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Optimization of thermo-electric coolers using hybrid
genetic algorithm and simulated annealing

DOAN V.K. KHANH, PANDIAN VASANT, IRRAIVAN ELAMVAZUTHI and VO N. DIEU

Thermo-electric Coolers (TECs) nowadays are applied in a wide range of thermal en-
ergy systems. This is due to their superior features where no refrigerant and dynamic parts are
needed. TECs generate no electrical or acoustical noise and are environmentally friendly. Over
the past decades, many researches were employed to improve the efficiency of TECs by en-
hancing the material parameters and design parameters. The material parameters are restricted
by currently available materials and module fabricating technologies. Therefore, the main ob-
jective of TECs design is to determine a set of design parameters such as leg area, leg length and
the number of legs. Two elements that play an important role when considering the suitability
of TECs in applications are rated of refrigeration (ROR) and coefficient of performance (COP).
In this paper, the review of some previous researches will be conducted to see the diversity of
optimization in the design of TECs in enhancing the performance and efficiency. After that,
single-objective optimization problems (SOP) will be tested first by using Genetic Algorithm
(GA) and Simulated Annealing (SA) to optimize geometry properties so that TECs will op-
erate at near optimal conditions. Equality constraint and inequality constraint were taken into
consideration.

Key words: thermo-electric coolers, genetic algorithm, simulated annealing, coefficient of
performance, rate of refrigeration, fitness function

1. Introduction

1.1. Mud-pulse high-temperature measurement while drilling (MWD)

Mud-Pulse High-Temperature Measurement While Drilling (MWD) is a system de-
veloped to perform drilling related measurements down-hole and transmit information
to the surface while drilling a well. MWD systems can take several measurements like a
natural gamma ray, directional survey, tool face, borehole pressure, temperature, vibra-
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tion, shock and torque. Maintaining optimal payload temperatures in a typical down-hole
environment of 230oC requires that the MWD cooling system is capable of pumping a
significant load and requires a low thermal resistance path on the heat rejection (hot) side
of the TEC. The application in the extreme environment of high temperature, high pres-
sure, mechanical shock and vibration require the use of high temperature TEC materials
and assemblies. A typical High Temperature MWD tool is shown in Fig. 1.

Figure 1. High-temperature MWD tool.

Cooling of electronic components inside MWD housing is crucial for maintaining
optimal operating conditions in the MWD. It has been identified that this can be accom-
plished using thin-film thermo-electric cooling devices.

1.2. Thermoelectric coolers (TECs)

TECs are solid state cooling devices that use the Peltier effect through p-type and
n-type semiconductor elements (unlike vapor-cycle based refrigerators). These types of
coolers are used to convert electrical energy into a temperature gradient. Thermo-electric
coolers use no refrigerant and have no dynamic parts which make these devices highly
reliable and require low maintenance. These coolers generate no electrical or acoustical
noise and are ecologically clean. These coolers are compact in terms of size, light weight
and have high precision in temperature control. However, for this application the most
attractive features of TECs that they have the capacity for cooling instruments such as
MWDs under extreme physical conditions. A diagram of a standard TECs unit is shown
in Fig. 2.

TEC can be a single-stage or multi-stages type. The commercially available single-
stage TECs (STECs) can produce a maximum temperature difference of about 60-70K
when the hot side remains at room temperature. Nevertheless, when a large temperature
difference is required for some special applications, the STECs will not be qualified. To
enlarge the maximum temperature difference of TEC we use two-stage TECs (TTECs)
or multi-stage TECs which have STECs stacked on the top of the others. As mentioned
previously, the application of TECs has been partitioned by their relatively low energy
conversion efficiency and ability to dissipate only a limited amount of heat flux. Two
parameters play a crucial role in characterization of TECs are rate of refrigeration (ROR)
and coefficient of performance (COP). Thermo-electric coolers operate at about 5-10%
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Figure 2. Single-stage TEC unit.

of Carnot cycle COP where as compressor based refrigerators normally operate at more
than 30%.

