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High performance backstepping control of induction
motor with adaptive sliding mode observer

IBTISSEM BAKHTI, SOUAD CHAOUCH and ABDESSELAM MAAKOUF

It is well known that modern control of induction motor relies on a good dynamic model of
the motor. Extensive research and activity have been devoted to the problem of induction motor
control over the last decade. In this paper we introduce backstepping control with amelioration
of performance to guarantee stability of the system. Accurate knowledge of the rotor speed and
flux position is the key factor in obtaining a high-performance and high-efficiency induction-
motor drive. Thus a sliding mode observer design is presented. Simulation results are included
to illustrate good performance of backstepping control of sensorless induction motors with flux
observer.
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1. Introduction

Induction motor serves as the example of difficult object to control thus new con-
trol and model identification methods need to be used. The motor constitutes nonlinear
models with time varying parameters due to temperature variations and change in mag-
netic saturation level [1]. Nonlinear control problems can often be solved if full state
information is available. In the last two decades, many modified nonlinear state feed-
back schemes such as input-output feedback linearization [2], passivity-based control
[3, 4] and sliding-mode (SM) control [5] have been applied to the induction motor. Spe-
cially in the last few years, in the field of adaptive and robust control, a special control
scheme known as ‘backstepping’ reached great attention [6, 7, 8, 9, 10]. This approach
bases on a systematic procedure for the design of feedback control strategy. The strat-
egy is suitable for the design of a large class of feedback linearizable systems exhibiting
constant uncertainty. The strategy guarantees also global regulation and tracking for the
class of nonlinear systems transformable into the parametric-strict feedback form. The
idea of backstepping design is to select recursively some appropriate functions of state
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variables as pseudo-control inputs for lower dimension subsystems of the overall system.
Each backstepping stage results in a new pseudo-control design, expressed in terms of
the pseudo-control designs following from the preceding design stages. When the pro-
cedure terminates, a feedback design for the true control input results. This feedback
achieves the original design objective by virtue of a final Lyapunov function, which is
formed by summing up the Lyapunov functions associated with each individual design
stage [11].

To control the induction motor drive the observer is used which constructs an es-
timates the unmeasured flux states. Several techniques in the literature have been used
for flux, speed and (or) parameter estimation for the induction motor. In this paper we
proposed an extended Kalman filter to estimate the rotor flux (or rotor currents) together
with the rotor speed and the rotor speed time constant (or rotor resistance). This tech-
nique, however, is not robust against external disturbances (for example load torque).
In other reference we used the induction motor equations to estimate the flux. Using
independent subsystems for the rotor flux calculation, an estimation of the rotor speed
(considered constant) was given using the Model Reference Adaptive System (MRAS)
technique. Under load at low frequency this method gives poor results. A linear observer
was proposed to estimate the rotor flux when the speed is constant. This approach is not
robust against motor parameter variations and requires an adaptation mechanism for pa-
rameter identification. Thus we propose a sliding mode rotor flux observer to minimize
the resistive parameters effects [12].

The control scheme involves the use of rotor sensorless speed measurements which
lead to high costs and unreliability in the system. In the literature, some simple open
loop methods can be used to determine the estimated speed in a fast way, however, they
might be sensitive to improper parameters. On the other hand, some closed loop methods
using speed observer are robust to mismatched parameters [13].

The paper is organized as follows. Modeling of induction motor is reviewed and
details of backstepping control is presented in section 2. The sliding mode observer
is discussed and the speed observer is described in section 3. Simulation results are
delivered for illustration in section 4. Final section concludes the paper.

2. Backstepping control design of induction motor

To independently control the electromagnetic force and the flux we use (d-q) rotating
reference frame synchronously with the rotor flux space vector. We applied this condition
for ϕrd = ϕr, ϕrq = 0 (symbols used throughout the paper are defined in a separate list in
the end of the paper). The induction motor model of the fourth order, under assumption
of linear magnetic circuits, is given by the following equations
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The controller is designed using the backstepping technique. This is done in three
steps: first, the above machine model is reformulated in terms of appropriate tracking
and control errors. The performance-oriented model obtained in such a way suggests a
Lyapunov function. In the second step, a stabilizing control law is obtained. In the final
step control law turns out.

