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A stabilization method of inhomogeneous ladder
networks with nonlinear elements

PAWEL SKRUCH

In the paper, different structures of electric ladder networks are considered: RC, RL, and
RLC. Such systems are composed of resistors, inductors and capacitors connected in series.
The elements of the network are not identical and have nonlinear characteristics. The network’s
dynamic behavior can be mathematically described by nonlinear differential equations. A class
of robust feedback controls is designed to stabilize the system. The asymptotic stability of the
closed-loop system is analyzed and proved by the use of Lyapunov functionals and LaSalle’s
invariance principle. The results of computer simulations are included to verify theoretical anal-
ysis and mathematical formulation.
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1. Introduction

1.1. Motivation

In recent years there has been a growing attention to studies on ladder networks
because they are strictly correlated to integrated interconnection problems, coupled me-
chanical systems, analog neural nets, distributed amplifiers, and so on. Ladder networks
may be described as networks formed by numerous repetitions of an elementary cell. In
case of an electric ladder network, the elementary cell may consist of resistors, induc-
tance coils, and capacitors connected in series or in parallel. If all the elementary cells
are identical, the ladder network is said to be homogeneous; if the elementary cells are
not identical, the ladder network is called inhomogeneous.

Electric ladder networks may be employed to model both electrical and nonelectrical
systems with distributed parameters. They may be used to calculate the voltage distribu-
tion in insulator string and in the windings of electric machines and transformers. They
may also be employed to compute the pressure distribution in mechanical and thermal
systems with distributed parameters. Ladder networks composed of reactive elements,
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such as inductance coils and capacitors, are used as artificial delay lines, in which the
output signal lags behind the input signal; in such delay lines, the delay time is deter-
mined by the network parameters. Ladder networks are also deployed as electric filters.

Nonlinear circuit elements have a wide range of use in many areas of electrical en-
gineering. They are incorporated into a circuit to design electronic devices with specific
features that could not be achieved with linear elements. For example, nonlinear circuit
elements are essential building blocks in many electronic circuits, such as parametric
amplifiers, up-converters, mixers, low-power microwave oscillators, electronic tuning
devices, etc. Typical nonlinear elements include nonlinear capacitors (varactor diode,
junction diode), nonlinear inductors (saturable core inductor, Josephson junctions, fer-
roresonant power systems), and nonlinear resistors (tunnel diode, thyristor, dead-zone
conductor, serially connected Zener diodes, neon bulb, etc.).

In this paper, inhomogeneous structures of electric ladder networks are considered
and mathematically analyzed. It is assumed that the elements in these structures are not
identical and have in general nonlinear characteristics. The primary goal of the paper is
to construct stabilizing feedback control laws that asymptotically stabilize the system.

1.2. Related work

The properties of electrical ladder networks have been already studied in the past.
Control problems for linear RL, RC, LC, and RLC electrical circuits are widely dis-
cussed in [8, 9, 10]. The dynamics and detailed characteristics of nonlinear electrical
circuits are considered in [1, 7]. The papers [16, 17] cope with linear and nonlinear stabi-
lization techniques for a nonlinear RLC circuit. To stabilize the system, authors have con-
structed various forms of the feedback. The asymptotic stability (in the Lyapunov sense
[6]) of the closed-loop system has been proved by LaSalle’s invariance principle [5]
using special Lyapunov functions. Control problems for nonlinear RLC circuits are dis-
cussed in [2, 3, 15, 22]. The main motivation and the source of inspiration during prepa-
ration of this material were results obtained in [4, 11, 12, 13, 14, 18, 19, 20, 21, 23, 24].
They have played the crucial role and cleared the way to the main results.

1.3. Organization of the paper

The paper is organized as follows. In Section 2, nonlinear circuit elements are math-
ematically characterized. Mathematical models of selected electrical ladder networks are
described in Section 3. Section 4 is dedicated to synthesis of stabilizing feedback con-
trols. A computational example is presented in Section 5. Conclusions are in Section 6.

2. Nonlinear circuit elements

2.1. Nonlinear resistors

The most common nonlinear circuit element is a nonlinear resistor. The element
is fully characterized by the relationship between voltage, current, and resistance. This
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relationship is usually described by an algebraic equation. The paper focuses on so called
current-controlled resistors what means that the voltage drop vr across the resistor can
be written as

vr(t) = r(i)i(t), (1)

where r stands for the resistance, i denotes the current.
In this paper, we assume that all resistors are dissipative. A resistor is called dissipa-

tive if for all real numbers vr and i it holds that vri ­ 0. The product vri represents the
power supplied to the component, therefore a dissipative resistor is characterized by the
property that no voltage-current pair can produce negative power.