1.3. Parametric enhancement of performance and efficiency

Several intelligent techniques that can be used for engineering design optimizations
are discussed in Deb [18]. However, one of the most effective and non-traditional method
used as an optimization technique for TECs is the Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [4]. Similar sophisticated techniques in artificial intelligence, such
as SA, other evolutionary algorithms (GA [35], Differential Evolution (DE) and Particle
Swarm Optimization (PSO)) can be used in their pure and hybrid form to enhance the
effectiveness of the optimization of TECs.

2. Problem formulation

The requirement of TECs as a cooling mechanism for instruments in extreme en-
vironment specifically in thermal energy and gas drilling operations is indeed crucial.
However, setbacks such as the relatively low energy conversion efficiency and ability to
dissipate only a limited amount of heat flux may seriously injure the performance and
efficiency of these devices. Multi-objective intelligent techniques as done using NSGA-
II can be used to enhance further the optimization of the TECs. The optimal geometrical
and physical properties of the thermo-electric elements that maximize the ROR and the
COP for the application of TECs in MWD instruments need to be identified.

3. Mathematical modeling of TECs

Operation of a TECs is based on the Peltier effect. When a DC current passes through
a pair of p- and n-type semiconductor materials, one side of the junctions is cooled
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and the other side is heated. Therefore, TECs acts as a solid state cooling device that
can pump heat from one junction to the other junction when a DC current is applied.
The energy balance equations at the hot junction and the cold junction for TECs can
be described as below. The heat flows αITh and αITc caused by the Peltier effect are
absorbed at the cold junction and released from the hot junction, respectively. Joule
heating 1/2I2(ρrL/A+2rc/A) due to the flow of electrical current through the material
is generated both inside the TECs legs and at the contact surfaces between the TECs
legs and the two substrates [2]. TEC is operated between temperatures Tc and Th, so heat
conduction kA(Th −Tc) occurs through the TEC legs.

Qc = ROR = N
[

αITc −
1
2

I2(ρr
L
A
+

2rc

A
)− kA(Th −Tc)

L

]
(1)
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aITh +
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2

I2(rr
L
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A
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L

]
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The input electrical power and coefficient of performance can be calculated using fol-
lowing relations:

P = Qh −Qc (3)

COP =
Qc

Qh −Qc
(4)

where α, ρ and k are the Seebeck coefficient, electrical resistivity and thermal conduc-
tivity, respectively. They represent thermo-electric material properties. A, L, N are geo-
metric properties of TECs model. The performance of TECs (COP and ROR) strongly
depends on thermo-electric materials. A good thermo-electric material should have a
large Seebeck coefficient, low thermal conductivity to retain the heat at the junction and
maintain a large temperature gradient and low electrical resistance to minimize the Joule
heating [6]. The performance evaluation index of thermo-electric materials is the figure
of merit Z or dimensionless figure of merit ZT = α2T/ρk, which combines the above
properties. The increase in Z or ZT leads directly to the improvement in the cooling
efficiency of Peltier modules. For TECs with a specific geometry, ROR and COP are all
dependent on its operating conditions which are the temperature difference ∆T and ap-
plied current. With a fixed ∆T , ROR and COP are first increased and then decreased as
I is increased [24]. Unfortunately, the optimal applied currents corresponding to Qc,max
and COPmax are not the same, which means that Qc,max and COPmax always cannot be
reached simultaneously. Similarly, with the same operating conditions, as the TECs ge-
ometry is varied, ROR and COP are all varied, but maybe cannot reach the maximums
simultaneously [8].

The material properties are considered to be dependent on the average temperature
of the cold side and hot side temperatures of each stage and their values can be calculated
from the following equations [6]:

αp =−αn = (−263.38+2.78Tave −0.00406T 2
ave)10−6 (5)
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ρp = ρn = (22.39−0.13Tave +0.00030625T 2
ave)10−6 (6)

kn = kp = 3.95−0.014Tave +0.00001875T 2
ave. (7)

From the equations (1) and (2), the geometric structure has remarkable effect on the
TECs. The maximum Qc increases with the decrease of leg length until it reaches a max-
imum and then decrease with a further reduction in the thermo-element length [2]. The
COP increases with an increase in thermo-element length. As the COP increases with
the leg area, the Qc may decrease because the total available volume is limited. As the
leg area is reduced, the Qc generally increases. A smaller leg area and a greater num-
ber of legs yield greater cooling capacity. When the leg length is below than this lower
bound, the cooling capacity declines enormously [1]. Other elements, like electrical con-
tact resistance (rc), have affection on the performance of TECs and very small in some
calculation and can be neglected.

