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Minimum energy control of positive discrete-time
linear systems with bounded inputs

TADEUSZ KACZOREK

The minimum energy control problem for the positive discrete-time linear systems with
bounded inputs is formulated and solved. Sufficient conditions for the existence of solution to
the problem are established. A procedure for solving of the problem is proposed and illustrated
by a numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory starting from any nonnega-
tive initial state remains forever in the positive orthant for all nonnegative inputs. An
overview of state of the art in positive theory is given in the monographs [1, 2]. Vari-
ety of models having positive behavior can be found in engineering, economics, social
sciences, biology and medicine, etc.. Positive linear systems consisting of n subsystems
with different fractional orders have been analyzed in [3].

The minimum energy control problem for standard linear systems has been formu-
lated and solved by J. Klamka [11-14] and for 2D linear systems with variable coef-
ficients in [10]. The controllability and minimum energy control problem of fractional
discrete-time linear systems has been investigated by Klamka in [14]. The minimum en-
ergy control of positive continuous-time linear systems has been addressed in [6]. The
minimum energy control of positive fractional linear systems has been considered in [5]
and of descriptor positive systems in [4, 8]. The minimum energy control of positive
continuous-time linear systems with bounded inputs has been addressed in [7].

In this paper the minimum energy control problem for positive discrete-time linear
systems with bounded inputs will be formulated and solved. The paper is organized as
follows. In section 2 the basic definitions and theorems of the positive discrete-time lin-
ear systems are recalled and the necessary and sufficient conditions for the reachability
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of the positive systems are given. The minimum energy control problem of the positive
linear systems with bounded inputs is formulated and solved in section 3. Sufficient con-
ditions for the existence of solution of the problem are established and a procedure for
computation of the optimal inputs and the minimum value of the performance index are
also presented. Concluding remarks are given in section 4.

The following notation will be used: ℜ – the set of real numbers, ℜn×m – the set of
n×m real matrices, ℜn×m

+ - the set of n×m matrices with nonnegative entries, In – the
n×n identity matrix.

2. Preliminaries and the problem formulation

Consider the discrete-time linear system

xi+1 = Axi +Bui (1)

where xi ∈ ℜn and ui ∈ ℜm are the state and input vectors and A ∈ ℜn×n, B ∈ ℜn×m.

Definition 2 [1, 2] The system (1) is called the internally positive if xi ∈ ℜn
+, i ∈ Z+ for

any initial conditions x0 ∈ ℜn
+ and all inputs ui ∈ ℜn

+, i ∈ Z+.

Theorem 3 [1, 2] The system (1) is internally positive if and only if

A ∈ ℜn×n, B ∈ ℜn×m (2)

Definition 3 The positive system (1) (or the positive pair (A,B)) is called reachable in
q steps if for any given final state x f ∈ ℜn

+ there exists an input sequence uk ∈ ℜm
+, for

k = 0,1, . . . ,q−1 that steers the state of the system from zero initial state x0 = 0 to the
state x f , i.e. xq = x f .

Theorem 4 [2] The positive system (1) is reachable in q steps if and only if the reacha-
bility matrix

Rq = [ B AB ... Aq−1B ] (3)

contains n linearly independent monomial columns.

For single input systems (m = 1) q = n the positive system (1) is reachable in n steps if
and only if the reachability matrix Rn is a monomial matrix. In this case there exists only
one input sequence uk ∈ ℜm

+, k = 0,1, . . . ,n− 1 that steers the state of the system from
x0 = 0 to the state x f ∈ ℜn

+ given by
un−1

un−2
...

u0

= R−1
n x f (4)
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If m > 1 and the positive system (1) is reachable in q steps then there exist many input
sequences uk ∈ ℜm

+, k = 0,1, . . . ,q− 1 that steers the state of the system from x0 = 0
to the state x f ∈ ℜn

+. Among these inputs sequences we are looking for the sequence
uk ∈ ℜm

+, k = 0,1, . . . ,q−1 that minimizes the performance index

I(u) =
q−1

∑
k=0

uT
k Quk (5)

where Q ∈ ℜm×m
+ is a symmetric positive defined matrix.

The minimum energy control problem for the positive discrete-time linear systems
(1) with bounded inputs can be stated as follows: Given the matrices (2), the final state
x f ∈ ℜn

+ and the matrix Q of the performance index (5), find an input sequence uk ∈ ℜm
+,

k = 0,1, . . . ,q−1 satisfying the condition

uk <U (U ∈ ℜm
+ is given) for k = 0,1, . . . ,q−1 (6)

that steers the state vector of the system from x0 = 0 to x f ∈ ℜn
+ and minimizes the

performance index (5).

3. Problem solution

To solve the problem we define the matrix

Wq = RqQ−1
q RT

q ∈ ℜn×n (7)

where Rq is defined by (3) and

Q−1
q = blockdiag[Q−1, . . . ,Q−1] ∈ ℜqm×qm

+ . (8)

Remark 2 If all columns of the matrix (3) are monomial and the matrix Q is diagonal
then the matrix (7) is also diagonal.

Remark 3 It is easy to check that all columns of the matrix (3) are monomial if and
only if the pair (A,B) is reachable and all columns of the matrix [A,B] are monomial.