2.2. Nonlinear inductors

A nonlinear inductor is an example of a dynamic nonlinear circuit element. The
relationship between the voltage drop vl across the inductor, the flux ϕ, and the current i
is described by the nonlinear differential equation of the form

vl(t) =
dϕ(t)

dt
=

d(l(i)i(t))
dt

= g(i)
di(t)

dt
, (2)

where l denotes the inductance, g(i) = l(i)+ i(t)dl(i)
di .

2.3. Nonlinear capacitors

A capacitor is defined as an electronic component whose charge is a function of
voltage. In this paper, rather than defining the capacitance, it is used the function vc(q)
that gives the voltage drop across the capacitor.

3. Mathematical description of electric ladder networks

3.1. RC ladder network

Consider a nonlinear analogue circuit shown in Fig. 1. The circuit consists of a set

u(t) C1

R1i1 i2 in

j1 j2 jn

R2

C2 Cn

Rn

Figure 1. Schematic diagram of an RC ladder network.

of resistors Rk and capacitors Ck that are connected together to form a network. The re-
sistors and capacitors are different and have nonlinear characteristics: rk(ik) and vck(qk),



316 P. SKRUCH

respectively, k = 1,2, . . . ,n, ik(t), jk(t) denote the currents in the circuit, pk(t), qk(t)
stand for the corresponding electric charges, that is ṗk(t) = ik(t), q̇k(t) = jk(t). The cir-
cuit is powered by a voltage source u(t).

According to Kirchhoff’s voltage law, the sum of the voltage drops in a closed circuit
is equal to zero, therefore

r1(i1)i1(t)+ vc1(q1) = u(t), (3)

r2(i2)i2(t)+ vc2(q2) = vc1(q1), (4)

and so on
rn(in)in(t)+ vcn(qn) = vcn−1(qn−1). (5)

Let introduce the notation: iii(t) = [i1(t) i2(t) . . . in(t)]T, jjj(t) = [ j1(t) j2(t) . . . jn(t)]T,
ppp(t) = [p1(t) p2(t) . . . pn(t)]T, qqq(t) = [q1(t)q2(t) . . . qn(t)]T, ṗpp(t) = iii(t), q̇qq(t) = jjj(t).
Without loss of generality it can be considered that

rk(ik) = rk(ṗk) = rk(ṗpp), k = 1,2, . . . ,n, (6)

vck(qk) = vck(pk, pk+1) = vck(ppp), k = 1,2, . . . ,n−1, (7)

vcn(qn) = vcn(pn) = vcn(ppp). (8)

Then, the circuit’s dynamic behavior can be governed by the following equation

RRR(ṗpp)
dppp(t)

dt
+VVVC(ppp) = BBBu(t), ppp(0) = ppp0, (9)

where ppp(t) ∈ Rn, u(t) ∈ R, ppp0 ∈ Rn is a given initial condition, t > 0,

RRR(ṗpp) = diag(r1(ṗpp),r2(ṗpp), . . . ,rn(ṗpp)), (10)

VVVC(ppp) =


vc1(ppp)

vc2(ppp)− vc1(ppp)
...

vcn(ppp)− vcn−1(ppp)

 , (11)

BBB =
[
1 0 . . . 0

]T
. (12)

The fundamental assumptions on which further results are based can be characterized in
the form:

Assumption 1 The resistances rk, k = 1,2, . . . ,n are continuous functions with continu-
ous derivatives and rk(ṗk)> 0 for ṗk ∈Ωrk ⊂ R, where Ωrk is a neighborhood of zero.

Assumption 2 The characteristics vck , k = 1,2, . . . ,n of the capacitors are continuous
functions with continuous derivatives and pppTVVVC(ppp)> 0 for ppp ̸= 000 in some neighborhood
Ωc ⊂ Rn of zero.

Lemma 1 ( [22]) The matrix RRR(ṗpp) is positive definite for each ṗpp ∈ Ωr ⊂ Rn, where Ωr
is a neighborhood of zero.
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3.2. RL ladder network

Consider an RL ladder network which schematic diagram is shown in Fig. 2. The

u(t)

L1 L2 Ln

R1 R2 Rn

i1 i2 in

j1 j2 jn

Figure 2. Schematic diagram of an RL ladder network.

network consists of inductors Lk, resistors Rk, and a voltage source u(t). The inductors
and resistors are different and have nonlinear characteristics: lk(ik) and rk( jk), respec-
tively, where k = 1,2, . . . ,n, ik(t), jk(t) denote the currents in the circuit.

