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Optimization of two-component armour
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Abstract. The paper presents research on optimization of two-layer armour subjected to the normal impact of the 7.62x54 B32 armour
piercing (AP) projectile. There were analysed two cases in which alumina Al2O3 was supported by aluminium alloy AA2024-T3 or armour
steel Armox 500T. The thicknesses of layers were determined to minimize the panel areal density whilst satisfying the constraint, which
was the maximum projectile velocity after panel perforation. The problem was solved through the utilization of LS-DYNA, LS-OPT and
HyperMorph engineering software. The axisymmetric model was applied to the calculation in order to provide sufficient discretization. The
response of the aluminium alloy, armour steel and projectile material was described with the Johnson-Cook model, while the one of the
alumina with the Johnson-Holmquist model. The study resulted in the development of a panel optimization methodology, which allows the
layer thicknesses of the panel with minimum areal density to be determined. The optimization process demonstrated that the areal density
of the lightest panel is 71.07 and 71.82 kg/m2 for Al2O3-Armox 500T and Al2O3-AA2024-T3, respectively. The results of optimization
process were confirmed during the experimental investigation.
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1. Introduction

One of the main criteria used for comparing armours pro-
viding the same level of protection is areal density. A lower
panel mass allows a reduction in fuel consumption and pre-
serves the mobility of the vehicle on which it is mounted.
One of the methods used to decrease the areal density of the
armour is the employment of a two-layer system, in which a
hard layer is supported by a plastic one. One layer is designed
to erode the projectile, while the other, softer layer, absorbs
the kinetic energy of the projectile by plastic deformation [1].
The first ceramic-metal armour was proposed by Wilkins et
al. [2]. Many descriptions in the literature indicate the im-
proved efficiency of two-component systems over monolithic
metal armours [3–5]. Among the most popular dual hardness
panels, there are solutions consisting of alumina supported by
the aluminium alloy or steel.

A number of studies can be found in the literature re-
garding the optimization of two-component armour systems,
which generally refer to ceramic/metal armours. The optimiza-
tion problem has been solved in the literature by both mod-
elling and experimental approaches. The modelling approach-
es predominantly include analytical methods, which are typ-
ically simplified from complex realistic cases. The analytical
optimization of ceramic/metal armours is mainly based on the
Florence model [6]. The problem of determining the structure
of a two-component armour with specific areal density that
provides the maximum ballistic limit velocity was considered
by Hetherington [7]. Wang and Lu [8] studied a similar prob-
lem, in which the total thickness of the armour rather than

the areal density was given. Shi and Grow [9] investigated
the problem of a two-component armour in which both the
total thickness and the areal density were limited. Ben-Dor
et al. [10] studied the problem of maximization of the bal-
listic limit velocity for given areal density or total thickness
and minimization of the areal density or the total thickness
for the given impact velocity, using an updated version of the
Florence model.

The authors have been investigating the optimal thickness-
es of armour layers using a coupling of numerical methods,
such as the finite element method (FEM) with optimization
tools. The paper presents an approach that approximates the
objective function with a neural network and then searches for
its optimum by applying a hybrid adaptive simulated anneal-
ing algorithm (ASA). The study concerned the minimization
of the areal density of a two-component armour protecting
against a 7.62x54 B32 AP projectile.

2. Problem description

The optimization of a two-layer armour subjected to the nor-
mal impact of a 7.62x54 B32 AP projectile was carried out.
Calculations were performed for two cases, which differed
with the material of the second layer. The target diameter was
50 mm, and the initial velocity of the projectile was equal to
854 m/s. The geometry of the projectile and armour are shown
in Fig. 1. The aim of the study was to determine the layer
thicknesses providing protection against the assumed projec-
tile. The initial configuration and ranges of layer thicknesses
are listed in Table 1.
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Fig. 1. Configuration of studied problem

Table 1
Ranges of design variables and their initial values

Variant
Range

of thickness
[mm]