4. Optimization issues in designing TECs

Parameters of the equation of TECs performance can be grouped into three cate-
gories which are specifications, material properties and design parameters [1]. The spec-
ification is the operating temperature Tc and Th, the required output voltage V , current I.
The specifications are usually provided by customers depending on the requirement of a
particular application. The material parameters are restricted by currently materials and
module fabricating technologies. Consequently, the main objective of the TECs design is
to determine a set of design parameters which meet the required specifications or create
the best performance at minimum cost. In two subsections below, some literature review
about optimization issues of TECs is presented.

4.1. Material properties optimization issue

With the effectiveness of material properties on the performance of TECs, there has
been many research were conducted during the past ten years in finding a new material
and structure for use in green, highly efficient cooling and energy conversion system.
Bismuth-Telluride (Bi2Te3) is one of the best thermo-electric materials with the highest
value figure of merit [31]. Much effort has been made to raise ZT of bulk materials based
on Bi2Te3 by doping or alloying other elements in various fabricating processes. How-
ever, ZT was not much more than one and are not sufficient to improve dramatically the
cooling efficiency. The reason is due to the difficulty to increase the electrical conduc-
tivity or Seeback coefficient without increasing the thermal conductivity as mentioned
by Rodgers [7].

4.2. Geometry properties optimization issue

Some research was conducted for single-objective optimization problems (SOP).
Cheng [2] combined a TEC model and a genetic algorithm to optimize the geometry
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and performance of the STECs [2]. The geometric properties of STECs were considered
as the search variables and were optimized simultaneously to reach the maximum cool-
ing rate under the requirement of minimum COP, the confined volume of STECs and
the restriction on the maximum cost of the material. The optimal search uses GA and
converges rapidly (around 20 iterations).

Huang [8] developed an optimization approach which integrates a complete multi-
physics TEC model and a simplified conjugate-gradient method [8]. Under a wide range
of operating conditions of temperature difference and applied current, the geometric
properties of STECs as search variables are optimized to reach the maximum TEC cool-
ing rate. The effects of applied current and temperature difference in the optimal geom-
etry are also discussed.

For TTECs, Cheng and Shih [3] used GA for maximizing separately the cooling ca-
pacity and COP [3]. The same work was done with Yi-Hsiang [4] . The authors consid-
ered the effect of thermal resistance and determined the optimum value of input current
and number of legs for two different design configurations of TEC. The optimal search
was done by GA and converged rapidly with over 30 runs. These results were not differ-
ent with those obtained by Xuan’s work [24] and showed that GA have a robust behavior
and effective search ability.

Table 9. Previous techniques applied in optimizing geometric properties of TECs.

Type of OT Type of TECs Technique used Author/Year
SOP STECs GA Cheng/2005
SOP STECs Conjugate-gradient method Huang/2005
SOP STECs GA Nain/2010
SOP TTECs GA Cheng/2006
MOP STECs NSGA-II Nain/2010
MOP TTECs TLBO-II Rao/2013

For multi-objective optimization problems (MOP), STECs will have a better design
if we can find the optimal point of Qc and COP simultaneously. Nain used NSGA-II
for multi-objective optimization of STECs [7]. NSGA-II was able to maintain a better
spread of solutions and converged better in the obtained non-dominated front compared
to two other elitist MOEAs-PAES and SPEA [2]. The value of geometric properties of
STECs was optimized to achieve Pareto-optimal solutions at different values of thermal
resistance. The authors point out the adverse effects of thermal resistance in obtaining
the optimum value of cooling rate or COP.

For TTECs, Rao used modified teaching-learning-based optimization (TLBO) in op-
timizing he dimensional structure of TTECs [10]. TLBO based on the effect of the influ-
ence of a teacher on the output learners in a class. The algorithm mimics the teaching-
learning ability of teacher and learners in a classroom. Teacher and learners are the two
vital components of the algorithm. TLBO was modified and applied successfully to the
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multi-objective optimization of TTECs and compared with GA. The determination of the
number of TE module in hot stage and cold stage as well as the supply current to the hot
stage and the cold stage are considered as search variables. Two different configurations
of TTECs, electrically separated and electrically connected in series were investigated
for the optimization.