By applying Kirchhoff’s voltage and current laws to the circuit, we can obtain the
differential equation that describes the dynamics of electric current flow

GGG(iii)
diii(t)

dt
+RRR(iii)iii(t) = BBBu(t), iii(0) = iii0, (13)

where iii(t) = [i1(t) i2(t) . . . in(t)]T ∈ Rn, iii0 ∈ Rn is a given initial condition, u(t) ∈ R,
t > 0,

GGG(iii) = diag(g1(iii),g2(iii), . . . ,gn(iii)), (14)

gk(iii) = lk(ik)+ ik(t)
dlk(ik)

dik
, k = 1,2, . . . ,n, (15)

RRR(iii) =



a1 b2 0 . . . 0 0
c2 a2 b3 . . . 0 0
0 c3 a3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . an−1 bn

0 0 0 . . . cn an


, (16)

a1 = r1(iii), ai = rk−1(iii)+ rk(iii), bi = ci =−rk−1(iii), k = 2,3, . . . ,n, (17)

BBB =
[
1 0 . . . 0

]T
. (18)

The objective of the paper is to study the RL ladder network system (13) under the
following conditions:
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Assumption 3 The resistances rk, k = 1,2, . . . ,n are continuous functions with continu-
ous derivatives and rk(ik)> 0 for ik ∈Ωrk ⊂ R, where Ωrk is a neighborhood of zero.

Assumption 4 The inductances lk, k = 1,2, . . . ,n are continuous functions with contin-
uous derivatives, lk(ik)> 0 for ik ∈Ωlk ⊂R, iiiTGGG(iii)iii > 0 for iii ∈Ωl ⊂Rn and iii ̸= 000, Ωlk ,
Ωl are some neighborhoods of zero.

3.3. RLC ladder network

Consider an RLC ladder network which schematic diagram is presented in Fig. 3.
The circuit consists of a set of resistors Rk, inductors Lk, and capacitors Ck that are

u(t)

L1 L2 Ln

C1

R1

C2

R2

Cn

Rn

i1 i2 in

j1 j2 jn

Figure 3. Schematic diagram of an RLC ladder network.

connected in the network form. The circuit is powered by a voltage source u(t). The
elements in the circuit have nonlinear characteristics described by the functions rk( jk),
lk(ik), vck(qk), k = 1,2, . . . ,n, where ik(t), jk(t) denote the currents in the circuit, pk(t),
qk(t) stand for the corresponding electric charges, that is ṗk(t) = ik(t), q̇k(t) = jk(t).

Modeling of the RLC ladder network can be done using Kirchhoff’s voltage and
current laws. This approach leads to the following differential equation

GGG(ṗpp)
d2 ppp(t)

dt2 +RRR(ṗpp)
dppp(t)

dt
+VVVC(ppp) = BBBu(t), ppp(0) = ppp0, ṗpp(0) = ṗpp0, (19)

where ppp(t) = [p1(t) p2(t) . . . pn(t)]T ∈Rn, iii(t) = ṗpp(t), ppp0 ∈Rn, ṗpp0 ∈Rn, u(t)∈R, t > 0,

GGG(ṗpp) = diag(g1(ṗpp),g2(ṗpp), . . . ,gn(ṗpp)), (20)

gk(ṗpp) = gk(iii) = lk(ik)+ ik(t)
dlk(t)

dik
, k = 1,2, . . . ,n, (21)

RRR(ṗpp) =



a1 b2 0 . . . 0 0
c2 a2 b3 . . . 0 0
0 c3 a3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . an−1 bn

0 0 0 . . . cn an


, (22)



A STABILIZATION METHOD OF INHOMOGENEOUS LADDER NETWORKS
WITH NONLINEAR ELEMENTS 319

a1 = r1(ṗpp), ai = rk−1(ṗpp)+ rk(ṗpp), bi = ci =−rk−1(ṗpp), k = 2,3, . . . ,n, (23)

VVVC(ppp) =


vc1(ppp)

vc2(ppp)− vc1(ppp)
...

vcn(ppp)− vcn−1(ppp)

 , (24)

BBB =
[
1 0 . . . 0

]T
. (25)

The following assumptions play an important role in further results:

Assumption 5 The resistances rk, k = 1,2, . . . ,n are continuous functions with continu-
ous derivatives and rk(ṗk)­ 0 for ṗk ∈Ωrk ⊂ R, where Ωrk is a neighborhood of zero.