2.1. Step 1

Let us introduce the tracking error of the rotor speed as

e1 = Ω−Ωre f . (2)

where Ωre f denotes the corresponding reference signal. In view of (1) time-derivation of
(2) gives:

ė1 =
1
J

(
pM
Lr

ϕrdisq−Cr

)
− Ω̇re f (3)

where the last term is considered as a virtual control input. This motivates the following
control error definition

ee f f 1 =
pM
JLr

ϕrdisq−α1 (4)

where α1 is a stabilizing function to be defined later. Substituting (4) in (3) yields:

ė1 = ee f f 1 +α1−
Cr
J
− Ω̇re f . (5)

We introduce now the Lyapunov function as

V1 =
1
2

e2
1 (6)

and derivative error as
ė1 =−k1e1. (7)

We obtain
V̇1 =−k1e2

1 < 0 k1 > 0. (8)
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If the virtual control p
Lr

ϕrd isq is effective (i.e. ee f f 1 = 0) then the stabilizing function:

α1 =
Cr

J
+ Ω̇re f − k1e1. (9)

Unfortunately, p
Lr

ϕrdisq cannot be the effective control because isq is a state variable. The
ee f f 1 ̸= 0 and, consequently, the stabilizing function (9), together with (5), gives only

ė1 =−k1e1 + ee f f 1. (10)

2.2. Step 2

Now, let us focus on the flux tracking error with his derivative:

e2 = ϕrd−ϕre f (11)

where ϕre f denotes the corresponding reference signal. In view of (1) we have:

ė2 =
MRr

Lr
isd−

Rr

Lr
ϕrd− ϕ̇re f . (12)

Similarly, we introduce the control error:

ee f f 2 =
MRr

Lr
isd−α2 (13)

where α2 is a stabilizing function to be defined later. Substituting (13) in (12) gives:

ė2 =−
Rr

Lr
ϕrd− ϕ̇re f +α2 + ee f f 2. (14)

Lyapunov function will be used as:

V2 =
1
2

e2
2. (15)

We suggest derivative error as:

ė2 =−k2e2, k2 > 0. (16)

As previously, if MRr
Lr

isd is an effective control (i.e. ee f f 2 = 0) then the stabilizing func-
tion:

α2 =−k2e2 +
Rr

Lr
ϕrd + ϕ̇re f . (17)

As MRr
Lr

isd cannot be an effective control (which means that ee f f 2 ̸= 0), the stabilizing
control, (17) together with (14), yields only

ė2 =−k2e2 + ee f f 2. (18)
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2.3. Step 3

In the Step 3, effective control is presented and its dynamic errors. This step presents
the main novelty of our approach.

ee f f 1 =
pM
JLr

ϕrdisq−α1

ee f f 2 =
MRr

Lr
isd−α2

(19)
ėe f f 1 = f11 + k1ee f f 1− k2

1e1 +
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JLr

ϕrd
1

σLs
Vsq

ėe f f 2 = f22 + k2ee f f 2− k2
2e2 +

MRr

Lr

1
σLs

Vsd .

To this end, we again compute the derivative of Lyapunov function along the error equa-
tions (10), (18), and (19):
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e2
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2
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2

e2
e f f 2. (20)

In such circumstances the control law of stator voltage turns out to be the following:
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(
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)

(21)
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)

with k3, k4 > 0. We can express derivatives errors as follow:

ė1 = −k1e1 + ee f f 1

ė2 = −k2e2 + ee f f 2
(22)
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Equation (22) can be simplified and represented as:

ė = Ae+D (23)

with
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Note that matrix A has only constant components to guarantee the stability of the control
system and for improvement of simulation results.

Figure 1. Block diagram of backstepping control.

