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Optimal reorientation of spacecraft orbit

YURIY NIKOLAEVICH CHELNOKOV, ILYA ALEKSEEVICH PANKRATOV
and YAKOV GRIGORIEVICH SAPUNKOV

The problem of optimal reorientation of the spacecraft orbit is considered. For solving the
problem we used quaternion equations of motion written in rotating coordinate system. The
use of quaternion variables makes this consideration more efficient. The problem of optimal
control is solved on the basis of the maximum principle. An example of numerical solution of
the problem is given.
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1. Equations of motion

The motion of a spacecraft, which is considered as a material point B of a variable
mass, is studied in the coordinate system OX1X2X3(X) with an origin at the point of
attraction O. The coordinate axes of this coordinate system are parallel to the axes of
inertial frame of reference. Control uuu (vector of jet acceleration) is orthogonal to the
orbit’s plane. It is known that in this case form and dimensions of spacecraft orbit are
fixed, and its orbit turns in the space like an unchangeable figure.

Let us consider the coordinate system Pξ1ξ2ξ3(ξ) with an origin at the orbit peri-
center P. The axis ξ1 of this coordinate system is directed along the radius vector rrr of
a spacecraft, and the axis ξ3 is aligned with the vector of spacecraft velocity moment
ccc = rrr× drrr/dt = rrr× vvv. The angular position of the ξ coordinate system is specified in
the X coordinate system by the normalized quaternion [3]

ΛΛΛ = Λ0 +Λ1iii1 +Λ2iii2 +Λ3iii3,

∥ΛΛΛ∥2 = Λ2
0 +Λ2

1 +Λ2
2 +Λ2

3 = 1,

where iii1, iii2 and iii3 are the unit vectors of a hypercomplex space (Hamilton imaginary
units); Λ j ( j = 0,3) are the components of the quaternion of orientation ΛΛΛ (parameters
of Rodrigue-Hamilton (Euler)), which are identical in the basis sets X and ξ.
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Let us denote as Ωk, ck and uk (k = 1, 2, 3) the projections of the vector of the
absolute angular velocity ΩΩΩ of the ξ coordinate system and of the vectors ccc and uuu onto
the axes of the ξ coordinate system. The following relations are valid for these quantities

u1 = u2 = 0, u3 = u,
c1 = c2 = 0, c3 = |ccc|= c, (1)

Ω1 = u
r
c

cosφ, Ω2 = u
r
c

sinφ, Ω3 = 0,

where φ is the true anomaly (which characterizes the spacecraft position in its orbit) and
r = |r|.

Let us write equations of motion in the rotating coordinate system ξ using the varia-
bles r, c, Λ j, j = 0,3 [5, 6, 7, 8, 9, 10]

2
dΛ0

dt
=−Ω1Λ1 −Ω2Λ2, 2

dΛ1

dt
= Ω1Λ0 −Ω2Λ3,

2
dΛ2

dt
= Ω2Λ0 +Ω1Λ3, 2

dΛ3

dt
= Ω2Λ1 −Ω1Λ2,

(2)

r =
p

1+ ecosφ
, c = const,

dφ
dt

=
c
r2 , (3)

where p and e are the orbit parameter and eccentricity.
It is notable that equations similar to (2) were used in [4, 11].
Subsystem (2) can be written in the quaternion form

2
dΛΛΛ
dt

= ΛΛΛ◦ΩΩΩξ,

ΩΩΩξ = Ω1iii1 +Ω2iii2 = u
r
c
(cosφ iii1 + sinφ iii2) ,

where ΩΩΩ is the vector of absolute angular velocity of the coordinate system ξ.
Here and below, the symbol “◦” denotes quaternion multiplication, the quater-

nion ΩΩΩξ is the mapping of the vector ΩΩΩ onto the basis set ξ.
The components Λ j of the quaternion ΛΛΛ can be expressed through angular elements

of an orbit (characterizing the orientation of the spacecraft instantaneous orbit in space)
and the true anomaly. Let us denote the longitude of the ascending node as Ωu, the orbit
inclination as I and the pericenter angular distance as ωπ.

