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Abstract. Overhead cranes are extensively employed but their performance suffers from the natural sway of payloads. Sometime, the sway

exhibits double-pendulum motions. To suppress the motions, this paper investigates the design of simultaneous input-shaping-based fuzzy

control for double-pendulum-type overhead cranes. The fuzzy control method is based on the single input-rule modules (SIRMs). Provided

the all the system variables are measurable, the SIRMs fuzzy controller is designed at first. To improve the performance of the fuzzy

controller, the simultaneous input shaper is adopted to shape the control command generated by the fuzzy controller. Compared with other

two control methods, i.e., the SIRMs fuzzy control and the convolved input-shaping-based SIRMs fuzzy control, simulation results illustrate

the feasibility, validity and robustness of the presented control method for the anti-swing control problem of double-pendulum-type overhead

cranes.
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1. Introduction

Overhead cranes are widely used in many places, such as

warehouses, disaster sites, nuclear plants, shipyards and con-

struction sites, to transport objects because of their heavy pay-

load capabilities [1, 2]. They are one of the most important

elements in global industrialization and play an irreplaceable

role in economic development. Structurally, a common char-

acteristic among overhead cranes is that their payloads are

supported via suspension cables, the cables are hanged on

trolleys [3]. Although it provides the hoisting/lowering and

moving functionalities of overhead cranes, such a characteris-

tic also presents several challenges. The primary is the natural

sway of payloads, which is inherently a pendulum-type mo-

tion [4]. The motion not only hazards safety but also degrades

positioning accuracy. Experienced crane operators can elim-

inate the motion by moving the trolleys in small increments

but this must result in an adverse effect on throughput and

efficiency [5]. Thus, a large research effort is directed at au-

tomatic crane operation because high positioning accuracy,

small swing angle, short transportation time, and high safety

are required.

Recently, the study of overhead crane control approaches

has received significant attention. Various methods concern-

ing the control problem have been presented, i.e., fuzzy logic

control [1–3], energy-based control [4], adaptive control [5],

trajectory planning [6], input shaping [7], sliding mode con-

trol [8–10], to name but a few. See [11] for a review of these

efforts in the crane control problem. In most of the reports

about overhead crane control, including but not limited to

[1–10], the mass-point assumption integrates all the suspend-

ing parts. The assumption leads to single-pendulum dynamics

and most of the previous work on crane control has focused

on how to resist the single-pendulum oscillations. However,

double-pendulum dynamics actually exist because of certain

types of payloads and cables [12]. The double-pendulum dy-

namics can degrade the effectiveness of those controllers for

resisting the single-pendulum oscillations. Since they com-

pound two kinds of pendulum motions with different natural

frequencies, the double-pendulum oscillations are rather diffi-

cult to be eliminated. How to suppress the double-pendulum

oscillations remains challenging [13].

Some researchers have presented several methods to attack

the issue, i.e., decoupling control [14], passivity-based con-

trol [15], wave-based control [16], hierarchical sliding mode

control [17, 18], input shaping control [12, 13, 19–23], neural-

network-based intelligent control [24], e ct. The methods can

roughly be divided into two categories according to the type

of control structure, i.e., feedback control [14–18, 24] or feed-

forward control [12, 13, 19–23]. Any method has both merits

and drawbacks. As Singhose and his colleagues [13] point-

ed out, feedback control is challenging due to the difficulty

of measuring the payload motion but feedforward control has

to tolerate a level of residual vibration because of modeling

errors and unmodelled actuator dynamics.

The motivation of the paper does not advocate or com-

pare which control structure is superior, but rather investigates

a possible design for the anti-wing control problem of double-

pendulum-type overhead cranes. Consequently, the structure

of feedback control is adopted under the assumption that all

the system variables are measurable. With the development

of sensor and measuring technology, it is probable and fea-
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sible to utilize the feedback structure for double-pendulum-

type overhead crane control although currently measuring the

double-pendulum motions is difficult.

As a model-free approach, fuzzy control [25] has been

proven to be effective for solving unmodelled dynamics. How-

ever, the method suffers from the problem of exponential rule

explosion [26]. To avoid the problem, the single-input-rule

modules (SIRMs) method was addressed by Yi et al. [27]. So

far, the SIRMs method has been successfully implemented

on cart-pole system [27], medical diagnosis system [28], fuel

cell system [29] and stress prediction system [30]. Although

the SIRMs method [2] in 2003 was carried out by a single-

pendulum-type overhead crane, how to establish the SIRMs

of double-pendulum-type overhead cranes still remains un-

touched and problematic due to the challenge and complexity

of double-pendulum dynamics.