Initial thickness
[mm]

1 Al2O3

Armox 500T
Al2O3 6–10 8

Armox 500T 3–7 5

2 Al2O3

AA2024-T3
Al2O3 6–14 10

AA2024-T3 3–11 7

3. Optimization fundamentals

The issue of optimization can be simplified to determination
of the best admissible solutions of a given problem taking
into consideration the assumed criterion of quality [11]. The
optimization problem is composed of the following elements:
the set of design variables (design parameters), the objec-
tive function and the constraints. Its solution consists in the
identification of a set of design variables that ensure the min-
imization of the objective function:

min f(x). (1)

Satisfying the constraints:

hk(x) = 0, k = 1, 2, ..., l, (2)

gj(x) ≤ 0, j = 1, 2, ..., m. (3)

where f , g and h are functions of independent variables x1,
x2, x3, . . . , xn. The function f , referred to as the cost or
objective function, identifies the quantity to be minimised or
maximised. Functions g and h are constraint functions rep-
resenting the design restrictions. The variables collectively
described by the vector x are often referred to as design vari-
ables or design parameters. In the considered case the design
parameters were the thicknesses of both layers. As it was pre-
viously mentioned, the panel areal density was assumed to be
the objective function, whose minimum was sought. A limita-
tion was the projectile velocity after panel perforation, which
could not exceed 10% of its initial value. The character of
the constraint was based on the assumption that the panel
was mounted onto a vehicle hull, which provides the primary
protection.

Method of problem solution. The optimization calcula-
tions were performed using the coupling of LS-DYNA, LS-
OPT and HyperMorph. The optimization toolchain is depicted
in Fig. 2.

Fig. 2. Optimization toolchain

The LS-OPT package was used to define the optimization
problem, monitor the computation and analyse the results.
LS-OPT generated sets of design variables (layer thickness-
es), for which HyperMorph created meshes of the numerical
models. Then, appropriate calculations were conducted in LS-
DYNA software with the finite element method. The LS-OPT
package searched for the optimal solution employing response
surface model RSM, which replaces the actual objective and
response functions. In the considered case, the response sur-
face model, which was constructed based on an appropriately
selected set of numerical simulations, was a neural network
with radial basic functions RBF. The structure of the neural
network is shown in Fig. 3 [12]. In calculation, a neural net-
work made of three different layers was utilized. The input
layer was linear and a number of its neurons resulted from a
number of design variables. A single hidden layer consists of
nonlinear neurons described with radial functions. The linear
output layer is composed of one neuron, which superimpos-
es signals from the hidden layer giving representation of the
object and constraint functions.

Fig. 3. Radial neural network
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An approximation function built on the basis of the neural
network, depicted in Fig. 3, has the following form (4):

Y (x, W ) = W0 + W1g1 + W2g2 + · · · + WHgH

= W0 +

H∑

h=1

Whgh,
(4)

where x = (x1, ..., xn) represents vector of design vari-
ables, W is vector of neural network weights, Whn =
(Wh1, ..., Whn) is vector of hidden layer weights – location
of hth RBF centre, Wh0 controls the smoothness of hth RBF,
Wh = (W1, ..., Wh) is the vector of output layer weights –
weight of hth RBF, W0 – is bias of approximation function
Y and gh denotes RBF.

Radial functions change radially around the selected cen-
tre, each of which corresponds to only a local region of design
space [13]. Example of RBF is Hardy’s function formulated
as follows:

gh(x1, ..., xn) =
1√

r2 + W 2

h0

, (5)

where r distance between the input vector of design vari-
ables xk = (x1, . . ., xn) and the centre of hth RBF Whn =
(Wh1, . . ., Whn) in n-dimensional space calculated as:

r =

√√√√
n∑

k=1

(xk − Whk)2. (6)

Parameters of the neural network are determined during
its training. The learning procedure of RBF network consists
of three stages that include: choice of the centres of the hid-
den radial basis neurons Whn, choice of parameter Wh0 –
smoothness of the radial function for each hidden neuron, de-
termination of the weight factors between hidden and output
layer Wh [14]. In the presented case, the panel areal density
and results of numerical simulations such as projectile veloc-
ity after panel perforation were used for training. An example
of the response surface based on a neural network with two
radial functions in one-dimensional space is shown in Fig. 4.

