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Approximation method for a fractional order transfer
function with zero and pole

KRZYSZTOF OPRZEDKIEWICZ

The paper presents an approximation method for elementary fractional order transfer func-
tion containing both pole and zero. This class of transfer functions can be applied for example
to build model - based special control algorithms. The proposed method bases on Charef ap-
proximation. The problem of cancelation pole by zero with useful conditions was considered,
the accuracy discussion with the use of interval approach was done also. Results were depicted
by examples.
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1. Introduction

Fractional order transfer differential equations and consequently, fractional-order
transfer functions describe a number of real physical phenomena (see for example [1],
[10], [4], [11]). The possibility of effective modeling fractional order systems at the
MATLAB/SIMULINK platform is determined by possibility of their integer order ap-
proximation. The approximation of elementary operator s* was proposed by Oustaloup
(see for example [1], [16] ), the approximation of elementary inertial transfer function
ﬁ was proposed by Charef [2]. The idea of both approximations is very similar
and consists in fitting Bode magnitude plots of exact and approximated transfer func-
tions. However, author of this paper does not know the simple approximation method

dedicated to elementary fractional order transfer function containing both one pole and

Tys+1)P
one zero (( pst1)

(s 1) This elementary function can describe a part of special, model - based
controller (for example - cancelation controller). In this paper is presented a proposition
of generalization the Charef approximation to describe an elementary fractional order
transfer function with zero and pole.

Particularly, in the paper the following problems will be discussed:
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A plant under consideration.

The Charef approximation.

The proposed approximation method for the considered transfer function.

— Problem of cancelation poles by zeros.

— The accuracy of the proposed approximation.

Examples.

2. A plant under consideration
Let us consider the plant described by the following, elementary transfer function:

Y
60) = )

where: 0 < o, < 1, o # B denote fractional orders of numerator and denominator,
To, Ty > 0, Ty, # T denote time constants of numerator and denominator respectively.

We do not make any assumptions about conmeasurability of these coefficients (they can
be conmeasurable or not).

2.1. The exact Bode magnitude plot for the considered plant

The exact magnitude Bode plot for the plant we deal with can be obtained with
the use of MATLAB. The spectrum transfer function of the plant described by (1) as a
function of pulsation ® can be expressed as follows:

. (joTg+1)P
G(jw) = Tyt 1)* ()

The module M () of the transfer function (2) as a function of ® is expressed as under-
neath:

oTp)>+1)P
= ®)
The module (3) can be expressed in [dB] as a following sum:
201gM (o) = 201g Mg (®) +201g Mo (®) 4)
where:
201gMp(0) = 10Blg((0T)* +1) (5)

201gMy () = —100Ug((0Ty)> +1) (6)
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Equations (3) to (6) describe the exact Bode module plot for the transfer function we
deal with. It is easy to numerical calculation with the use of MATLAB, it can be also
easily drawn with the use of Bode approximation. The shape of a diagram is determined
by values of orders o and 3 and time constants Ty, and 7. The factor (6) can be directly
approximated with the use of Charef approximation, the factor (5) can also approximated
with the use of Charef approximation, but it requires additional assumptions.

3. The Charef approximation

The possibility of application of the fractional order transfer function in MATLAB
platform is determined by possibility of its finite-dimensionality and integer order ap-
proximation. The approximation of fractional-order transfer functions has been pre-
sented by many authors. Fundamental results were given by Oustaloup (see for exam-
ple: [3], [8], [16], and Charef [2] ). Interesting results were also presented by Djouambi,
Charef and Besancon in 2007 [6]. The approximation proposed by Charef (see [2]) ap-
proximation allows us to approximate the fractional order transfer function of inertial
plant, described as underneath (see [2])

1

Gs) = For

(7
where T denotes the time constant of the plant, 0 < v < 1 denotes the fractional order of
the plant.