If the positive system (1) is reachable in q steps and

W−1
q x f ∈ ℜn

+ (9)

then the input sequence

ûq =


uq−1

uq−2
...

u0

= Q−1
q RT

q W−1
q x f ∈ ℜqm

+ (10)
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steers the positive system from x0 = 0 to x f ∈ ℜn
+ since

xq = Rqûq = RqQ−1
q RT

q W−1
q x f = x f . (11)

Theorem 5 Let the positive system (1) be reachable in q steps and the conditions (8)
and (9) be satisfied. Let ūk ∈ ℜm

+, k = 0,1, . . . ,q−1 be an input sequence satisfying (6)
that steers the state of the positive system (1) from x0 = 0 to x f ∈ ℜn

+. Then the input
sequence (10) satisfying (6) also steers the state of the system from x0 = 0 to x f ∈ ℜn

+

and minimizes the performance index (5), i.e. I(û) ¬ I(ū). The minimal value of the
performance index (5) is given by

I(û) = xT
f W−1

q x f . (12)

Proof is similar to the proof in [2].

Remark 4 If U in (6) decreases then the number q of steps needed to transfer the state
of the system from x0 = 0 to x f ∈ ℜn

+ increases.

Therefore, the following theorem has been proved.

Theorem 6 If the positive system (1) is reachable in q steps, all columns of the reach-
ability matrix are monomial and the conditions (8) and (9) are met, then the minimum
energy control problem has a solution for arbitrary U satisfying the condition (6).

The optimal input sequence (10) and the minimal value of the performance index (12)
can be computed by the use of the following procedure.

Procedure 1

Step 1. Knowing the matrices A, B, Q and using (3) and (7) compute the matrices Rq and
W for a chosen q such that the matrix Rq contains at least n linearly independent
monomial columns.

Step 2. Using (10) find the input sequence uk ∈ ℜm
+, k = 0,1, . . . ,q−1 satisfying the con-

dition (6). If the condition (6) is not satisfied increase q by one and repeat the
computation for q+1. If the matrix W is diagonal after some number of steps we
obtain the desired input sequence satisfying the condition (6).

Step 3. Using (12) compute the minimal value of the performance index I(û).

Example 1

Consider the positive discrete-time linear system (1) with matrices

A =

[
0 3
2 0

]
, B =

[
0
1

]
(13)
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and the performance index (5) with Q = [2]. Find the input sequence uk ∈ ℜm
+, k =

0,1, . . . satisfying the condition (6) with

uk <
1
3
, k = 0,1, . . . (14)

that steers the state of the system from zero state to final state x f = [ 1 1 ]T ∈ ℜ2
+

(T denotes the transpose) and minimizes the performance index. Note that in this case
all columns of the reachability matrix

Rq = [ B AB ... Aq−1B ] =

[
0 3 0 18
1 0 6 0

. . .

]
(15)

are monomial. Using the procedure 1 we obtain the following:

Step 1. Using (7) and (15) we obtain

Wq = RqQ−1
q RT

q =

[
0 3 0 18
1 0 6 0

...

]
diag

[
1
2
,
1
2
,
1
2
, . . .

]


0 1
3 0
0 6
18 0

...


=

1
2

[
9+182 + ... 0

0 1+62 + ...

]
∈ ℜ2×2

+ . (16)

Step 2. Using (10) and (16) we obtain

û2 =

[
u1

u2

]
= Q−1

2 RT
2 W−1

2 x f =

[
1
2 0
0 1

2

][
0 1
3 0

][
2
9 0
0 2

][
1
1

]
=

[
1
2
3

]
. (17a)

This input sequence does not satisfy the condition (14) and we compute

û3 =

 u1

u2

u3

= Q−1
3 RT

3 W−1
3 x f =

(17b)

=


1
2 0 0
0 1

2 0
0 0 1

2


 0 1

3 0
0 6

[
2
9 0
0 2

37

][
1
1

]
=


1
37
1
3
6
37

 .
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The input sequence (17b) also does not satisfy the condition (14) and we continue the
computation

û4 =


u1

u2

u3

u4

= Q−1
4 RT

4 W−1
4 x f =

(17c)

=


1
2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

2




0 1
3 0
0 6

18 0


[

2
9+182 0

0 2
37

][
1
1

]
=


1
37
3

9+182

6
37
18

9+182

 .

The input sequence (17c) satisfies the condition (14) and by Theorem 5 is the op-
timal one that steers the state of the system in 4-steps from zero state to final state
x f = [ 1 1 ]T and minimizes the performance index (5) for Q = [2].

Step 3. The minimal value of the performance index (12) is equal to

I(û4) = xT
f W−1

4 x f = [ 1 1 ]

[
2

9+182 0

0 2
37

][
1
1

]
=

2
9+182 +

2
37

. (18)

4. Concluding remarks

The minimum energy control problem for the positive discrete-time linear systems
with bounded inputs has been formulated and solved. Sufficient conditions for the exis-
tence of solution to the minimum energy control problem have been established (Theo-
rem 5). It has been shown that if the positive system is reachable in q steps, all columns
of the reachability matrix are monomial and conditions (8), (9) are established then the
minimum energy control problem has a solution for arbitrary U in (6) (Theorem 6).
The procedure for computation of the optimal input sequence has been proposed and
illustrated by a numerical example.

These considerations can be extended to fractional positive linear systems with
bounded inputs [9].
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