This paper touches the topic. To develop the SIRMs

fuzzy control for double-pendulum-type overhead cranes, six

dynamically-weighted SIRMs are introduced to archive the

anti-swing control in the form of feedback control. To opti-

mize the control command generated by the fuzzy controller,

a simultaneous input shaper is employed as feedforward con-

trol. According to such a design scheme, the two control

methods fuse together by means of the types of their control

structures. Compared with the sole SIRMs fuzzy control and

the convolved input-shaping-based SIRMs fuzzy control, the

feasibility, validity, and robustness of the compound control

method are illustrated by numerical simulation results.

The remainder of this paper is organized as follows. Sec-

tion 2 describes dynamics of double-pendulum-type overhead

crane systems. The control design is presented in Sec. 3. Sec-

tion 4 demonstrates the numerical simulation results. Conclu-

sion is drawn in Sec. 5 at last.

2. Dynamics of double-pendulum-type overhead

crane systems

Figure 1 illustrates the schematic representation of a double-

pendulum-type overhead crane. Such a system is under-

actuated [31] and consists of three subsystems: trolley, hook

and payload. Each subsystem can be described by one gener-

alized coordinate variable such that the following three gener-

alized coordinate variables exist to describe the motion equa-

tions of the crane. x (m) depicts the trolley position with

respect to the origin. θ1 (rad) and θ2 (rad) are the swing an-

gles with respect to the vertical line and they describes the

double pendulum motions of the other two subsystems.

Further, the rest of symbols in Fig. 1 are explained as fol-

lows. The crane is moved by a driven force F (N), applied to

the trolley of mass m (kg). A cable of length l1 (m) hangs

below the trolley and supports a hook, of mass m1 (kg). The

rigging below the hook is modeled as a second cable of length

l2 (m). The payload is of mass, m2 (kg).

Fig. 1. Schematic of double-pendulum-type overhead crane system

Provided that no friction, massless and rigid cables, mass-

point hook and mass-point payload, the equations of motion

with zero initial conditions [15] can be obtained by Lagrange’s

method.

M (q) q̈ + C (q, q̇) q̇ + G(q) = τ. (1)

Here q =
[

x θ1 θ2

]T

is a vector of the three gener-

alized coordinates, τ =
[

F 0 0
]T

is a vector of the

generalized force, g is the gravitational acceleration, M (q)
is a 3 × 3 inertia matrix, C (q, q̇) q̇ is a vector of Coriolis

and centripetal torques, G(q) is a vector of the gravitational

term. M (q), C (q, q̇) and G (q) are determined by

M (q) =











m + m1 + m2 (m1 + m2)l1 cos θ1 m2l2 cos θ2

(m1 + m2)l1 cos θ1 (m1 + m2)l
2

1
m2l1l2 cos (θ1 − θ

2
)

m2l2 cos θ2 m2l1l2 cos (θ1 − θ
2
) m2l

2

2











,

C (q, q̇) =











0 −(m1 + m
2
)l1θ̇1 sin θ1 −m2l2θ̇2 sin θ2

0 0 m2l1l2θ̇1 sin (θ1 − θ2)

0 −m2l1l2θ̇1 sin (θ1 − θ2) 0











,

G(q) =
[

0 (m1 + m2)gl1 sin θ1 m2gl2 sin θ2

]T

.
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3. Control design

Fuzzy control is a model-free method. This appears to be ben-

eficial both for control design and analysis. But the method is

criticized for its exponential rule explosion [1]. The SIRMs

fuzzy method presented by Yi et al. [2] can dramatically re-

duce the numbers of rules and parameters. This section de-

velops such a fuzzy controller for the crane in Fig. 1. The

controller is composed of six dynamically-weighted SIRMs.

Note the crane model (1) is only prepared for simulation stud-

ies. The following control design assumes that the model is

completely unknown.

3.1. Dynamically-weighted SIRMs method To develop a

SIRMs fuzzy controller, a briefly introduction of the

dynamically- weighted SIRMs method is presented at first.