The finite-dimensional approximation of the transfer function (7) is expressed as
underneath:

N—1
I1(1+2)
Gen(s) = "0 )
I1(+5)
n=0

where z; and p; denote zeros and poles of approximation, N denotes order of the approx-
imation. An idea of this approximation is to best fit the Bode magnitude plot of approx-
imation to Bode magnitude plot of plant in given frequency band. Zeros and poles are
calculated with the use of following recursive dependencies (see [2]):

1
pP=7 ©)
po=pVb (10)
Z0 =apo (11)
(12)
pi=polab)’ i=1..N (13)

zi=apo(ab) i=1.N (14)
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where: A
b = 1070s (15)
ab = 10T @

In (15) A > 0 denotes maximal permissible error of Charef approximation, defined as
the difference between Bode magnitude plot for model and plant, expressed in [dB]. The
order of approximation N can be estimated as follows (see [2]):

_ Log(®maxT) _
N=1Int (W) .

100(1—at)log(@max T
Int ( ( )5 s >> +1

where ®,,,, denotes the maximal frequency band, for which the approximation will be
applied.

4. Proposition of approximation for the considered transfer function

The approach presented above can also be applied to approximate multimodal frac-
tional order transfer functions (see [2]). The Bode magnitude plot of the function we
deal with is a sum of plots described by (5) and (6), because the transfer function (1) we
deal with, can be presented as the following product:

G(s) = Gu(s)Gp(s) (17)
where: |
Ga(s) = (Tos £1)% (18)
Ga(s) = (Tps+1)P = — (19)
(Tgs+1)P

The transfer function (18) can be directly approximated with the use of approximation
(8) to (16). Denote its approximation by G pq(s):

2

+ S

ng= Znoc LC o

Gena(s) = " = D’;a((?) (20)
I (+5)

In (20) notation is the same, as in (8). The order of approximation is equal Ny. More
problematic is the approximation of the second factor of transfer function (1), expressed
by (19). Notice, that this transfer function is the inverse of inertial transfer function,
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expressed by (1). This implies, that its approximation can be proposed as an inverse of
approximation for inertial plant described by (20):

Np—1
I <1 + ps>
ng=0 " Dchﬁ(s)
Gep(s) [jv =7 1)
ﬁ <1+Z5> chB(s)
ng=0 "B

Consequently, the approximation G (s) of the whole transfer function we deal with can
be expressed as follows:

Lepg, (S)Dchﬁ (S)

Gch(s) = GCha(s)GChB(S) - Dchoc(s)LChB(s)

(22)

The summarized order of the numerator and denominator of the transfer function (22) is
the same and it is equal Ng + Ng — 1, the both orders Ny and N can be estimated with
the use of 16):

100(1 — o) log (. T
N (DLl 0 )

(23)

NB — Int <lOB(1 - B)ZAOg(wmaxTB)> +1

where ,,,, describes the maximal frequency, for which the approximation is going to
be applied.

4.1. Problem of cancelation poles by zeros

The above approximation has the form of quotient of two pairs polynomials (see
(22)). Set of zeros transfer function (22) contains both zeros of polynomial L (s) and
poles Dg(s) and analogically: set of poles transfer function (22) contains both poles
of polynomial Dy (s) and zeros Ly (s). This implies, that for particular values of plant
parameters Tg, Tp, 0. or B and approximation parameters: error A and orders: No and Ny a
cancelation poles by zeros for approximating transfer function can occur. This situation
can be written as underneath:

dng = 0...Ng, ElnB = ONB : Zno, = Znp V Pno = Dnp 24)

where ng = 0...Ny, ng = 0...Ng. The situation described by (24) can cause the lost of
an approximation accuracy and it should be avoided during application of the proposed
approximation. Conditions eliminating the poles by zeros cancelation are given under-
neath.
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Proposition 1 Sufficient and necessary condition of cancelation absence. Let us assume
that:

o We consider the fractional order plant described with the use of transfer function
(1) with parameters: Ty, Tg, O and B,

o the both parts of the fractional order transfer function (1) are approximated with
the use of Charef approximation, described by (8) - (16) and (20) (21),

o the maximal approximation error is equal A for both parts of approximation,

e orders of both parts of approximation are equal Ny, and Ng respectively,

Thesis:
The cancelation poles and zeros of the both parts of approximation will not occur if and
only if: Vng = 0...Ng, Vng =0...Ng :

E(TQ,T[;,(X,B,A,HQ,HB) 7& 0AE(T“,TB7&,B,A7”“,”B) 7& 0
where F;(...) and F,(...) are described as follows:
20 TB 2n[3+1+[3 2ng+1+0