Fig. 1 shows the different steps to turn out the control law of stator voltage. Ac-
curate knowledge of the rotor speed and rotor flux are the keys factors in obtaining a
high-performance and high-efficiency induction-motor drive, thus sliding mode observer
design is presented in the next section.

3. Sliding mode observer design

Consider only the first four equations of the induction motor model given by (1). In
the following, the speed will be considered as a varying parameter. The aim of the pro-
posed observer is to estimate firstly the rotor flux. The observer is given by the following
system:

d
dt

[
îs
ϕ̂r

]
=

(24) −
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M
σLsLrTr

I− j
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where:

Rt = Rs +
M2

LrTr
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is the total resistance restored to the stator,

I =

[
1 0
0 1

]
j =

[
0 −1
1 0

]

K =

[
Ks

Kr

]
is matrix gain and

S =

[
S1

S2

]
= m

[
isα− îsα

isβ− îsβ

]
is the sliding surface which represent the error between the measured current compo-
nents and those estimated where

m =

[
1 α
0 1

]
.

The coefficient α comprises between 0 and 1 and represents the freedom degree to be
used to make dynamic comportment of the observer regular.

Thus, we use the Kr gain for action to fix the dynamics of convergence of the evalua-
tion error flux (reduced system is equivalent) [13]. One considers then, the state variables
of error estimation as follows:[

ε̇is

ε̇ϕr

]
=

 0
M

σLsLrTr
I− j

ω
σLs

0 − M
LrTr

I + jω

[ εis

εϕr

]
−

[
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][
sgn(S1)

sgn(S2)

]
(25)

3.1. Correction matrix gains Ks

To assure the asymptotic convergence of S to zero, one searches for the necessary
conditions of stability, bounded to the value of the Ks gain. Let choose the following
Lyapunov function:

V =
1
2

ST S. (26)

In order to assure S convergent to zero, we must verify if derivative of V is strictly
negative.

V̇ = ST Ṡ < 0⇒ V̇ = ST mε̇s < 0
(27)

V̇ = [S1 S2]

[
1 α
0 1

](
1

σLs

(
M

LrTr
I− jω

)
εϕr−Ks

[
sgn(S1)
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< 0.
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If one puts

Ks = m−1

[
G1 0
0 G2

]
(28)

where G1 and G2 are positive constants, then the derivative of the Lyapunov function
becomes negative:

V̇ = S1( f1 +α f2−G1sgn(S1))+S2( f2−G2sgn(S2))< 0. (29)

To assure the convergence of S to zero one must verify the following conditions:

If S1 > 0 then G1 > f1 +α f2; elseif S1 ¬ 0 then −G1 < f1 +α f2

If S2 > 0 then G2 > f2; elseif S2 ¬ 0 then −G2 < f2

So G1 > | f1+α f2| , and G2 > | f2|. It only remains to choose values of G1 and sufficiently
large G2 to verify the convergence of S toward zero, which means îs→ is.

3.2. Correction matrix gains Kr

In order to calculate the gain correction Kr, we consider sliding on the surface S
(S = 0, Ṡ = 0). This hypothesis is verified, when the currents error is εis = 0, ε̇is = 0. We
have then:

ε̇is =
1

σLs

[
M

LrTr
I− jω

]
εϕr−Ks

[
sgn(S1)

sgn(S2)

]
= 0. (30)

Then we have sliding surface given by as follows[
sgn(S1)

sgn(S2)

]
=

1
σLs

K−1
S

[
M

LrTr
I− jω

]
εϕr. (31)

Using (31) we can express the equation for the error of the rotor flux as follows:

ε̇ϕr =

(
− M

LrTr
I + jω−KrK−1

s
1

σLs

[
M

LrTr
I− jω

])
εϕr. (32)

We can calculate the gain Kr correction by identification of an equivalent system with
dynamics that assures the desire behavior

ε̇ϕr =−Qεϕr (33)

with Q – positive definite matrix:

Q =

[
q1 0
0 q2

]
, q1, q2 > 0.
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We can recover the expression of Kr by:

Kr =
σLs

β

 G1

(
M

LrTr
q1−β

)
−G2

(
q1ω+α

(
M

LrTr
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))
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(
M
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q2−β−αωq2

)


where:

β =

(
M

LrTr

)2

+ω2.