To formulate the method, the i-th single-input-rule module

(SIRM) is defined by

SIRM− i :
{

Rj
i : if xi = Aj

i then fi = Cj
i

}mi

j=1

. (2)

Here SIRM− i is a SIRM to depict the i-th input item of

the designed fuzzy inference system; Rj
i is the j-th rule of

SIRM−i; xi and fi are the antecedent and consequent vari-

ables of the ith input item, respectively, where fi is also an

intermediate variable corresponding to the output item f ; Aj
i

and Cj
i are the membership functions of xi and fi, respec-

tively. In (2), i = 1, 2, 3, · · · , n denotes the index number of

SIRMs and j = 1, 2, 3, · · · , mi denotes the rule number of

SIRM−i. In SIRM−i, the inference result f0

i of the conse-

quent variable fi can be formulated by

f0

i =

mi
∑

j=1

Aj
i (xi)C

j
i

mi
∑

j=1

Aj
i (xi)

. (3)

Each input item plays a unique role in system performance.

To describe the important rank of the i-th input item, its dy-

namic weight wD
i is defined in (4). Note that wD

i is indepen-

dent on xi

wD
i = wi + Bi∆w0

i . (4)

In (4), wi denotes a base value and it guarantees the i-th
input item plays the basic role. ∆w0

i is a dynamic variable.

∆w0

i varies from 0 to 1 and it can be automatically adjusted

by means of predefined fuzzy rules. Finally, the output item

f of the whole n SIRMs has a form of

f =

n
∑

i=1

wD
i f0

i . (5)

Here f0

i is the fuzzy inference result of SIRM− i.

3.2. Design of SIRMs fuzzy controller. Concerning the

crane in Fig. 1, its control task is to transport the payload to

a required position as fast and accurately as possible. Mean-

while, the designed controller has to suppress the double-

pendulum-type oscillations induced by the trolley motions.

The trolley motions are driven by the force F . To achieve

the compound control task, F is picked up as the control

input applied to the trolley. Without loss of generality, de-

fine x ∈
[

−1 m 1 m
]

, θ1 ∈
[

−0.5 rad 0.5 rad
]

and

θ2 ∈
[

−0.5 rad 0.5 rad
]

. If any of the three variables

gets out of its predefined intervals, then the control process

is regarded as a failure.

As far as the crane is concerned, its control input F covers

three parts, i.e., trolley position control, hook angle control

and payload angle control. In order to simultaneously cover

the three types of controls, x, ẋ, θ1, θ̇1, θ2 and θ̇2 in (1) are

treated as controller inputs. Accordingly, the control input F is

undoubtedly the sole controller output. The scaling factors of

the six controller inputs in order are fixed to 1.0 m, 1.0 m/s,

0.5 rad, 1.5 rad/s, 0.5 rad and 1.5 rad/s although the exact

values of the maximum velocity and angular velocity are un-

known. The scaling factor of F is set up to 1.5(m+m1+m2).
Assume x, ẋ, θ1, θ̇1, θ2 and θ̇2 are measurable. Hav-

ing been normalized by their own private scaling factors,

the six variables are selected in order as the input items

xi(i = 1, 2, · · · , 6), and the driven force F is set as the out-

put item f . The six variables and the driven force determine

the controller inputs and the controller output, respectively. In

such a manner, the designed SIRMs fuzzy inference system

takes normalized 6 input items and 1 output item. Since one

dynamically-weighted SIRM is assigned to each input item,

six SIRMs have to be designed.

Although the controller inputs, the control input and the

input items have different meanings they have particular rele-

vance to the crane control problem. The control input applied

to the trolley is calculated by means of the controller inputs.

Having been normalized, the controller inputs become the in-

put items that are the antecedent variables of the designed

SIRMs-based fuzzy inference system.

Setting the SIRMs.

Six SIRMs exist in the designed fuzzy inference system.

Each module employs fuzzy rules to achieve its own inference

processing. The fuzzy rules should be drawn by analyzing the

relation between the input item of each module and the con-

trol performance. The analysis originates from experience and

intuition because of the assumption that the crane dynamics

are completely unknown.