FelTo, Ty, 0B, A o) = “p(log 7o) = =gy —gem = = 0h= (29)
20, Ty 2ng+1—B 2ng+1-
FP(T“’TB’“’BvA’”av”B):X(log?z)_ rLl%B(l—B)BﬂL ’Zx(l—oc)a (26)

Proof At the beginning let us remember that the maximal permissible error for the
both approximations is the same and equal A. This implies, that the direct dependency
between poles and zeros of transfer function (22) and parameters of the plant can be
expressed as underneath:

1 A 2ng+1+a
Zno, = T 1020 (1-oja (27)
o
1 A2n +1+B
Znp = Tﬁmzo (I-B)B (28)
1 A 2ng+1-a
Pno. = TilOZAO (ljot)oc (29)
o
1 aZptl P
Pup = ?[51020 (1-Pp (30)

Remember that condition of zeros cancelation is formulated as follows: z,, = Zng (see
(24) )After inserting (27) - (30) into this equation and any elementary transformations
we obtain directly condition (25) describing the zeros cancelation:
20 TB 21’![3—{-1—}—[3 2ng+1+0
—(log—) — + =0 (31)
212 7,) "B T ei—o)

E(Tu»Tﬁﬂ-,BsA»”w"B)
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The condition of poles cancelation p,, = p,, we obtain analogically with the use of (27)
- (30):
20
A

1
Tu

g 1B 2ng+l-o
TR T R R (32

Fp(To, T, 043, A,m0,115)

(log

Finally, if the neither of conditions (31) nor (32) is met, the cancelation zeros and poles
will not occur. This describes the thesis of Proposition 1 and finishes the proof. 0

Direct use of the Proposition 1 to test the cancelation requires us to calculate values
of functions F(...) and Fj(...) for each node of grid built by sets: nq = 0...Ng and ng =
0...Ng. It will be shown in examples.

However the Proposition 1 allows us to test the "ready" approximation only. It does
not give us any guidelines, which value of the parameter A, for given: Ty, T3, ot and [ and
estimated Ny and Ng should be selected to avoid the cancelation? The response at this
question can be directly obtained from Proposition 1 and it is presented as Proposition
2.

Proposition 2 Sufficient and necessary condition of cancelation absence associated to
error A
Let us assume that:

o we consider the fractional order plant described with the use of transfer function

(D,

e The both factors of the fractional order transfer function (1) are approximated
with the use of Charef approximation, described by (8) - (16) and (20) (21),

e Maximal approximation error is equal A for both parts of approximation

Thesis:
The cancelation poles and zeros of the both parts of approximation will not occur if and

only if:
A {Acp} U{Ac}
where {A.,} and {A..} are defined as underneath:

T;
20l0g (£
{Acp} = {Acp(l’l(x,nﬁ> = % >0: Ng — 0~--NOL; l’lB = ONﬁ}
B(I=P) *Tfﬁw—a) (33)
201 (—a)
{Acz} = {Acz(l’l(x,nﬁ) = Mﬁ > 0 Ny = 0...N(x, I’lB = ONB}
BI-B)  o(l-0)

Proof The positive solutions of (31) and (32) directly describe the "forbidden" values
of error A. O

Use of the both presented propositions will be shown in Examples.
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4.2. The accuracy of the proposed approximation

The next problem, which should be analyzed during the using of the proposed ap-
proximation is an estimation of the approximation error and associating it to maximal
permissible error A of each partial approximation. Denote this summarized approxima-
tion error by A;(®). The estimation of this error is given in the Proposition 3:

Proposition 3 Let us assume that:

e we consider the approximation of fractional order transfer function (1), described

by (20)-(24),
e maximal errors of both partial approximations are the same and equal A,
e The pole-zero compensation does not occur (Proposition 1 is not met).

The maximal error of the proposed approximation can be estimated as follows:
max(Ag(®)) = 2A (34)
Proof The error A;(®) can be defined as the following function of the pulsation ®:
As(®) = M(®) — Mop(o) (35)

where M(®) and M.,(®) denote modules of considered transfer function (1) and their
approximation proposed here (22) respectively. To estimate the above maximal error an
interval approach will be used.