Assumption 6 The inductances lk, k = 1,2, . . . ,n are continuous functions with contin-
uous derivatives, lk(ṗk)> 0 for ṗk ∈Ωlk ⊂R, ṗppTGGG(ṗpp)ṗpp > 0 for ṗpp∈Ωl ⊂Rn and ṗpp ̸= 000,
Ωlk , Ωl are some neighborhoods of zero.

Assumption 7 The characteristics vck , k = 1,2, . . . ,n of the capacitors are continuous
functions with continuous derivatives and pppTVVVC(ppp)> 0 for ppp ̸= 000 in some neighborhood
Ωc ⊂ Rn of zero.

Lemma 2 ( [22]) The matrix RRR(ṗpp) is semi-positive definite for each ṗpp∈Ωr ⊂Rn, where
Ωr is a neighborhood of zero.

4. Synthesis of a stabilizing feedback controller

Consider a dynamic compensator that is connected in parallel to the ladder network
system as shown in Fig. 4

ẇ(t) =−αw(t)+βu(t), w(0) = w0, (26)

and the following feedback

u(t) =− 1

K0 + γ(w(t)+ y(t))2 (w(t)+ y(t)) , (27)

where w(t) ∈ R, t > 0, w0 ∈ R, α > 0, β > 0, γ ­ 0, K0 > 0, y(t) = BBBT ppp(t) in case of
charge-feedback control or y(t) = BBBTiii(t) in case of current-feedback control.

Theorem 8 Suppose assumptions 1 and 2 hold. If there exists a neighborhood Ωpw ⊂
Rn×R of zero in which the closed-loop system (9), (26), (27) has only one equilibrium
point (pppe,we) = (000,0), then this point is locally asymptotically stable in the Lyapunov
sense.
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System

Compensator

Controller

Figure 4. Block diagram of the closed-loop system with parallel compensation.

Proof Consider the following Lyapunov function

V (zzz) =

ppp(t)∫
000

VVVC(ξξξ)T dξξξ+
α
2β

w(t)2 +Vγ(zzz), (28)

where zzz(t) = col(ppp(t),w(t)),
∫ ppp(t)

000 (. . .) dξξξ denotes a line integral along the straight line
in the space Rn from the beginning point 000 to the ending point ppp(t),

Vγ(zzz) =

{ 1
2K0

(w(t)+ y(t))2 , for γ = 0,
1
2γ ln

(
1+ γ

K0
(w(t)+ y(t))2

)
, for γ > 0.

(29)

The time derivative of the function (28) becomes

V̇ (zzz) = ∇ppp

 ppp∫
000

VVVC(ξξξ)T dξξξ

 ṗpp(t)+
α
β

w(t)ẇ(t)+V̇γ(zzz)

=VVVC(ppp)T ṗpp(t)+
α
β

w(t)ẇ(t)−u(t)(ẇ(t)+ ẏ(t)) . (30)

Evaluating V̇ (zzz) along the trajectory of the closed-loop system (9), (26), (27) gives

V̇ (zzz) =VVVC(ppp)T (RRR(ṗpp)−1BBBu(t)−RRR(ṗpp)−1VVVC(ppp)
)
+

α
β

w(t)(−αw(t)+βu(t))

−u(t)(−αw(t)+βu(t))−u(t)BBBT (RRR(ṗpp)−1BBBu(t)−RRR(ṗpp)−1VVVC(ppp)
)
. (31)

After some elementary calculations

V̇ (zzz) =VVVC(ppp)TRRR(ṗpp)−1BBBu(t)−VVVC(ppp)TRRR(ṗpp)−1VVVC(ppp)− α2

β
w(t)2

+2αw(t)u(t)−βu(t)2−u(t)BBBTRRR(ṗpp)−1BBBu(t)+u(t)BBBTRRR(ṗpp)−1VVVC(ppp), (32)
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it can be seen that

V̇ (zzz) =−(BBBu(t)−VVVC(ppp))T RRR(ṗpp)−1 (BBBu(t)−VVVC(ppp))−β
(

α
β

w(t)−u(t)
)2

, (33)

and finally

V̇ (zzz) =−ṗpp(t)TRRR(ṗpp)ṗpp(t)− 1
β

ẇ(t)2. (34)