Yi et al. [2] proposed how to set SIRMs for a single-

pendulum-type overhead crane. Although some results in [2]

are referential, how to suppress the double-pendulum-type

motions still remains untouched and problematic. Partly, the

complexity of the double-pendulum dynamics is an obstacle.

Analysis of the trolley position control. This control in-

cludes two modules, i.e., SIRM-1 and SIRM-2. According to

the Newton’s second law, x1 and f1 in SIRM-1 should be

opposite in direction but they should be of same tendency in

magnitude to achieve the trolley position control. Concerning

SIRM-2, a similar conclusion can be reached. The linguistic

description is available in [2].

Analysis of the hook-angle and payload-angle controls.

Because the sole control input achieves all the three con-
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trols, the two angle controls are not only coupled to each

other, but also they are coupled to the trolley position control.

To establish the fuzzy rules for their SIRMs, the two angle

controls are mandatorily decoupled and the double-pendulum

motions are treated as two independent single-pendulum mo-

tions. Yi et al. [2] realized the angle control by establishing

SIRMs for a single-pendulum overhead crane. Briefly, xi and

fi (i = 3, 4, 5, 6) in SIRM-i should be same in direction and

should be of same tendency in magnitude. The linguistic de-

scription is available in [2].

According to the above analysis, the fuzzy rules of x1 and

x2 are set up in Table 1 and the fuzzy rules of x3, x4, x5

and x6 are set up in Table 2. Here, fi (i = 1, 2, · · · , 6) is

the fuzzy inference result of each SIRM and they are inter-

mediate variables corresponding to the output item f ; NB,

ZO and PB are linguistic labels and they denote negative big,

zero and positive big, respectively; the membership functions

of the labels for all the input items are defined in Fig. 2.

Table 1

SIRMs for the trolley

Antecedent variable
xi (i = 1, 2)

Consequent variable
fi (i = 1, 2)

NB 1.0

ZO 0.0

PB −1.0

Table 2

SIRMs for the hook and payload

Antecedent variable
xi (i = 3, 4, 5, 6)

Consequent variable
fi (i = 3, 4, 5, 6)

NB −1.0

ZO 0.0

PB 1.0

Fig. 2. Membership functions of each SIRM

Contradiction. Suppose that the crane in Fig. 1 is static,

that the trolley is located at the origin and that the hook and

payload are in their downward positions. If a positive driven

force is added to the trolley, then the trolley will moves to-

ward the right direction. Simultaneously, the hook will rotate

clockwise and the payload will rotate counterclockwise. Ap-

parently, the tendency of the hook-angle and payload-angle

controls should be opposite. However, the two angle controls

are mandatorily endowed with the same fuzzy rules. The con-

tradiction between the fuzzy rules and the real tendency is

regulated by the following dynamic weights.

Setting the dynamic weights.

As mentioned, each input item plays a unique role in the

crane control system. The role is exhibited by degree of impor-

tance. The degree of importance of an input item is described

by its dynamic weight. Generally speaking, the bigger the dy-

namic weight is, the higher priority the corresponding input

item has.

A dynamic weight defined in (4) has three parameters, i.e.

basic value wi, breadth Bi and inference result ∆w0

i , where

∆w0

i is determined by fuzzy rules. To establish the fuzzy

rules, it is necessary to analyze the three controls according

to experience and intuition. To solve the aforementioned con-

tradiction, the four dynamic weights about the hook-angle and

payload-angle controls are considered at first.

Intuitively, the crane control system probably fails if the

hook angle or angular velocity is large. However, the control

system possibly works if the payload angle or angular velocity

is large. In light of this intuition, the hook angle control should

have a higher priority. On the other hand, when the hook angle

or angular velocity is small, the priority of the payload angle

control should be increased because the double-pendulum-

type crane tends to be stable under this circumstance. As a

result, |x
3
| is selected as the antecedent variable. The four

dynamic weights about the two angle controls are determined

by Tables 3 and 4, respectively.

Although it facilitates the SIRMs design, the fuzzy rules

derived from mandatory decoupling conflict with the double-

pendulum-type motions. The contradiction is tuned by design-

ing the dynamic weights in Tables 3 and 4. From Table 4, the

payload control is injected into the control input by increasing

the dynamic variables ∆w0

5 and ∆w0

6 when the hook angle

is small; the payload control is not taken into consideration

under other circumstances. Such fuzzy rules in Table 4 de-

couple two independent single-pendulum-type motions from

the double-pendulum-type motions.