At the beginning notice that an idea of Charef approximation assumes that the mod-
ule 20/0gM (®) of approximation of each partial transfer function: Gejq(s) and Geg(s)
is "from definition" inaccurate and the maximal error of this approximation is equal A.
This error is applied to calculate poles and zeros of approximation (see (15),(16)). A
is expressed in [dB] and it can be applied to express both partial modules as following
intervals:

Mcpo = [Mchondhoc] (36)

Mg = | Mesp: Morg| (37)
where:

Mchoc = Mchoc —A (38)

M po = Mep + A (39)

MchB = MchB —A (40)

Mg = Mg+ A A1)
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The width of each interval (36) and (37) is equal 2A. Notice that the module M, of the
whole approximation (22) expressed in [dB] can be calculated as a difference between
modules of the both transfer functions G (s) and Geg(s) expressed in [dB]:

Men = Mcpo — MchB (42)

The module (42) can be presented as the following interval:

My = [Mep; Moy (43)

where:
Mch = Mcha _Mchﬁ —2A (44)
Mch = Mch[x - MchB +2A (45)

In (44) and (45) A denotes the maximal error of each partial approximation, applied to
calculate coefficients (9) to (16). The maximal error of the the proposed approximation
can be estimated as the width of interval (43)) and it is easy to see that it is equal
2A, where A is the maximal error of each partial approximation. This finishes the proof.

The estimation presented above is very "cautious" and it describes upper limits of
inaccuracy. Real error is much smaller (it will be shown in examples), but it can signifi-
cantly increase when the cancelation poles or zeros occurs.

5. Examples

5.1. Example 1

As the first example let us consider the following transfer function :

(554+1)03

GO = a5y

(46)
The approximation of the above transfer function will be built for pulsation range from
1073 to 10 [sec™'], the maximal error A = 1 [dB]. With the use of (24) we calculate
orders of both parts of approximation. They are equal:

N(XZS,NB:6

To test the cancelation zeros and poles the Proposition 1 will be used. Results of tests
are shown in Tab. 1 and 2

From Tab. 1 and 2 we can conclude that cancelation poles and zeros will not occur in
the considered example, because each table contains no zeros. The exact Bode magnitude
plot for plant described by (46), plotted with the use of MATLAB/SIMULINK is shown
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M(c) [dB]

10° 10? 10° 10° 10

Figure 1: The exact Bode magnitude plot for transfer function (46)
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Figure 2: The error of approximation (35) as a function of pulsation for transfer function
(46)
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Table 1: values of F;(...) for whole grid in Example 2
No | O 1 2 3 4 5 6
Np
0 -17.3673 | -7.8435 1.6803 11.2041 | 20.7279 | 30.2517 | 39.7755
1 -25.3673 | -15.8435 | -6.3197 3.2041 12.7279 | 22.2517 | 31.7755
2 -33.3673 | -23.8435 | -14.3197 | -4.7959 | 4.7279 14.2517 | 23.7755
3 -41.3673 | -31.8435 | -22.3197 | -12.7959 | -3.2721 6.2517 15.7755
4 -49.3673 | -39.8435 | -30.3197 | -20.7959 | -11.2721 | -1.7483 | 7.7755
5 -57.3673 | -47.8435 | -38.3197 | -28.7959 | -19.2721 | -9.7483 | -0.2245
Table 2: values of F),(...) for whole grid in Example 2
No | O 1 2 3 4 5 6
Ng
0 -20.0340 | -10.5102 | -0.9864 8.5374 18.0613 | 27.5851 | 37.1089
1 -28.0340 | -18.5102 | -8.9864 0.5374 10.0613 | 19.5851 | 29.1089
2 -36.0340 | -26.5102 | -16.9864 | -7.4626 2.0613 11.5851 | 21.1089
3 -44.0340 | -34.5102 | -24.9864 | -15.4626 | -5.9387 3.5851 13.1089
4 -52.0340 | -42.5102 | -32.9864 | -23.4626 | -13.9387 | -4.4149 5.1089
5 -60.0340 | -50.5102 | -40.9864 | -31.4626 | -21.9387 | -12.4149 | -2.8911

in Fig. 1, the error of approximation (35) is shown in Fig. 2, Bode magnitude plots exact
and approximated are shown in Fig. 3.