Then we have

Λ0 = cos
I
2

cos
Ωu +ωπ

2
, Λ1 = sin

I
2

cos
Ωu −ωπ

2
,

Λ2 = sin
I
2

sin
Ωu −ωπ

2
, Λ3 = cos

I
2

sin
Ωu +ωπ

2
.

(4)
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Thus, the quaternion of orientation ΛΛΛ of the coordinate system ξ characterizes the
orientation of the spacecraft instantaneous orbit.

Let us write (4) in the quaternion form

ΛΛΛ =

(
cos

Ωu

2
+ iii3 sin

Ωu

2

)
◦
(

cos
I
2
+ iii1 sin

I
2

)
◦
(

cos
ωπ

2
+ iii3 sin

ωπ

2

)
.

For the sake of comparison we write below the equations in angular osculating ele-
ments [1, 12], which are usually employed in astrodynamics instead of (2)

dΩu

dt
= u

r
c

sinΣcsc I,
dI
dt

= u
r
c

cosΣ,

dωπ

dt
=−u

r
c

sinΣcot I,

where Σ = ωπ +φ (latitude argument).

2. Statement of problem

It is required to determine the bounded (in magnitude) control uuu

−umax ¬ u¬ umax < ∞, u =±|uuu| , (5)

which transfers the spacecraft whose motion is described by equations (2), (3) from
specified initial state

t = t0 = 0, φ(0) = φ0, ΛΛΛ(0) = ΛΛΛ0 (6)

into the final state
t = t∗ =?, φ(t∗) = φ∗, ΛΛΛ(t∗) =±ΛΛΛ∗ (7)

and minimizing the functional

J =
t∗∫
0

(
α1 +α2u2

)
dt, α1, α2 = const­ 0. (8)

Here ΛΛΛ∗ = const is the quaternion of the orientation of the desired spacecraft orbit
whose components Λ∗

j can be expressed through the constant angular elements Ω∗
u, I∗

and ω∗
π of this orbit using the relations similar to (4). The values of c, p, e, ΛΛΛ0, ΛΛΛ∗ and

φ0 are assumed to be specified.
Functional (8) characterizes the energy consumption for a spacecraft transfer from

the initial to final state and the time required for this transfer. At α1 = 1 and α2 = 0
functional J = t∗ and in this case the posed problem is a fast response problem.
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The final time moment t∗ is not fixed and should be determined as a result of solving
the problem, therefore, the problem under consideration is a problem with a movable
right boundary.

Four components of the quaternion ΛΛΛ satisfy condition Λ2
0+Λ2

1+Λ2
2+Λ2

3 = 1 so we
should change condition (7) onto

vect
[
Λ̃ΛΛ(t∗)◦ΛΛΛ∗

]
= 0, (9)

where Λ̃ΛΛ(t∗) is a conjugate of ΛΛΛ(t∗). Vector condition (7) is equivalent to four scalar
conditions, and vector condition (9) is equivalent to three scalar conditions. Condition (9)
is more efficient for numerical solution of the posed problem.

Note that similar problems were considered earlier by S.A Ishkov and V.A Ro-
manenko [13]; O.M. Kamel, B.E. Mabsout and A.S. Soliman [14, 15]; A. Miele and
T. Wang [16]; S.Yu. Ryzhov and I.S. Grigoriev [17]. Unfortunately, most authors were
deal with equations in angular elements (or Cartesian coordinates). Also they were often
studied only transfers between coplanar or closed to each other orbits.