Table 3

Dynamic weights for the hook

Antecedent variable
|x

3
|

Consequent variables

∆w0

3
and ∆w0

4

S 0.0

M 0.5

B 1.0

Table 4

Dynamic weights for the payload

Antecedent variable
|x

3
|

Consequent variables

∆w0

5
and ∆w0

6

S 1.0

M 0.0

B 0.0

To establish the left two dynamic weights of the trolley po-

sition control, the physical property of the double-pendulum-

type overheard crane is considered. Concerning the crane, the

sole control input, directly applied to the trolley, indirectly af-

fects the other two controls by the couplings among the three
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controls. To suppress the double-pendulum motions, the im-

portance of the trolley position control cannot be increased

when either |x
3| or |x

5
| is big. On the other hand, the impor-

tance can only be strengthened when both |x
3
| and |x

5
| are

small. To exhibit the couplings, the absolute values of |x
3
| and

|x
5
| are selected as the antecedent variables. The two dynamic

weights about the trolley position control are determined by

Table 5. From Table 5, it is found that the trolley control is

cut off if either of the angles is big and that the trolley control

is triggered by increasing dynamic variables ∆w0

1
and ∆w0

2

if both the angles are small.

S, M and B in Tables 3–5 are linguistic labels and they

denote small, middle, and big, respectively. The membership

functions of the linguistic labels for all the input items are

defined in Fig. 3.

Table 5

Fuzzy rules of two dynamic weights for the trolley control

Consequent variables

∆w0

1
and ∆w0

2

Antecedent variable |x
3
|

S M B

S 1.0 0.5 0.0

Antecedent variable |x
5
| M 0.5 0.0 0.0

B 0.0 0.0 0.0

Fig. 3. Membership functions of each dynamic variable

3.3. Design of simultaneous input shaper. Input shaping

is a control technique for reducing vibrations. The method

works by creating a command signal, where vibration caused

by the first part of the command signal is canceled by vi-

bration caused by the second part of the command signal.

The input shaping method has proven effective for controlling

oscillations of several types of cranes [7, 12, 13, 20–22].

The double-pendulum-type crane in Fig. 1 has two natural

frequencies. The two frequencies of the double-pendulum dy-

namics modeled in (1) can be derived from linearizing (1)

around θ1 = 0 and θ2 = 0. They are formulated by

̟1 =

√

g

2

√

(1 + R)

(

1

l1
+

1

l2

)

+ β

and ̟2 =

√

g

2

√

(1 + R)

(

1

l1
+

1

l2

)

− β,

(6)

where g is the gravitational acceleration, R is the payload-to-

hook mass ratio and

β =

√

(1 + R)2
(

1

l1
+

1

l2

)2

− 4

(

1 + R

l1l2

)

.

W. Singhose et al. [13] discussed the function relation between

the two frequencies and the payload-to-hook mass ratio, the

lengths of the two cables in detail.

To resist the two-frequency oscillations in (6), one can

consider the design of convolved or simultaneous input

shapers where convolved shapers are easy to design but simul-

taneous shapers are faster [13]. Proven in [13], the maximum

amplitude of the residual vibration originates from a series of

impulses and the maximum amplitude can be calculated by

adding the maximum amplitudes from each frequency, which

has the form of

Vamp = |C1|+ |C2| (7)

Here

C1 =
ω1l1 [1 + ω2α (l1 + l2)]

k

·

√

√

√

√

√





n
∑

j=1

Aj cosω1tj





2

+





n
∑

j=1

Aj sin ω1tj





2

,

C1 = −
ω2l1 [1 + ω1α (l1 + l2)]

k

·

√

√

√

√

√





n
∑

j=1

Aj cosω2tj





2

+





n
∑

j=1

Aj sin ω2tj





2

,

α = −
g (1 + R)

ω2

1
ω2

2
l1l2

, k = βl1g and Aj is an impulse of magni-

tude.

To achieve the crane control task mentioned in Sub-

sec. 3.2, the simultaneous input shaping method is employed

to shape the command generated by the SIRMs fuzzy control.