The maximal value of the approximation error A;(®) for this case is smaller than
0.06 [dB]. From analysis of plots presented in figures 3 and 2 we can conclude that the
approximation is correct and its maximal error is not greater than 0.06 [dB], what is
much smaller, than maximal estimated error, equal 2[dB].

5.2. Example 2

As the next example let us consider the transfer function (46) from Example 1 in
the pulsation range from 1073 to 10 [sec™!], the orders of approximation we set from
previous example also: Ny = 5, Ng = 6. But now we will deal with the "forbidden" values
of error A. We calculate both sets {A.;} and {A.,} with respect to (33). They are shown
in Tab. 3 and 4.

Next let us consider one of "forbidden" error values causing poles cancelation:
Acp(4,0) = 0.5187 (see Tab. 4). The Bode diagrams of approximation with canceled
zeros and approximation error A;(®) are shown in Fig. 4 and 5. The maximal value
of the approximation error A;(®) for this case is equal 1.7 [dB]. Next we consider the
exemplary value of error causing canceling zeros (see Tab. 3): A.;(3,3) =2.9194. The
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M(o)M_, (o) [dB]
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Figure 3: Bode magnitude plots: exact (solid line) and approximated (cross) for transfer
function (46)
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Figure 4: The error of approximation (35) as a function of pulsation for transfer function
(46) and canceled poles of approximation
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Table 3: Set {A.;} [dB] for the whole grid in Example 2, "-" denotes negative values of
error

1.6751 | 0.9205 | 0.6346 | 0.4843 | 0.3915 | 0.3285
- 5.3778 | 1.4808 | 0.8586 | 0.6046 | 0.4666 | 0.3798
- - 3.7844 | 1.3270 | 0.8046 | 0.5773 | 0.4501
- - - 29194 | 1.2021 | 0.7569 | 0.5523
- - - - 2.3762 | 1.0987 | 0.7145
- - - - 1.0217 | 2.0035 | 1.0117

malw|lo|—|o
= Z
et
[\")
o0
o0
©°

Table 4: Set {A.,} [dB] for the whole grid in Example 2 "-" denotes negative values of
error

2.1740 1.0534 | 0.6951 | 0.5187 | 0.4137 | 0.3440
- | 20.4357 | 1.8578 | 0.9731 | 0.6592 | 0.4984 | 0.4007
-] - 7.8599 | 1.6219 | 0.9042 | 0.6269 | 0.4797
-] - - 4.8656 | 1.4391 | 0.8444 | 0.5975
-] - - - 3.5234 | 1.2934 | 0.7921
-] - - - - 27616 | 1.1745

N W= |O
z z
1

Bode diagrams of approximation with canceled zeros and approximation error A;(®) are
shown in figures 7 and 6.

The maximal value of the approximation error A;(®) for this case is equal 1.3 [dB].
After comparing the above results with example 1 (the same plant, but different param-
eters of approximation) we can see that the cancelation poles or zeros decreases the
performance of proposed approximation.

6. Final conclusions

Final conclusions from the above paper can be formulated as follows:

e The proposed approximation method is a generalization of well known Charef
approximation for fractional order transfer function with one zero and one pole,
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M(w). M (o) [dB]

25 - L L ————-——0 P e b PrbreE
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Figure 5: The exact Bode diagram (solid) and approximation (35)(cross) functions of

pulsation for transfer function (46) and canceled poles of approximation

0.5 -

A o8]

10 10 10 10° 10

Figure 6: The error of approximation (35) as a function of pulsation for transfer function
(46) and canceled zeros of approximation
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-5

-15 -

M(o) M., (o) [48]

107 107 10° 10° 10

Figure 7: The exact Bode diagram (solid) and approximation (35)(cross) functions of
pulsation for transfer function (46) and canceled zeros of approximation

e Estimations and results of simulations show that the proposed method is accurate
and their maximal error is localized in expected places (corners of Bode magnitude

plot),

e The cancelation poles or zeros can significantly decrease the approximation per-
formance, but suitable conditions to avoid it were proposed,

e Further investigations of the presented problem are going to cover:

— more exact accuracy analysis,
— more precise pole-zero compensation conditions,

— the case of multimodal pole-zero fractional order transfer function.

e The proposed approximation will be applied to simulations of a fractional order
cancelation controller.
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