (cf.
Eq. (5.1)

D
(5.2a) Sy = 34437 -

Next, for the plate with similar support conditions but fixed on the right end and supported on hinge

on the left end ( Fig. 6b) the value 6 = 0,99916 is obtained and the critical force is equal

(5.2b) s,

h

D
b =35939 .

The obtained result corresponds with engineer’s intuition because the more flexible element is
placed at the fixing of the plate in Fig. 6a than at the fixing of that in Fig. 6b, thus this second plate

should be characterized by a higher critical force.

Fig. 6. The bands fixed on the one end and supported on hinge on the another end
Similarly, for the plate band with N =8 and n =5 the results are

D D
(5.3) Oy =0.73185, 5,,, =34279, oy, = 0.74908, S, =35911 .

For the plates presented in Fig. 7, exactly the same results will be obtained provided the fraction

coefficients (2.3) have the form

1 _N—f) W_N-Jj ._
(54) & 2(1 = , &5 N1 1,2,..,N.
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Fig. 7. Plates with the fraction coefficients given by Formula (5.4)

Several tests were performed to check if the proposed solution of the problem is correct. Assuming
n =1 (homogeneous band) one obtains the graphs analogical to those from Fig. 6, depending on the
way of supporting of the band. In this case, the exact values of buckling critical forces are well

known and equal

(5.5) Sosr :O—02kri’

wherein the coefficient cor depends on the way of supporting.

Assuming, for example, N = 8, if the proposed solving algorithm is correct, then the values of o
have to be exactly 8 times lower than the known values Gox- and the values of critical buckling
forces calculated from formula (5.1) have to be equal to those calculated from formula (5.5). The
tests presented in Fig. 8 confirm the correctness of the proposed algorithm of the solution of the

problem of seeking of critical buckling force of a heterogeneous band.

I 1 Py A
a) 6 =0,7854, 5o =21 b)6=0,3927,60="n
I A I
¢) 0=10,5617, o = 4,4930 (5o = tancy) d) 6=0,1963, oo =1/2
I il K il
e)6=0,3927, 0=, f) 6 =10,1963, 6o = 1/2.

Fig. 7. Values of the o and oo for homogeneous bands supported as on the schemes

The dependence of critical buckling force S on the number of cells N and on the stiffness coefficient
1 was also investigated (the band — as in Fig. 6a). In every case the critical buckling force for a
band is calculated from the formula (cf. Eqs (2.1) and (5.1)). If D and L are given, the variability of

the first value of critical buckling force can be investigated as the variability of a product c>N?. Fig.



102 M. CHALECKI, G. JEMIELITA

2
8 shows the dependence S, % on the number of cells N and the stiffness coefficient 1. Following

values were assumed: N=[3,4,5,7,9],n=[1/3; 1/2; 1; 2; 3; 5; 7].

Fig. 8. Function S;,. — = f(N,n). The dots denote the value of 6°N? forn =1,
D

which falls into the range 20,1906 to 20,1911 (exact result: 20,1907)

It is visible in Fig. 8 that if the number of cells (V) varies then the change of critical force is slight.
Some disturbances exist for very small number of cells (N =3), but it is acceptable because the
methods of homogenization bring in significant errors as well if the number of cells is small —

calculations for N> 3 are advised. If the inclusion stiffness (1) increases, the critical force also

2
increases which corresponds with an engineer’s intuition. The values of the §,, % form=1, ie.
for a homogeneous band, are also marked on the Figure: they are practically equal 4,49344% =
=20,1907, where 4,44934 is the value of oy for a homogeneous band fixed on one end and

supported at hinge on another.
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6. CONCLUSIONS

The presented method of investigation of stability of micro-heterogeneous plate band is based on a
classical method of the structural mechanics and allows to obtain in a relatively fast way, with
requested accuracy, the value of a critical buckling force through any change of the parameter 7,
characterizing the inclusion stiffness in relation to the matrix stiffness, and N — the number of cells
in a band with the length L.

All tests performed in aim to check the algorithm’s correctness confirmed the engineer’s intuition
and theoretical dependences. Namely, it was proven that:

— a critical buckling force (S) depends on a number of cells (V) to a minor degree but increases
along with the growth of inclusion stiffness (stiffness coefficient — 1),

— in the case of a homogeneous band (assumption 1 = 1), the known exact results are obtained,

— the algorithm does not show differences if the global coordinate system is reversed, i.e. it does not
matter if the beginning of the band is assumed at its left end or right end.