Let Ωh be a compact set defined as

Ωh =
{

zzz ∈Ωpw ⊂ Rn+1 : V (zzz)< h
}
, (35)

where h > 0 is a real positive number. With the help of lemma 3 it can be noticed that
V (zzz) > 0 for zzz ∈ Ωh\{000}, V (000) = 0 and V̇ (zzz) ¬ 0 for zzz ∈ Ωh. As a consequence of
LaSalle’s invariance principle [5], the trajectories of the closed-loop system (9), (26),
(27) enter the largest invariant set in S, where

S = {zzz ∈Ωh : V̇ (zzz) = 0}. (36)

From V̇ (zzz) = 0 it follows that

ṗpp(t) = 0 and ẇ(t) = 0. (37)

This means that S contains only equilibrium points of the system (9), (26), (27). Since
the system has only one equilibrium point in the considered neighborhood, thus S = {000}
and according to LaSalle’s principle, the origin 000 ∈Rn+1 is asymptotically stable (in the
Lyapunov sense).

Theorem 9 Suppose assumptions 3 and 4 hold. If there exists a neighborhood Ωiw ⊂
Rn×R of zero in which the closed-loop system (13), (26), (27) has only one equilibrium
point (iiie,we) = (000,0), then this point is locally asymptotically stable in the Lyapunov
sense.

Proof The proof can be carried out almost exactly like the proof of theorem 8.

Theorem 10 Suppose assumptions 5, 6, and 7 hold. If there exists a neighborhood
Ωpṗw ⊂ Rn×Rn×R of zero in which the closed-loop system (19), (26), (27) has only
one equilibrium point (pppe, ṗppe,we) = (000,000,0), then this point is locally asymptotically
stable in the Lyapunov sense.

Proof Consider the following Lyapunov function candidate

V (zzz) =

ṗpp(t)∫
000

ξξξTGGG(ξξξ)dξξξ+
ppp(t)∫
000

VVVC(ξξξ)T dξξξ+
α
2β

w(t)2 +Vγ(zzz), (38)
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where zzz(t) = col(ppp(t), ṗpp(t),w(t)),
∫ ppp(t)

000 (. . .) dξξξ,
∫ ṗpp(t)

000 (. . .) dξξξ denote line integrals
along the straight line in the space Rn from the beginning point 000 to the ending points
ppp(t) and ṗpp(t), respectively,

Vγ(zzz) =

{ 1
2K0

(w(t)+ y(t))2 , for γ = 0,
1
2γ ln

(
1+ γ

K0
(w(t)+ y(t))2

)
, for γ > 0.

(39)

Differentiate V (zzz) with respect to time t

V̇ (zzz) = ∇ ṗpp

 ṗpp∫
000

ξξξTGGG(ξξξ)dξξξ

 p̈pp(t)+∇ppp

 ppp∫
000

VVVC(ξξξ)T dξξξ

 ṗpp(t)+
α
β

w(t)ẇ(t)+V̇γ(zzz)

= ṗpp(t)TGGG(ṗpp)p̈pp(t)+VVVC(ppp)T ṗpp(t)+
α
β

w(t)ẇ(t)−u(t)(ẇ(t)+ ẏ(t)) , (40)

and next substitute (19) and (26) into (40)

V̇ (zzz) = ṗpp(t)TGGG(ṗpp)
(
GGG(ṗpp)−1BBBu(t)−GGG(ṗpp)−1RRR(ṗpp)ṗpp(t)−GGG(ṗpp)−1VVVC(ppp)

)
+VVVC(ppp)T ṗpp(t)

+
α
β

w(t)(−αw(t)+βu(t))−u(t)(−αw(t)+βu(t))−u(t)BBBT ṗpp(t). (41)

After some elementary calculations

V̇ (zzz) =−ṗpp(t)TRRR(ṗpp)ṗpp(t)−β
(

α
β

w(t)−u(t)
)2

, (42)

what can be also expressed in the shorter form

V̇ (zzz) =−ṗpp(t)TRRR(ṗpp)ṗpp(t)− 1
β

ẇ(t)2. (43)

With the help of lemmas 3 and 4 it can be noticed that V (zzz)> 0 for zzz ∈Ωh\{000}, V (000) =
0, and V̇ (zzz)¬ 0 for zzz ∈Ωh, where Ωh is a compact set defined as follows