5. Meta-heuristic optimization algorithm

In the thermal energy sector, meta-heuristics have been used recently, to solve in-
dustrial problems as well as enhance current processes, equipments and field operations.
Tab. 1 lists down some applications of meta-heuristic in thermal energy system such as
Genetic Algotithm, Simulated Annealing, Particle Swarm Optimization, etc.

Meta-heuristics are widely recognized as efficient approaches for many hard opti-
mization problems. A meta-heuristic is an algorithm designed to solve approximately a
wide range of hard optimization problems without having to be deeply adapted to each
problem. Almost all meta-heuristics share the following characteristic: they are nature-
inspired (based on some principles from physic, biology or ethology) [23]. Categories
of meta-heuristic are introduced in Fig. 3. SA is a point based meta-heuristics which is
normally started single initial solution and move away from it. GA are population based
meta-heuristics which can deal with a set of solutions rather than with a single solution
[36]. This research mainly focuses on SA and GA meta-heuristic techniques.

GA can be used to solve a constrained optimization problem and can find good local
optimization [29]. GA can be effectively applied in highly nonlinear problem [17]. GA
could solve a variety of optimization problems by searching a larger solution space [23].
But GA requires determination of optimum controlling parameters such as crossover
rate and mutation rate. GA has the poor global search capability what happens very
often when the populations have a lot of subjects. As a result, it is difficult to determine
the stopping criterion of the algorithm.

SA has the ability to escape from local optima [32], flexibility and ability to approach
global optimality. SA can be applied to large problem regardless of the conditions of
differentiability, continuity, and convexity that is normally required in conventional op-
timization methods [19]. SA is easy to code, even for complex system and can deal with
highly nonlinear models with many constraints. But SA has some disadvantages. Well
known disadvantage of SA is the difficulty in defining a good cooling schedule (both
SOP and MOP). SA is very greedy regarding computation time requirements [21].

Some research was conducted to compare GA with SA. Babak Sohrabi, in a com-
parison between GA and SA performance in preventive part replacement (2006) [20]
showed that SA is easy to understand and also easier than GA to code. SA can easily
handle a change in the objective function, but in GA we need to have fitness function,
which sometimes make problems. SA can be simply stated and that lend themselves
more readily to analysis. Franconi and Jennison (1997) applied GA and SA to the op-
timization problem arising in finding the maximum of a posteriori (MAP) [36]. They
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Table 10. Recent application of intelligent strategies in the thermal energy system.

Author Year Application Technique

Xinhua Xu and
Shengwei Wang [9]

2007
Optimal thermal models
of building envelope based
on frequency domain

GA

Haluk Gozde and M.
Cengiz Taplamacio-
glu [13]

2011
Automatic generation
control application in a
thermal power system

PSO

C. W. Chen, J. J. Lee
and H. S. Kou [11]

2008
Optimum thermal design
of microchannel heat sinks

SA

P. Pezzini,
O. G. Bellmunt
and A. S. Andreu [14]

2011 Optimize energy efficiency
ACO, PSO,
GA, ES, EP

Siddharta, N. Sharma
and Varun [15]

2012
Optimization of thermal
performance of a smooth
flat solar air heater

PSO

J. Eynard, S. Grieu
and M. Polit [12]

2011
Forecasting temperature
and thermal power
consumption

W, ANN

GA – genetic algorithm PSO – particle swarm optimization
SA – simulated annealing ACO – ant colony optimization
ES – evolutionary strategy EP – evolutionary programming
W – wavelets ANN – artificial neural networks

found that GA is very sensitive to the choice of mutation probability and fitness func-
tion, whereas SA is quite robust with regards to the choice of cooling schedule. The
result obtained using GA were disappointing, especially in the larger problems [16]. SA
does not converge as fast as the GA in the initial phase [27].

6. System setting

6.1. Parameters Setting for STECs

Base on the previous research, we set up the design parameters for optimizing the
design of TECs and divide them into four group as follows:
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(1) Objective functions: Maximum ROR and/or maximum COP.

(2) Fixed parameters:

• Total volume in which thermo electrics elements can be placed.

• Temperature at hot and cold side of TECs.

• Supplied current to TECs.