Fig. 4. Approximation with radial neural network

The minimum of the so-defined objective function (4)
was found by applying a hybrid ASA algorithm. The hybrid
algorithm is a combination of two optimization algorithms:
ASA and a leapfrog optimizer for constrained minimization
(LFOPC). The adaptive annealing algorithm is a stochastic
procedure that makes it possible to find the basin of the ob-
jective function in which the global minimum is located [15].
The established solution is the starting point for the gradient-
based leapfrog algorithm, which enables the quick and accu-
rate determination of the global optimum [16].

Numerical model description. Numerical calculations
were performed with the non-linear finite element code LS-
DYNA, which is a commonly used tool for solving problems
associated with shock wave propagation, blasts and impacts.
An explicit integration scheme was used to solve the equa-
tion of motion. An axisymmetric model was built in order to
ensure sufficient discretization.

The Johnson-Cook (JC) constitutive model was used to
describe the behaviour of the aluminium alloy, armour steel
and projectile material. This model is typically applied in the
study of explosive metal forming, armour perforation and im-
pacts, i.e., situations that are accompanied by high strain rate
deformations. The flow stress in the constitutive relation is
expressed as [17]:

σy = (A + Bεn) (1 + C ln ε̇∗) (1 − (T ∗)m), (7)

where ε is the equivalent plastic strain, ε̇ is the plastic strain-
rate, and A, B, C, n, m are material constants. The nor-
malised strain-rate and temperature in Eq. (7) are given in the
following forms:

ε̇∗ =
ε̇

ε̇0

, (8)

T ∗ =
(T − T0)

(Tm − T0)
, (9)

where ε̇0 is the quasi-static threshold strain rate, T0 is the
reference temperature, and Tm is the melt temperature.

Pressure occurring during panel perforation is much larg-
er than the yield stress of ductile materials comprising the
model, which behave like a compressible liquid. This state
is defined as the hydrodynamic regime, and requires a state
equation for the determination of the constitutive model. In
the constructed model, the Gruneisen equation of state (EOS)
was used. The pressure for the compressed material is defined
as [18]:

p=
ρ0C

2µ
[
1 +

(
1 −

γ0

2

)
µ

a

2
µ2

]

[
1 − (S1−1)µ−S2

µ2

µ+1
−S3

µ3

(µ+1)2

]2

+ (γ0 + aµ)E

(10)

and for expanded materials:

p = ρ0C
2µ + (γ0 + aµ)E, (11)

where C is the bulk speed of sound, ρ0 is the initial density,
γ0 is the Gruneisen gamma, a is the first order volume cor-
rection to γ0, S1, S2, S3 are the coefficients of the slope of
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the shock wave velocity – particle velocity curve, and E is
internal energy, µ = (ρ/ρ0) − 1.The material data for the JC
model and the Gruneisen EOS applied in this work are listed
in Table 2 [19–23].

Table 2

JC model and Gruneisen EOS parameters for core, jacket, aluminium alloy
and armour steel

Name Symbol Unit Core Jacket AA2024-T3 Armox
500T

Source N/A N/A [19, 20] [21] [22, 23] [19, 20]

mass density RO g/cm3 7.85 8.8 2.81 7.85

shear modulus G GPa 79.6 44 28.6 79.6

Young’s modulus E GPa N/A N/A N/A N/A

Poisson’s ratio PR – N/A N/A N/A N/A

JC:

A GPa 1.576a 0.112 0.369 0.849

B GPa 2.906a 0.505 0.684 1.34

N – 0.1172a 0.42 0.73 0.0923

C – 0.00541 0.009 0.0083 0.00541

M – 0.87 1.68 1.7 0.87

melt temperature TM K 1800 1030 775 1800

room temperature TR K 293 293 293 293

referential strain rate EPSO 1/s 1 1 10 1

specific heat CP J/kgK 450 376 875 450

Gruneisen EOS:

C m/s 4570 3720 5382 4570

S1 – 1.49 1.328 1.338 1.49

S2 – 0 0 0 0

S3 – 0 0 0 0

GAMAO – 1.930 1.657 2 1.93

A – 0.5 0 0.48 0.5

JC FAILURE:

D1 – 0.0356a 0.54 −0.07 −0.4a

D2 – 0.0826a 4.89 1.02 1.5a

D3 – −2.5a 3.03 −1.62 −0.5a

D4 – 0 0.014 0 0

D5 – 0 1.12 0 0
a designated based on conducted experimental tests.

In order to describe the constitutive response of Al2O3

ceramics, the Johnson-Holmquist (JH2) model was employed.
This model is widely used for modelling the mechanical be-
haviour of brittle materials, such as ceramics, rock and con-
crete, for a high range of strain rates. Typically, the Johnson-
Holmquist relation is applied while dealing with ballistic im-
pacts on ceramics [24]. The normalised by Hugoniot Elastic
Limit (HEL) actual equivalent stress is linearly interpolated
from the current values of the normalized intact and fractured
strengths [25]:

σ∗ = σi ∗ −D (σi ∗ −σf∗) , (12)

where D is a damage variable, which ranges from 0 for in-
tact material to 1 for fully fractured material. The normalised
intact strength is given by:

σi∗ = A (P ∗ +T ∗)N (1 + C ln ε̇∗) (13)

and the normalised fracture strength is given by:

σf∗ = B (P∗)
M

(1 + C ln ε̇∗) , (14)

where A, B, C, M and N are material constants, P∗is the
normalised pressure, and ε̇∗ is the normalised strain-rate.
Most of the material data for the JH model which are giv-
en in Table 3, were taken from literature source [26] and the
others were designated during calibration of a numerical mod-
el reproducing bending and compression experimental tests.
Noteworthy is the average value of tensile strength T deviating
from properties of the best alumina commercially available.

Table 3
JH2 model parameters for ceramics

Name Symbol Unit Ceramics Al2O3

mass density RO g/cm3 3.89

shear modulus G GPa 152

JH2:

A - 1.056a

B - 0.45

C - 0.007

M - 0.6

N - 0.64

EPSI 1/s 1

T GPa 0.120a

SFMAX - 1

HEL GPa 9a

BETA - 1

EOS:

K1 GPa 231

K2 GPa -160

K3 GPa 2774

JH2 FAILURE:

D1 - 0.0125

D2 - 0.7
a designated based on conducted experimental tests.

Boundary conditions introduced in the model provided the
panel fixing. A support in the simulation was implemented by
removing the degrees of freedom from some of the nodes lo-
cated on the rear surface of each plate.

An initial condition in the model was that the velocity of
the projectile, which was set to be equal to 854 m/s.

Discussion of optimization results. The approximation of
the objective and the constraint function is depicted in Figs. 5
and 6, respectively. As a measure of the accuracy of the re-
sponse surface, the root mean square (RMS) error between
the predicted and computed values was adopted:

RMS =

√√√√ 1

P

P∑

i=1

(ŷi − yi)
2, (15)

where P is a number of numerical experiments, yi the results
of the numerical simulations, and ŷi the predicted values with
the response surface model. The error of objective function
RMS, depending on the variant, ranged from 0.000025 to
0.000394 kg/m2. In contrast, the RMS error for the constraint
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function ranged from 22.9 to 77.4 m/s. In the case of the ob-
jective function, the response surface model based on neural
network maps the panel areal density precisely as evidenced
by the negligible small RMS error. Panel areal density, as the
sum of the products of the layer thicknesses and their vol-
ume density, is a linear dependence, which neural networks
learn fast and efficiently. The constraint function approxima-
tion with the neural network is not as accurate as the objective
function. Discrepancies between the predicted and computed
values of constraint come from, among other things, its non-
linear character.

