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Nonlinear response of a harmonically driven oscillator
in magnetic field

PIOTR PRZYBYŁOWICZ and TOMASZ SZMIDT

The paper presents analysis of nonlinear response of a classical mechanical oscillator
placed within a magnetic field and driven by a harmonic force. With an appropriate choice
of control parameters, the system vibrates chaotically between different equilibrium positions.
To prove this result, Lyapunov exponents have been calculated using the algorithm proposed
by Rangarajan G., Habib S. and Ryne R. [18]. Moreover, the appropriate time series, phase
portrait, Poincaré cross-section and power spectrum are given to support the conclusion.
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1. Introduction

The electromagnetic damping of a mechanical oscillator undergoing harmonic exci-
tation was examined in [16] and [17]. It turned out that the damping can be efficient and
the effect of magnetic hysteresis has a minor impact on reduction of vibration amplitude.
Electromagnetic phenomena related to induction and hysteresis result in a nonlinear re-
sponse of the oscillator. In this paper we prove that with an appropriate selection of
control parameters, the system vibrates chaotically between different equilibrium posi-
tions.

The most powerful evidence of chaotic behavior is the highest positive Lyapunov ex-
ponent. There are several methods of calculating the highest exponent or even the whole
Lyapunov spectrum. According to [3], the most popular one is the algorithm proposed
by Wolf et al. [20]. It was used in investigations of chaotic behavior of many vibra-
ting systems. Among them are analyzes of equations of the mathematical pendulum and
Duffing oscillator subjected to harmonic excitation with random (white noise) frequency
[11], Duffing equation with inertial excitation coming from an unbalanced rotor attached
to the oscillator [7] and vibrations of a rotor supported by active magnetic bearings [12].

Wolf’s algorithm is computationally expensive [1, 2, 3] and "not very robust" [10].
Therefore, new methods of computing Lyapunov exponents or determining chaos have
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been developed. An analysis of wandering trajectories was proposed in [1] and applied
to a harmonically forced Duffing oscillator [1] and to classical Masing and Bouc-Wen
hysteretic oscillators [2]. Chaotic behaviour of linear vibrating systems with impacts was
analyzed in [8] with a new algorithm earlier proposed by the authors (this method was
further developed for systems without analytical solution between impacts, see [13]).
Yet another algorithm was proposed in a paper concerned with the Van der Pol oscillator
under parametric and external harmonic excitations [19] and free-vibrating undamped
Lennard-Jones oscillator with impacts [21]. Worth mentioning is the analytical method
of Melnikov functions, compared to Wolf’s algorithm in the case of the Duffing system
with nonlinear frictional damping and harmonic excitation [6].

The elegant method of computing the whole spectrum of Lyapunov exponents, which
will be used in our work, was proposed by Rangarajan G., Habib S. and Ryne R. [18].
The authors derived a set of differential equations for Lyapunov exponents, which can
be directly solved numerically. They tested the method with the classical harmonically
driven Van der Pol oscillator and with the Lorenz system, in both cases getting agreement
with numerical results obtained earlier through other methods.

Figure 1. Examined system – armature elastically suspended between electromagnets.

2. Analyzed system

The system is very similar to the one examined by authors in [17]. Between two
identical electromagnets, a mechanical harmonic oscillator of mass m = 1.5 [kg] is sus-
pended on springs whose stiffness equals k = 18000 [N/m], see Fig. 1. Inside the os-
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cillator there are steel cores embedded, which together with the electromagnets create
a magnetic circuit with length l = 200 [mm] and diameter 2a = 3 [mm]. Let us denote
A = πa2 the cross-section area of the core. Around each of the electromagnetic cores,
N = 320 wire coils having electric resistance R = 1.22 Ω are wound (copper with wire
diameter 0.25 [mm]) to which a constant voltage U = 7 [V] is supplied. The gaps be-
tween the armature and electromagnets are: z1 = δ + x, z2 = δ− x, where δ = 1 [mm],
and−δ¬ x¬ δ is a mechanically constrained displacement of the armature in the direc-
tion of the right-hand electromagnet. The parameter being changed in the investigations
is the amplitude F0 and frequency f of the harmonic force.

Electric conductivity of the steel cores (made of Si-Fe alloy, see [4]) amounts to σ =
2 ·106 (Ωm)−1. Its magnetic properties are described with the following ‘trigonometric’
primary magnetization curve

B = ϕ(H) = arctg
(
H

/
400

)
, H ­ 0. (1)

The above B−H curve and issuing curve of relative magnetic permeability µ = µ(H) =
ϕ(H)/(µ0H), where µ0 = 4π · 10−7 [Tm/A] denotes magnetic permeability of vacuum,
are presented in Fig. 2.

Figure 2. Primary magnetization curve and relative magnetic permeability of steel (according to eq. 1).

The shape of the real curve needs to be determined empirically. It depends not only
on the content of alloy, but also on the thermal and mechanical treatment of the specific
sample, which yields to different size and shape of grains and the crystallographic orien-
tation. According to [4] and [5], the saturation of Si-Fe alloy Bs ≈ 1.5 [T] is reached at
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Figure 3. Primary magnetization curve and relative magnetic permeability of steel (according to [17]).