• Material properties of TECs.

(3) Bounds of variables:

• Lmin ¬ L¬ Lmax

• Amin ¬ A¬ Amax

• 1¬ N ¬ S/Amin

(4) Constraints:

• Confined volume of TECs (inequality constraint).

• Limitation of COP (inequality constraint).

• Defined value of COP (equality constraint).

Figure 3. Categories of meta-heuristic.

6.2. Parameters setting for Genetic Algorithm

In this research, GA toolbox in MATLAB will be used. Some parameters setting
inside GA can be listed down as follows and the remain parameters will be set as default
values:

(1) Objective function: ’@Coolingrate’. Objective function together with variables
and fixed parameters of TECs will be taken into account in this function.
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(2) Constraint function: ’@fun constraint’. Equality constraint and/or inequality
constraint of TECs will be contained in this function.

(3) Mutation: ’@mutationadaptfeasible’. This function will be used for solving prob-
lems with constraints.

(4) Generation: specifies the maximum number of iterations which the genetic algo-
rithm performs.

(5) Population size: specifies how many individuals are contained in each generation.
Typical population sizes vary between 30 and 200. The population size is usually
set as a function of the chromosome length [13].

(6) Stopping criteria: ’Stallgenlimit’. In Matlab, the algorithm stops if there is no
improvement in the objective function for a sequence of consecutive generations
of length stall generation [28].

6.3. Parameters setting for Simulated Annealing

SA code for programming will be used to modify the parameters setting so that it
can be used for finding the optimal design of TECs. Choosing the good algorithm’s
parameters is very important because they affect the whole optimization process.

(1) Initial temperature: To. The temperature is the control parameter in simulated an-
nealing and it is decreased gradually as the algorithm proceeds. If the initial tem-
perature of the system is too low or cooling is done insufficiently slowly the system
may become quenched forming defects or freezing out in meta-stable states (get
trapped in a local minimum energy state). To is obtained as a function of max-
imum possible deterioration of the objective function that can be accepted in a
current solution.

(2) Temperature reduction: α. Temperature decrease is Tn = αTn−1. Experimenta-
tion was done with different α value: 0.70, 0.75, 0.85, 0.90 and 0.95.

(3) Boltzmann constant: kB. kB will be used in the Metropolis algorithm to calculate
the acceptance probability of the points [20].

(4) Stopping criteria: Final stopping temperature. This value can be obtained as a
function of minimum possible deterioration the objective function.

7. Simulation results and analysis

7.1. Tests of Genetic Algorithm

Preliminary tests for finding the optimal value of geometric properties of STECs
will be conducted by using the GA toolbox in MATLAB. Single objective optimization
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Table 11. Parameter setting of STECs.

Parameters setting Specific values
Objective function Maximize ROR
Variables 0.03mm < L < 1mm

0.09mm2 < A < 100mm2

1 < N < 1000
Fixed parameters S = 100mm2

Th = Tc = 323oK
rc = 10−8Ωm2

Constraint - Inequality constraint: AN < 100mm2

- Equality constraint: COP = 1

Table 12. Parameters setting of GA.

Parameters setting MATLAB
Objective function @Coolingrate
Constraint function @fun constraint
Generation 200
Population size 50
Stopping criteria ’Stallgenlimit’, 50

will be used under constraints. The purpose of this test is to understand the operation and
benefits of GA in the optimization of TECs design. Some comments for these results will
be helpful for future work. Parameters setting in TECs module are taken from from [2].

Tab. 3 lists down the parameters of STECs. One objective namely maximizing ROR
is considered for single objective optimization. The objective of the optimization calcu-
lation is to determine the optimal leg length, the leg area and the number of legs. STECs
were placed in a confined volume with total area 100mm2 and a height of 1mm; there-
fore dimensions of TECs legs are bounded. The temperature of the cold side of the colder
stage and the hot side of the hotter stage were both fixed to 323oK. The effect of elec-
trical resistance was considered with value 10−8Ωm2. Because optimization of TECs
geometry may cause the reduction in the COP, the COP is used as a constraint condition
during the optimization in order to guarantee that TECs with the optimal geometry has
a relatively high COP.