3.3. Speed observer design

We consider the perfect motor model (supposing that resistances and inductances are
perfectly known) and also the speed supposed as a parameter when uncertainty exists and
is presented by:

ω̂ = ω+∆ω (34)[
ε̇is

ε̇ϕr

]
=

(35) 0
(

M
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]
.

In this condition we can develop the derivation of V as:

V̇ = S1 ( f1 +α f2−G1sgn(S1))+S2 ( f2−G2sgn(S2))−ST m(ω− ω̂)
J

σLs
ϕ̂r. (36)

To compensate the term ST m(ω− ω̂) J
σLs

ϕ̂r, which sign is unknown, the following Lya-
punov equation is considered

V2 =V +
(ω− ω̂)2

2λ3
(37)

where λ3 > 0. Derivation of V2 gives

V̇2 =
(38)

S1 ( f1 +α f2−G1sgn(S1))+S2 ( f2−G2sgn(S2))−ST m(ω− ω̂)
J

σLs
ϕ̂r−

ω− ω̂
λ3

ω̂.

To assure V̇2 < 0 for the development of adaptation low of speed we need to propose:

˙̂ω =−λ3
ST mJϕ̂r

σLs
(39)
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4. Simulation results

The effectiveness of the proposed controller combined with the rotor flux and rotor
speed estimation has been verified by simulations. The simulation results have been
obtained under a constant load of 5 Nm applied at 0.5 s.

Table 10. Motor parameters

Rs 10 Ω Ls 0.4642 H

Rr 6.3 Ω Lr 0.4612 H

M 0.4212 H J 0.02 kgm2

Another parameters are as follows: output power 7.5kW, stator voltage 220/380 V,
stator frequency 50 Hz. The speed tracking controller operated in a critical condition
(rapid changes: 157,-157, 0, 5 rad/s). Fig. 1 shows the satisfactory performance of the
speed tracking. One can see that the actual speed follows the speed command and esti-
mated speed. Thus, the simulation results confirm that the proposed observer gives good
results justified by rotor speed error converging to zero quickly.

We applied as well variation of 100% of the nominal rotor resistance between t =
0.3s and t=0.7s. Fig. 2. presents the obtained results. Note good observation of speed
and flux. The influence of rotor resistance variation on the speed is negligible. Error
speed converges to zero. Obtained results illustrate good convergence to desired value of
speed and rotor flux.

5. Conclusion

In this work we have presented a backstepping technique as a design tool to accom-
modate uncertainties and nonlinearities which are the inherent feature of control design
for induction motor. This study has demonstrated that the design using backstepping
technique is successful in the area of induction motor control systems. In this paper we
present also the concept of rotor flux observer for sensorless speed control, which pro-
vides good precision as well. It is shown by simulation with the different tests that the
proposed approach is robust.
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Figure 2. Backstepping control for speed variation.
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Figure 3. Backstepping control for rotor resistance variation.

List of symbols

s, r indices for stator and rotor
Rs, Rr stator and rotor resistances
Ls, Lr self inductance of stator and rotor
M mutual inductance
J inertia moment of the moving element
f viscous friction and iron-loss coefficient
Tr, Ts rotor and stator time constant
σ coefficient of dispersion
(d,q) axes for direct and quadrate park subscripts
(α, β) axes for stationary reference frame subscripts
Vsd Vsq stator voltage in direct and quadrate park subscripts
is stator currents
ϕs, ϕr stator and rotor flux
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g slip
Cem electromagnetic torque
Cr load torque
ωs, ωr stator and rotor angular frequency
p number of pole pairs
ϕre f rotor flux reference
Ωre f rotor speed reference
V (x) Lyapunov function
S(x) sliding surface
j imaginary matrix
I identity matrix
x̂ estimated signal x
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