Fig. 5. Approximation of objective function

Fig. 6. Approximation of constraint function

Table 4

Results of two-layer armour optimization

Variant
Optimal
thickness

[mm]

Residual
projectile
velocity
[m/s]

Areal
density
[kg/m2]

1 Al2O3

Armox 500T
Al2O3 7.35

5.64 71.07
Armox 500T 5.42

2 Al2O3

AA2024-T3
Al2O3 11.09

6.45 71.82
AA2024-T3 10.20

Bull. Pol. Ac.: Tech. 63(1) 2015 177



P. Kędzierski, A. Morka, G. Sławiński, and T. Niezgoda

The layer thicknesses of the optimal panels for all cas-
es and their corresponding values of both the objective and
constraint function are listed in Table 4. The areal density of
the armours considered as optimal for variants 1 and 2 are
71.07 and 71.82 kg/m2, respectively. However, due to total
thickness, a better solution is the armour in which the ce-
ramic is supported by Armox 500T steel. Perforation of the
variant recognized as optimal is shown in Fig. 7. Computed
areal density is higher than the result obtained by Demir et al.
[27], who investigated the ballistic protection of a panel con-
sisting of alumina and 4340 steel against a 7.62×51 NATO
AP projectile. Their studies reveal that even a panel with the
areal density equal to 55 kg/m2 is able to arrest the projectile.
Shi and Grow [9] also determined that a two-component panel
(Al2O3/AA6061) with the areal density of 53 kg/m2 protects
against a 7.62×51 mm NATO AP projectile. The reason of
the difference is a low tensile strength of alumina used in the
optimization process which is one of the most critical para-
meter deciding on ceramic effectiveness at the time of impact.
Despite the reduced properties of alumina, the two-component
panel still shows predominance in relation to the panel made
entirely of Armox 500T steel, which, according to the experi-
mental and numerical study of Kilic and Ekici [28], provides
protection against a 7.62×54 B32 AP projectile with thick-
ness and areal density greater than 13 mm and 100 kg/m2,
respectively.

Fig. 7. Perforation of optimal panel

Validation. The optimization process was completed with
validation of the obtained results. Al2O3-Armox 500T panel
with the thickness of the alumina and steel layer equal to
7 and 6 mm was impacted by a 7.62x54 B32 AP projec-
tile. A difference in layer thicknesses between the optimal
and test variant resulted from a technological reason, how-
ever, an arrangement selected for validation contained within
the set of feasible solutions defined by a constraint function
and presents areal density comparable to the optimal solution,
namely 74.33 kg/m2. In accordance with the constraint func-
tion presented in Fig. 6, a projectile is arrested by a panel
with selected parameters. In experimental test, no perforation
was also observed, which proves that performed optimization
was correct. Armour components before and after impact are
depicted in Fig. 8. The ceramic layer was shattered during
test. Therefore, it is not shown in Fig. 8 after projectile im-
pact. A diameter of the real panel corresponded to a diameter
of the numerical one. The measured velocity of the projectile
was 834 m/s and it was close to the velocity in the numerical
model.

Fig. 8. Panel components before and after impact

4. Conclusions

The study resulted in the development of a panel optimiza-
tion methodology, which allows the determination of the layer
thicknesses of a panel with minimum areal density meeting
the constraint in the form of the maximum velocity of the
projectile after panel perforation. The conducted optimiza-
tion process demonstrated that the areal density of a two-
component panel is 71.07 and 71.82 kg/m2 for Al2O3-Armox
500T and Al2O3-AA2024-T3, respectively. At the same time
it was noted that tensile strength of ceramic is one of the key
factors deciding on effectiveness of double-layer armour.
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