3. Necessary conditions of optimality

The posed problem will be solved based on the Pontryagin’s maximum princi-
ple. We introduce an additional variable g, which satisfies the differential equation
dg/dt = α1 +α2u2 with the boundary condition g(0) = 0. We also introduce the quater-
nion conjugate variable M corresponding to the quaternion phase variable ΛΛΛ and scalar
conjugate variables χ and ψ0 corresponding to the scalar phase variables φ and g. Let us
compose the Hamilton-Pontryagin function

H = ψ0σ+χ
c
r2 +

1
2
[M0 (−Ω1Λ1 −Ω2Λ2)+M1 (Ω1Λ0 −Ω2Λ3)+

+ M2 (Ω2Λ0 +Ω1Λ3)+M3 (Ω2Λ1 −Ω1Λ2)] =

= ψ0σ+χ
c
r2 +u

r
2c

(N1 cosφ+N2 sinφ) ,

(10)

where
N1 =−M0Λ1 +M1Λ0 +M2Λ3 −M3Λ2,

N2 =−M0Λ2 −M1Λ3 +M2Λ0 +M3Λ1

(11)

are the components of the quaternion N = Λ̃ΛΛ◦M; M j, j = 0,3 are the components of the
quaternion M; σ = α1 +α2u2.
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The system of equations for conjugate variables has the form

2
dM0

dt
=−Ω1M1 −Ω2M2, 2

dM1

dt
= Ω1M0 −Ω2M3,

2
dM2

dt
= Ω2M0 +Ω1M3, 2

dM3

dt
= Ω2M1 −Ω1M2,

(12)

dχ
dt

= 2
χ
r

dr
dt

+u
r

2c
(N1 sinφ−N2 cosφ)−u

r2

2c2
dr
dt

(N1 cosφ+N2 sinφ) . (13)

dψ0

dt
= 0,

where N1 and N2 are determined by relations (11), and Ω1 and Ω2 by relations (1).
In accordance with the maximum principle ψ0 (t∗) ¬ 0, therefore by virtue of

the last equation of this system and homogeneity of equations, one can choose any
ψ0 (t) ≡ const < 0, redetermining the other variables appropriately. In what follows,
the multiplier ψ0 in expression (10) for the H function is assumed to be equal to −1.

Note that subsystem (12) can be written in the quaternion form

2
dM
dt

= M◦ΩΩΩξ,

ΩΩΩξ = Ω1iii1 +Ω2iii2 = u
r
c
(cosφ iii1 + sinφ iii2) ,

The optimal control uopt is found from the condition of a maximum in variable u
of the H function, determined by relations (10), (11), with allowance made for con-
straint (5).

1. In the case σ = 1 (fast response problem)

uopt = umax signk; k = N1 cosφ+N2 sinφ. (14)

2. In the case σ = α1 +α2u2

uopt =


1

4α2

r
c

k, for
1

4α2

r
c
|k|¬ umax,

umax signk, for
1

4α2

r
c
|k|> umax.

(15)

Here and below, by the optimal control is meant the control, satisfying the necessary
conditions of optimality (Pontryagin’s maximum principle). The optimal trajectory is the
trajectory corresponding to this control.

Thus the posed problem is reduced to integration ten differential equations (2), (3),
(12), (13), (14) (or (15)). When the system of equations is integrated, ten arbitrary con-
stants will appear, the variable t∗ being eleventh unknown. For determining the constants
we have eleven conditions: eight boundary conditions (6), (9), the relations

t = t∗, Λ∗
0M0 +Λ∗

1M1 +Λ∗
2M2 +Λ∗

3M3 = 0, χ = 0,
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following from the conditions of transversality, and the equality

Hopt
∣∣
t∗ = Hopt

(
ΛΛΛ, M, χ, uopt

)∣∣∣
t∗
= 0,

which takes place for the optimal control uopt and the optimal spacecraft trajectory.

4. An example of numerical solution of problem

Figures 1–3 present the results of numerical solution of the boundary value problem
of optimization described in Section 2. An algorithm for solving the problem numer-
ically is realized with two methods to solve the boundary value problem: the Newton
method and the method of gradient descent. For integration of phase and conjugate equa-
tions was used Runge-Kutta method.