The basic idea of the simultaneous input shaper is to make

the shaper duration tn in (7) as short as possible. Briefly, the

shaper design is to minimize the time of the input shaper im-

pulse subject to some constraints. As a result, the objective

function is formulated by

min tn, (8)

(8) is subject to two types of constraints. They are residual

vibration constraint and amplitude constraint, described by

Vamp ≤ Vtol, (9)

n
∑

i=1

Ai = 1 and Ai > 0. (10)

Here Vtol depicts the residual oscillations expressed with

a unit of length.

3.4. Analysis of control system structure. The structure

of the simultaneous-input-shaping-based SIRMs fuzzy con-

trol system is presented in Fig. 4. From Fig. 4, x, ẋ, θ1,

θ̇1, θ2 and θ̇2 are located at the feedback channel. Having

been subtracted by the corresponding reference inputs, the er-

rors of the six variables become the inputs of the normalizer

(NL) block. Having been normalized, the fuzzy input items,

xi(i = 1, 2, · · · , 6), are obtained.
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Fig. 4. Block diagram of the simultaneous input-shaping-based SIRMs fuzzy control system

The input item xi feeds the SIRM-i block and the output

of the SIRM-i, fi, is derived from the designed fuzzy rules.

Both x3 and x5 feed the dynamic-weight (DW) blocks of the

trolley position control as the antecedent variables. The DW

blocks of the hook angle control employ the input item x3 as

the antecedent variable, so do the DW blocks of the payload

angle control.

Summing each output of the SIRM-i block, fi times the

output of its own DW block, wD
i , we can obtain the output

item f of this SIRMs-based fuzzy inference system. Inputting

f to the output scaling factor (OSF) block and passing the

OSF output through the rate limiter (RL) block yields the con-

trol command generated by the SIRMs fuzzy control method.

The control command is shaped by the simultaneous input

shaper (IS) block. Finally, the control input, driven force F ,

can be obtained. Here the function of the RL block is served

to improve the system performance by resisting the control

input swinging rapidly back and forth.

4. Simulation results

In this section, the simultaneous input-shaping-based SIRMs

fuzzy controller will be applied to the point-to-point transport

control of the double-pendulum-type overhead crane system

in Fig. 1. Pointed out in [13], shaping is necessary for double-

pendulum-type overhead crane systems with low payload-to-

hook mass ratios. In Fig. 1, the physical parameters are de-

termined by m = 0.5 kg, m1 = 0.25 kg, m2 = 0.5 kg,

l1 = 0.5 m and l2 = 0.5 m, which are treated as nominal

ones. Note that the payload-to-hook mass ratio is 2 and the

two cables length ratio l2/l1 is 1. Both the ratios are selected

from a benchmark, reported by Singhose et al. [13].

The scaling factors of the input items are defined in Sec. 3,

so the scaling factor of the output item is. The base value and

the breadth of each input item are shown in Table 6. The rate

of the rate limiter in Fig. 4 is set as 6. The simultaneous input

shaper is obtained by minimizing (8) subject to (9) and (10),

where Vtol in (9) is set as 5%, meaning the shaper is de-

signed to accommodate 5% variations in both the low and

high frequencies. Using the MATLAB optimization toolbox,

the designed input shaper contains five impulses as follows.
[

Ai

ti

]

=

[

0.2152 0.2848 0.0000 0.2848 2.2152

0 0.2382 0.8727 0.9908 1.2290

]

.

(11)
Table 6

Parameters of all the dynamic weights

Input item xi Base value wi Breadth Bi

x1 1.3015 2.2103

x2 1.3817 2.1729

x3 0.6970 0.3151

x4 0.7018 0.2852

x5 0.0006 0.2028

x6 0.0003 0.1946

The control objective is to transport the payload to the

desired position,

[

xd ẋd θd
1

θ̇d
1

θd
2

θ̇d
2

]T

=
[

0.8 0 0 0 0 0
]T

,
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from the initial position,
[

x0 ẋ0 θ0

1
θ̇0

1
θ0

2
θ̇0

2

]T

=
[

0 0 0 0 0 0
]T

.

Meanwhile, the control system must suppress the natural

double-pendulum motions of the hook and payload.