The above-mentioned conclusions prove the correctness of the created calculation algorithm. A
similar algorithm also concerns plate bands where the inclusion stiffhess varies not proportionally
to a cell number but according to any function — it only demands to choose fraction coefficients &

(Egs 2.3) in a proper way.
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L
Fig. 8. Function S, — = f(N,n). The dots denote the value of o°N? for n = 1, which falls into the range
D

20,1906 to 20,1911 (exact result: 20,1907)
2

L
Rys. 8. Funkcja Sy, — = f(N,m). Kropki oznaczajg warto$¢ o*N? dla n = 1, ktora miesci si¢ w przedziale
D

od 20,1906 do 20,1911 (wynik doktadny: 20,1907)
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2nd STATECZNOSC MIKRONIEJEDNORODNEGO PASMA PLYTOWEGO

3. Stowa kluczowe: pasmo ptytowe, osiowe sity krytyczne, wyboczenie, metoda przemieszczen
STRESZCZENIE
W pracy rozpatrzono model mikroniejednorodnego pasma plytowego o funkcyjnej gradacji wtasnosci wzdhuz kierunku

dziatania duzych sit osiowych (przyjeto, ze jest to kierunek x). Whasnosci mechaniczne pasma nie zaleza od drugiego

kierunku (). Wyznaczono warto$ci krytyczne tych sit, przy ktorych nastapi utrata statecznosci pasma.

Yo 4

N | h

J.I - f

L

A L_

»
L

Rys. 1. Pasmo ptytowe z mikrostrukturg

Przy zalozeniu stalej grubosci pasma (4) i zmiennych skokowo wzdtuz osi (x) whasnosci materiatowych podstawowej
komorki (rys. 2), mozna wyznaczy¢ Scisle sit¢ krytyczng dla takiego pasma korzystajac z rownan teorii plyt cienkich.

W pracy pokazano mozliwos¢ uzyskania Scistego rozwigzania zasygnalizowanego zagadnienia, korzystajac z metod
mechaniki budowli. Problemy tego typu byly do tej pory badane za pomoca technik homogenizacji (np. usredniania
tolerancyjnego — p. [2]), za$ metody mechaniki budowli (metod¢ przemieszczen) zastosowano w [1] do badania drgan
swobodnych pasma mikroniejednorodnego.

Celem pracy jest sciste wyznaczenie sity krytycznej dla cienkiego pasma ptytowego o mikrostrukturze pokazanej na

rys. 1. Pasmo wzdtuz zmiennej x sktada si¢ z N komorek o statej dtugosci /= L/N. Kazda komoérka ztozona jest z trzech
czg$ci — dwoch materiatow o sztywnosciach D1, D; (rys. 2). Przyjeto, ze szerokosci komorek 1][/], lz[" ] sg zmienne i dla

dowolnej komoérki okreslone wzorami

Rys. 2. Model obliczeniowy superelementu (komorki periodycznosci)
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L R A L ER’ _
1 W= 2f- W1 - 1 1=l == p —p= ,D=nD, D>0,
M ! 2( N71] N- N 73 (e M

gdzie n — dowolna liczba rzeczywista wigksza od zera.

W celu uzyskania sity krytycznej powodujacej utrat¢ statecznosci pasma nalezy wyznaczy¢ macierz sztywnosci
typowego elementu (komorki) prgtowego o dtugosci / =2/ + .

Obustronnie utwierdzona komorke pasma mozemy traktowac, jako pretowy element skoficzony (superelement) ztozony

z trzech elementdw, o zmiennej skokowo sztywnosci. Brzegi tego elementu doznaja amplitud przemieszczen (obrotow i

przesunid) oV}, olL, wll, whl rys.2).
Macierz sztywnosci elementu o dhugosci /o z rys. 2 uzyskujemy korzystajac z rozwigzania rownania rézniczkowego
plyty cienkiej. Majac t¢ macierz sztywnosci, po wyeliminowaniu przemieszczen weztow 1 1 2 (rys. 2) uzyskujemy

macierz sztywnosci dowolnego elementu o numerze ,,j” w postaci
2) q)[j] — K[’](p[’] R
gdzie K/ jest macierza sztywnosci j-tego elementu.

Na rys. 3 schematycznie przedstawiono przekroj pasma z dowolng liczba N komorek. Niewiadomymi wielko$ciami sg

katy obrotu w weztach ¢; oraz katy obrotu cieciw pretow yll.

Rys. 3. Schemat fragmentu pasma ptytowego
Dla dowolnego wezta j (1 <j < N —1) mozemy utozy¢ dwa roéwnania rOwnowagi
(3) or+oi =0, W/ 4w/ =0, 1<k<N-1.

Lacznie otrzymujemy jednorodny uktad rownan (przy jednorodnych warunkach brzegowych pasma), w postaci
4) Ko =0,

gdzie K jest macierza sztywno$ci pasma o elementach bedacych funkcja poszukiwanych wartosci krytycznych sity
$ciskajacej pasmo, a ¢ jest jednokolumnowa macierza uogoélnionych przemieszczen.
Z warunku DetK =0, dla danych: N, n mozemy wyznaczy¢ kolejne wartosci sit krytycznych, powodujacych utratg

statecznosci pasma. W pracy przedstawiono wyniki dla réznych typéw warunkéw podparcia pasma.