Ωh =
{

zzz ∈Ωpṗw ⊂ R2n+1 : V (zzz)< h
}
, (44)

and h is a real positive number. According to LaSalle’s theorem [5], the trajectories enter
the largest invariant set in S, where

S = {zzz ∈Ωh : V̇ (zzz) = 0}. (45)

To prove that all solutions starting from Ωh tend to zero, it is sufficient to show that S
contains only the zero solution. The condition V̇ (zzz) = 0 holds if and only if ṗpp(t) = 0 and
ẇ(t) = 0, therefore S contains all equilibrium points of the system (19), (26), (27). Since
the system has only one equilibrium point, thus S = {000}.
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Lemma 3 ( [24]) If pppTVVVC(ppp)> 0 for ppp ̸= 000, then the line integral
∫ ppp

000 VVVC(ξξξ)T dξξξ along
the straight line in the space Rn from the beginning point 000 to the ending point ppp ( ppp ̸= 000)
is positive.

Lemma 4 ( [24]) If ṗppTGGG(ṗpp)ṗpp > 0 for ṗpp ̸= 000, then the line integral
∫ ṗpp

000 ξξξTGGG(ξξξ)dξξξ along
the straight line in the space Rn from the beginning point 000 to the ending point ṗpp ( ṗpp ̸= 000)
is positive.

5. Numerical example

Consider an RLC circuit presented in Fig. 5. The characteristics of the resistor R2,

u(t)

L1 L2

C1 C2

R2

i1 i2

j1 j2

Figure 5. RLC ladder network with n = 2.

the inductors L1, L2, and the capacitors C1, C2 are nonlinear and can be written in the
following analytic form:

r2(ṗpp) =
0.2

1+0.5ṗ2
2
, (46)

l1(ṗpp) = 0.1e ṗ2
1 , l2(ṗpp) = 0.2eṗ2

2 , (47)

vc1(ppp) = (p1− p2)e0.3(p1−p2)
2
, vc2(ppp) = p2e0.5p2

2 . (48)

The dynamics of electric charge flow in the circuit can be described in the form

GGG(ṗpp)
d2 ppp(t)

dt2 +RRR(ṗpp)
dppp(t)

dt
+VVVC(ppp) = BBBu(t), (49)

where ppp(t) = col(p1(t), p2(t)) ∈ R2, u(t) ∈ R, t > 0,

GGG(ṗpp) =

[
0.1e ṗ2

1
(
1+2ṗ2

1
)

0
0 0.2e ṗ2

2
(
1+2ṗ2

2
)] , (50)
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RRR(ṗpp) =

[
0 0
0 0.2

1+0.5ṗ2
2

]
, (51)

VVVC(ppp) =

[
(p1− p2)e0.3(p1−p2)

2

p2e0.5p2
2

]
, (52)

BBB =
[
1 0

]T
. (53)

The following initial conditions are used for the differential equation (49):

p1(0) = 0.3, p2(0) = 0.2, (54)

ṗ1(0) = 0.0, ṗ2(0) = 0.0. (55)

Introduce one-dimensional parallel compensator

ẇ(t)+0.2w(t) = 0.5u(t), w(0) = 0, (56)

and design the controller

u(t) =−50.0(w(t)+ p1(t)) . (57)

It is easy to check that assumptions 5, 6, and 7 hold. In some neighborhood of zero
the closed-loop system (49), (56), (57) has only zero equilibrium point. According to
theorem 10 the closed-loop system is then asymptotically stable. The trajectories of the
open-loop system (dot line) and closed-loop system (solid line) are shown in Figs. 6–8.
The control voltage u(t) and the state variable w(t) of the compensator are presented in
Figs. 9 and 10.

6. Conclusions

The paper has addressed the stabilization problem for inhomogeneous electric lad-
der networks with nonlinear elements. A dynamic feedback control law has been pro-
posed to make the state asymptotically stable. The asymptotic stability (in the Lyapunov
sense) of the closed-loop systems have been proved by the use of Lyapunov function-
als and concluded by LaSalle’s invariance principle. The designed dynamic controller
is one-dimensional and system size independent. Stabilization in a wide range of the
controller parameters improves the system’s robustness. The controller provides also
excellent damping and dynamic performance improvement in comparison with open-
loop systems. Numerical calculations and computer simulations have been performed in
the MathWorksTM MATLAB R⃝/Simulink R⃝ environment to show the effectiveness of the
proposed method.
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Figure 6. The electric charge p1(t) and the current ṗ1(t) in the open-loop circuit (dot line) and closed-loop
circuit (solid line).
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