Hs = 500 . . .5000 [A/m]1, so the curve presented in Fig. 2 seems to be a good model of
reality.

We changed the non-smooth bilinear curve used in [17] (see Fig. 3) and earlier in [9]
for the one given by equation (1). The only reason for doing this was to make compu-
tations of Lyapunov exponents quicker. Numerical computations of damped vibrations
showed that both curves that we have considered yield to similar results. What is most
important here, is taking into considerations the effect of magnetic saturation, which
leads to the appearance of new mechanical equilibrium points.

3. Dynamical equations

The dynamics for electric and magnetic circuits come from Maxwell’s equations. A
simple model of magnetic hysteresis by Bertotti is incorporated [4]. The detailed cal-
culations presented in [17] yield the following equations for space-average magnetic
induction in both rods B1,2

(
AN2

R
+

1
8

lσa2
)

dB1,2

dt
+2

(δ± x)
µ0

B1,2 + lϕ−1 (B1,2) =
NU
R

. (2)

Derive now a formula for the magnetic force. Let us assume, for a while, the average
induction in the core as a function of the gap size B = B(z) exclusively. Shifting the

1According to [14], two definitions of saturation exist. We refer to practical and pretty imprecise defi-
nition of saturation, i.e. the maximum induction at which the B−H curve starts to level-off. Theoretical
definition of saturation limH→∞(B−µ0H) is impractical, as it involves enormous magnetic field intensities,
not encountered in our system.
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oscillator away from the attracting electromagnet by a distance z, one accumulates in the
magnetic field filling up the gap some potential energy of density

u(z) =
B(z)2

2µ0
. (3)

This expression is derived for an ideal solenoid, but it remains true for an arbitrary ho-
mogeneous magnetic field. Thus, the amount of energy accumulated in the gap of size z
is

V (z) =
z∫

0

u(y)Ady =
A

2µ0

z∫

0

B(y)2dy (4)

and the magnetic force equals

F = 2
dV
dz

=
A
µ0

B2. (5)

Equation (5) is applicable to both electromagnets and the resultant magnetic force acting
on the oscillator in the direction of the right-hand electromagnet equals

Fm =
A
µ0

(
B2

2−B2
1
)
. (6)

In Fig. 4, both magnetic Fm and elastic Fe = kx forces are presented as functions of the
oscillator displacement. The dependence of Fm on U is implicit. It can bee seen from eq.
(2) – if one puts dB1,2/dt = 0, then the static equation for B1,2 is nonlinear with separate
terms B1,2 and tg(B1,2), therefore it has no explicit solution.

Figure 4. The magnetic Fm (eq. 6) and elastic Fe = kx forces acting on the system.



24 P. PRZYBYŁOWICZ, T. SZMIDT

The dynamics of the oscillator is governed by the coupled mechano-electromagnetic
equations of motion, which have been derived using Newton’s Second Law. The full sys-
tem is described by the following set of nonlinear differential equations for the oscillator
position x, see [17]

mẍ =
A
µ0

(
B2

2−B2
1
)− kx+F0 sin(2π f t)

(
AN2

R
+

1
8

lσa2
)

dB1,2

dt
+2

(δ± x)
µ0

B1,2 + lϕ−1 (B1,2) =
NU
R

(7)

x(0) = x0, ẋ(0) = v0, B1,2 (0) = ϕ(H01,2)

where H01,2 is found from the implicit expression (index ‘1’ refers to the left magnetic
circuit, ‘2’ – to the right one):

H01,2 =
NU
R

2µ(H01,2) (δ± x0)+ l
. (8)

4. Trajectories

The trajectories for t = 0,1/(32 f ), . . . ,100 [s] (sampling with frequency 32 f and
simulation length 100 [s]), and for t = 0,1/(4 f ), . . . ,2000 [s] have been generated using
the Runge-Kutta-Fehlberg method applied to equations (7). The displacement of the
oscillator for excitation frequency f = 13 [Hz] and sampling 32 f is presented in Fig. 5.

Figure 5. Displacement of the oscillator, amplitude F0 = 1.1 [N] (left) and F0 = 0.3 [N] (right), frequency
f = 13 [Hz], sampling 32 f .

We can see that excitation amplitude F0 = 1.1 [N] (left) results in chaotic vibrations
of the oscillator. When we set F0 = 0.3 [N] (right), the oscillator vibrates periodically
around one of the mechanical equilibrium points x∗ ≈ 0.48 [mm] – the displacement for
which elastic force equals magnetic one (see Fig. 4).

The power spectrum of the displacement, obtained for the same parameters and sam-
pling, is presented in Fig. 6. We analyzed trajectories for time moments between 30 and
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50 [s] to abandon the transient state at the beginning of simulation. Continuous spec-
trum on the left side (with one distinctive frequency of the excitation) is characteristic
for chaotic systems. On the right side there is a spectrum with one peak corresponding to
the excitation frequency and a small hump around the peak, which means that periodic
vibrations are nearly harmonic.