For numerical solution of the problem, the equations and relations given in Section
2 were written in dimensionless form (components Λ j, M j, j = 0,3 are dimensionless).
The dimensionless variables rb, tb and control ub are connected with dimension variables
and control by the relations

r = Rrb, t = Ttb, u = umaxub,

where R is the characteristic distance (the value close to the semi-major axis of the
spacecraft orbit was taken as such distance); V and T are the characteristic velocity and
time, respectively; they were defined by the relations

V = ( f M/R)1/2 , T = R/V,

where f is the gravitational constant, M is the mass of attracting body.
Note that when making conversion to dimensionless variables in the equations for

phase and conjugate variables there appears a characteristic dimensionless parame-
ter Nb = umaxR3/c2 and on the figures all variables are dimensionless (index “b” is
omitted).

The quantities characterizing the forms and dimensions of spacecraft orbits, initial
and final orientations of spacecraft orbit are equal to (aor is the semi-major axis of an
orbit; Ω0

u = Ωu(0), I0 = I(0), ω0
π = ωπ(0); Ω∗

u = Ωu (t∗), I∗ = I (t∗), ω∗
π = ωπ (t∗) ):

aor = 25500000m., umax = 0.101907m/s2, Nb = 0.35;

initial spacecraft position (φ0 = 3.940323 rad.)

Ω0
u = 40.00◦, I0 =−70.57◦, ω0

π = 84.98◦;

Λ0
0 = 0.679417, Λ0

1 = 0.245862, Λ0
2 =−0.539909, Λ0

3 =−0.353860;
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final spacecraft position
variant 1 (small difference between initial and final spacecraft orbits):

Ω∗
u = 36.70◦, I∗ =−69.06◦, ω∗

π = 86.57◦;

Λ∗
0 = 0.678275, Λ∗

1 =−0.268667, Λ∗
2 =−0.577802, Λ∗

3 =−0.366116;

variant 2 (big difference between initial and final spacecraft orbits):

Ω∗
u = 72.00◦, I∗ = 47.00◦, ω∗

π = 45.02◦;

Λ∗
0 =−0.440542, Λ∗

1 =−0.522476, Λ∗
2 =−0.125336, Λ∗

3 =−0.719189.
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Figure 1. Circular orbit, variant 2, fast response problem.

Scaling factors are equal to:

R = 26000000 m., V = 2751.405874m/s, T = 9449.714506 s.

Note that the problem of optimal control was solved for spacecraft whose initial and
final coordinates and velocity projections were taken from [2].

In the case of fast response problem we have relay optimal control, so it is very
difficult to solve that problem. In this case the time of flight of a controlled spacecraft
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Figure 2. Elliptical orbit (e = 0.5), variant 1,
∫ t∗

0 (1+4.2u2)dt → min.

is 134276.134060 s. (37.298926 h.). Optimal control changes its sign five times during
the flight.

The time of flight of a controlled spacecraft in the case when functional J =

=
∫ t∗

0 (1+4.2u2) is minimized is equal to 80826.252534 s. (22.451737 h.) for variant 1
and 88049.132367 s. (24.458092 h.) for variant 2. In this case J is equal to 10.817037
and 42.600058 respectively.

Note that when optimal control changes its sign dependence N2(N1) changes sharply
on the phase portraits.

We also note that durations of second – fifth boost phases in the case of fast response
problem are almost equal.

We have found some features and patterns of optimal trajectories and control. When
orbit’s eccentricity increases from 0 to 0.5 the number of boost phases, their durations
and the time of flight decrease. There are no boost phases where control reaches its max-
imum (in absolute value) in the case of minimizing functional J when orbit’s eccentricity
is between 0.5 and 0.7.

In the case of little difference between initial and final orbits the time of flight and
ranges of variation of the phase and conjugate variables are smaller than in the case of
big difference between orbits.
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Figure 3. Elliptical orbit (e = 0.5), variant 2,
∫ t∗

0 (1+4.2u2)dt → min.
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