Parameters setting of GA were listed down in Tab. 4. Using this strategy, GA was
run 30 trials randomly on TECs system. The first case is for equality constraint COP = 1
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(Fig. 4), the second case is for inequality constraint AN < 100mm2 (Fig. 5) and the last
case is for combining of the two cases above (Fig. 6). The best value, average value and
lowest value of 30 trials will be noted down to evaluate the performance of the algorithm
such as reliability.

After testing, GA converged so quickly in several seconds and satisfied the con-
straints in all cases. The reason for stopping the GA operation was the average change
in the fitness value less than the defined value of tolerance in stopping condition criteria.
As shown in Tab. 5 the obtained results of 30 trials are not exactly same. Therefore, the
optimal results of GA seem to be not reliable and can easily stand by local optimum.

Figure 4. Run GA with equality constraint.

Figure 5. Run GA with inequality constraint.

In the following step, TECs system will be run with GA under various input current
the constraint of total area AN < 100mm2, COP requirement is neglected. Tab. 6 shows
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Figure 6. Run GA with inequality and equality constraints.

Table 13. Collected data after running GA.

Case 1 Case 2 Case 3
Max. best fitness 45.14W 9.78W 9.70W
[N, A, L] 993, 0.78, 0.99 299, 0.33, 0.3 147, 0.63, 0.69

Ave. best fitness 29.55W 8.09W 5.01W
[N, A, L] 649, 0.71, 0.98 168, 0.59, 0.3 110, 0.71, 0.99

Min. best fitness 2.74W 4.93W 1.94W
[N, A, L] 60, 0.71, 1 85, 1.18, 0.30 43, 0.63, 0.69

Figure 7. Performance curve of STECs with various input current.
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Table 14. Optimal dimension of STECs legs for various input currents.

III (A) NNN AAA(mm2) LLL (mm) QQQc (W) CCCOOOPPP

0.1 300 0.3326 0.3 1.94 9.06
0.2 180 0.5570 0.3 2.29 7.51
0.5 404 0.2473 0.3001 8.93 0.92
1 202 0.4931 0.3 8.94 0.92
2 113 0.8828 0.3009 9.35 0.79
4 55 1.8242 0.3 9.24 0.81
6 53 1.8874 0.3 9.76 0.4
8 53 2.9984 0.3 9.74 0.58

the main result. The optimal result of cooling capacity seems unchanged when input cur-
rent is larger than 0.5A. Tab. 6 demonstrates that TECs can reach its maximum cooling
capacity even under various inputs current.

Optimal results of Qc versus input currents in Tab. 6 were plotted in Fig. 7. Respec-
tive COP was calculated based on the equation (4). As shown in Fig. 7, COP and Qc
cannot get maximum value simultaneously.

7.2. Tests of Simulated Annealing

Parameters setting of SA are presented in Tab. 7

Table 15. Parameters setting of SA.

III Parameters setting MATLAB
Initial temperature 100
Final temperature 10−10

Temperature reduction 0.95
Boltzmann constant 1

To make sure the consistency, SA should be tested in the same conditions as GA.
SA will also be run in 30 times independently for 3 cases (case 1 is nonlinear equality
constraint, case 2 is nonlinear inequality constraint and case 3 is the combination of the
two cases above). The comparison between the obtained results between SA and GA
will be pointed out to understand the benefits and limitations.

SA often converges after 250000 evaluations and the time being consumed in every
running time is last longer than GA. Fig. 8, 9 and 10 show that SA can satisfy the
constraint and gives the stable results in every case of simulation. SA shows to be more
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robust than GA and in case 1. SA can find a better optimal design of TECs than GA.
However, case 2 and case 3 of simulation show the same results which are a very small
value of maximum Qc when compare to previous research [2] and is not reliable. Code
programming for TECs cannot find a good results for nonlinear equality constraint and
need to be analyzed more deeply in the further work.