Figure 6. Power spectrum of displacement, amplitude F0 = 1.1 [N] (left) and F0 = 0.3 [N] (right), frequency
f = 13 [Hz], sampling 32 f .

Similar conclusions arise when we observe the behavior of the system in 3-
dimensional space (x,v,B1), see Fig. 7. Here the trajectories calculated for time mo-
ments between 25 and 40 [s] were analyzed to omit the transient state at the beginning
of simulation and make the chaotic attractor clear. On the left picture we can see that the
attractor levels-off at the top of the box, which is due to the effect of magnetic saturation.
Moreover, trajectories converge to the limit set, which probably has a fractional Haus-
dorff dimension (however computations of this dimension were not performed). Several
other definitions of fractional dimension may be found in [15].

Figure 7. 3-d attractor in (x,v,B1) space, amplitude F0 = 1.1 [N] (left) and F0 = 0.3 [N] (right), frequency
f = 13 [Hz], sampling 32 f .

We close up qualitative analysis of the nonlinear behavior of the system with the
Poincaré cross-sections on the x− v plane for t = 0,1/ f , . . . ,2000 [s], see Fig. 8.
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Figure 8. Poincaré cross-sections on the x− v plane for t = 0,1/ f , . . . ,2000 [s], amplitude F0 = 1.1 [N]
(left) and F0 = 0.3 [N] (right), frequency f = 13 [Hz], sampling 4 f .

5. Lyapunov exponents

The most powerful evidence that a dynamical system exhibits chaotic behavior is the
highest positive Lyapunov exponent. We calculated the whole spectrum of 4 Lyapunov
exponents of the analyzed system using the algorithm proposed in [18], which will be
described shortly here.

Dynamical system (7) is governed by the set of equations

ż = F(z, t) (9)

where z = (x,v,B1,B2). Suppose that the fiducial trajectory z0(t) is given for all t. Lya-
punov exponents are strictly connected to the time evolution of deviations from the
fiducial trajectory Z(t) = z(t)− z0(t). This evolution is obtained by linearization of (9)
around z0

Ż = DFz(z0, t) ·Z,

where DFz(z0, t) denotes derivative of F with respect to variables z evaluated at z0 and t.
Integrating the above equations along the fiducial trajectory yields linear transformation
M(t), which turns the initial deviation Zin into Z(t)

Z(t) = M(t) ·Zin.

By differentiating this equation we obtain a differential expression for the matrix M

Ṁ = DFz ·M. (10)

The Lyapunov exponents of (9) are equal to the logarithm of the eigenvalues of Λ =
limt→∞(MMT )1/2t .
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Table 1. Lyapunov spectrum, frequency f = 13 [Hz], sampling 32 f

Lyapunov exp λ1 λ2 λ3 λ4

F0 = 1.1 [N] 11.7 -14.0 -3443 -10202

F0 = 0.3 [N] -0.6 -0.8 -3512 -8406

Instead of solving (10), the authors of the considered algorithm use linear algebra
theorems to factorize the matrix M and obtain intrinsically well-behaved equations for
the Lyapunov exponents and auxiliary variables. In our case, this approach leads to a
set of 4 differential equations for system (7) together with 4 equations for Lyapunov
exponents and 6 additional equations for angles. These 14 equations are given in an
explicit form, however the equations for angles are especially complicated and cannot
be included in the paper.

The trajectory for t = 0,1/(32 f ), . . . ,100 [s] has been generated using Runge-Kutta-
Fehlberg integrator applied to 14 equations described above. The Lyapunov exponents
converge to their true values when time goes to infinity – see Fig. 9 for convergence of
the highest exponent.

Figure 9. Convergence of the highest Lyapunov exponent, amplitude F0 = 1.1 [N] (left) and F0 = 0.3 [N]
(right), frequency f = 13 [Hz], sampling 32 f .

The estimated values of the exponents have been calculated by taking averages for
time moments 80¬ t ¬ 100. The results are shown in Table 1.

From the beginning we assumed the amplitude of the excitation F0 = 1.1 [N] for the
chaotic behavior of the system and F0 = 0.3 [N] for the periodic one. The dependence
of the character of vibrations on the amplitude is presented in Fig. 10.
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Figure 10. The sign of highest Lyapunov exponent, frequency f = 13 [Hz], sampling 32 f .

6. Concluding remarks

To sum up, we proved that in certain conditions, the analyzed system of an elec-
tromagnetically damped mechanical oscillator presents chaotic behavior. The algorithm
proposed in [18] turned out to be efficient in computations of Lyapunov spectrum.

It is interesting if a real physical system would present similar chaotic behavior. We
expect that several simplifying assumptions undertaken in the mathematical modeling of
the system may have only minor influence on quantitative results, not qualitative ones.

In future research we will theoretically study a method of vibration damping by ap-
plication of electromagnetic actuators in continuous systems, such as pipes conveying
fluids or cantilever beams subjected to follower loads. Additionally, active control of the
damping mechanism will be developed. Therefore, it is necessary to investigate dynam-
ics of systems with magnetic actuators thoroughly, regardless of the fact whether the
chaotic response in real conditions would appear or not.
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