8. Discussion about future work

Today, researchers are combining one meta-heuristic with another meta-heuristic
for optimization. Hybrid methods include the integration of various meta-heuristic al-
gorithms which are efficient in finding good solutions that cannot be obtained by any
complete method within a feasible time [22]. In the previous papers for optimization
the geometric properties of TEC, NSGA-II was a technique that was used for MOP
[18] and until now we don’t have any update about this issue. Therefore, in the future
work hybrid technique which combines GA with SA will be investigated and can be
applied to achieve the Pareto optimal point of ROR and COP. Li (2005) proposed hy-
brid adaptive GA which is based on the population diversity of GA and the directional
research of SA for multi-objective optimization of external beam radiation [25]. The
crossover rate and mutation rate of GA are adaptively selected, and niched tournament
selection based Pareto dominance is used. The results of test calculation with two ob-
jectives and five variables demonstrate high convergence speed. Lei (2008) presented a
multi-objective hybrid genetic algorithm (MHGA) to solve the power-performance prob-
lem of chip multi-processor (CMP) system [26]. MHGA used Multi-objective Optimiza-
tion GA with SA to enhance the search ability. The results show that this technique can
find the optimal value of two objectives which increasing the efficiency of task schedul-
ing on CMP and decreasing the execution time and energy consumption of the system.
Sun Hui (2010) proposed Adaptive Simulated Annealing Genetic Algorithm (ASAGA)
to find design parameters for maximum fuel economy [27]. Different objectives were
investigated to find the optimal results, such as performance, energy regenerative ability,
fuel economy, etc. The simulation results showed that ASAGA is effective and takes ad-
vantage of the GA as well as the SA to substantially improving the performance and fuel
economy of hydraulic hybrid vehicle (HHV). Nasser Shahsavari (2013) introduced hy-
brid genetic algorithm and simulated annealing in solving multi-objective Flexible Job
Shop scheduling problem (FJSP) [30]. Pareto approach is used in novel hybrid genetic
algorithm and simulated annealing (NHGASA) for solving FJSP and compared with
other methods such as GA+HA, PSO+SA and so on. The experiment results show that
this technique gave the higher quality with less computational time.
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9. Conclusion

In this research, mathematical modeling of single-stage thermoelectric coolers was
investigated and genetic algorithm and simulated annealing were tested to solve single
objective optimization problems with some constraints which are mainly nonlinear con-
straints. The preliminary results show that genetic algorithm is not stable and easily get
stuck at local optima. Simulated annealing shows more robust than genetic algorithm
when using the same condition of thermo-electric coolers module, but for nonlinear
equality constraint cases, the obtained results are not reliable. Therefore, genetic algo-
rithm and simulated annealing need to be researched deeper to clarify more advantages.

In the future work, hybrid genetic algorithm with another meta-heuristic technique
such as simulated annealing [28,34] can be investigated and multi-objective optimiza-
tion problems need to be studied to find the optimal value of rate of refrigeration (ROR)
and coefficient of performance (COP) simultaneously in not only single-stage thermo-
electric coolers but also two-stages or multi-stages thermo-electric coolers. The conse-
quences of the design onto control aspects (control algorithms, difficulty, reachability, or
so) will be considered in the future research work.

Figure 8. Run SA with inequality constraint.

Appendix A. Nomenclature

A – Cross-sectional area of the TECs leg (mm2)
L – Height of the confined volume (mm)
N – Number of legs
S – Total volume in which TECs can be placed (mm2)
Qc – Cooling rate (W)
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Figure 9. Run SA with equality constraint.

Figure 10. Run SA inequality and equality constraints.

ROR – Rate of Refrigeration (W)
Qh – Heat rejected from the hot junction, (W)
COP – Coefficient of Performance
I – Input current of TEC in Ampere, (A)
Tc – Temperature of hot junction (K)
Th – Temperature of cold junction (K)
Tave – Average temperature of hot side and cold side (K)
Z – Figure of merit
ZT – Dimensionless figure of merit
SOP – Single-objective Optimization Problem
MOP – Multi-objective Optimization Problem
GA – Genetic Algorithm
SA – Simulated Annealing
PSO – Particle Swarm Optimization
ACO – Ant Colony Optimization
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DE – Differential Evolution
TS – Tabu Search
NSGA-II – Non-dominated Sorting Genetic Algorithm
TLBO – Teaching-learning Based Optimization
α – Seebeck coefficient, (V/K)
ρk – Electrical resistivity, (Ωm)
k – Thermal conductivity, (W/mK)
rc – Electrical contact resistance, (Ωm2)

Appendix B. Simulated Annealing flow chart
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Appendix C. Genetic Algorithm flow chart
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