Compared with the SIRMs fuzzy controller and the con-

volved input-shaping-based (CIS) SIRMs fuzzy controller,

Fig. 5 illustrated the control performance of the simultane-

ous input-shaping-based (SIS) SIRMs fuzzy controller. The

curves in Fig. 5a show the trolley position performance via

the three controllers. All the three control systems can trans-

port the payload to the desired position, where the SIRMs

fuzzy control system has the largest overshooting among the

three control systems and the other two control systems on

the index almost make on difference.

a) b)

c) d)

e) f)

g) h)

Fig. 5. Comparison of simulation results. a) Trolley position x by the three controllers, b) driven force F by the three controllers, c) Hook

angle θ1 by the SIRMs and CIS SIRMs controllers, d) payload angle θ2 by the SIRMs and CIS SIRMs controllers, e) Hook angle θ1 by

the CIS SIRMs and SIS SIRMs controllers, f) payload angle θ2 by the CIS SIRMs and SIS SIRMs controllers, g) phase trajectories of the

hook and payload by the CIS SIRMs controller, h) phase trajectories of the hook and payload by the SIS SIRMs controller
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The plots in Fig. 5b display the comparison of the driven

force via the three controllers. The curve via the SIRMs fuzzy

controller sometimes has to swing back and forth to suppress

the double-pendulum motions. The control outputs of the CIS

and SIS SIRMs fuzzy control systems are smooth, where the

SIS SIRMs fuzzy control system has a slightly larger over-

shooting.

In Fig. 5c–f, the two input-shaping-based SIRMs fuzzy

controllers are apparently better to suppress the natural

double-pendulum oscillations of the hook and payload than

the SIRMs fuzzy controller. Although the difference between

the two input-shaping-based SIRMs fuzzy control systems

seems slight in Fig. 5c and 5d, the locally zoomed plots in

Fig. 5e and 5f show the SIS SIRMs fuzzy control system has

smaller residual vibrations.

To demonstrate the comparison of the two input-shaping-

based SIRMs fuzzy controllers, the phase trajectories of the

hook and payload are displayed in Fig. 5g and 5h, where the

locally zoomed plots show the SIS SIMRs fuzzy control sys-

tem has smaller swags in the desired position.

Through the above-mentioned comparisons, the input-

shaping method is effective to suppress the natural double-

pendulum oscillations. It can improve the control performance

of the SIRMs fuzzy control system. Concerning the types of

shapers, the simultaneous input-shaping-based SIRMs fuzzy

control system is faster than the convolved input-shaping-

based SIRMs fuzzy control system because the simultaneous

input shaper is designed to shape the output of the SIRMs

controller in the minimum time.

Generally speaking, m1 is usually unchanged but m2 is

always changed under different operating conditions. More-

over, l1 is always changed under hoisting operating condi-

tions. To test the robustness of the presented method against

the mass and hook-cable length variations, the physical pa-

rameter variations m2 ∈
[

0.2 kg 1.25 kg

]

and l1 ∈
[

0.1 m 0.4 m

]

are taken into accounts, respectively. The

mass variation indicates the payload-to-hook mass ratio R ∈
[

1/2.5 2.5
]

and the length variation hints the crane hoists

20%∼80% in length of this nominal hook-cable.

Figure 6 displays the simulation results when m2 is its

lower and upper bounds and m1, l1, l2 and the controller

parameters are kept unchanged from the nominal system.

From Fig. 6, the control system can endure a variation of

−60∼150% in payload mass. The proposed method possess-

es good performance and good robust stability against wide

payload-mass variations.

Figure 7 displays the simulation results when l1 is its lower

and upper bounds and m1, m2, l2 and the controller parame-

ters are kept unchanged from the nominal system. From Fig. 7,

the control system can endure a variation of −80%∼−20% in

the hook-cable length. The proposed method can still possess

a good performance after hoisting operating conditions.

a) b)

c) d)

Fig. 6. Results of robustness for the payload mass variation. a) Trolley position x, b) driven force F , c) Hook angle θ1, d) payload angle θ2
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a) b)

c) d)

Fig. 7. Results of robustness for the hook-cable length variation. a) Trolley position x, b) driven force F , c) Hook angle θ1, d) payload

angle θ2

5. Conclusions

This article has designed a simultaneous input-shaping-based

SIRMs fuzzy controller for double-pendulum-type overhead

cranes. Compared with SIRMs fuzzy control and convolved

input-shaping-based SIRMs fuzzy control, the simulation re-

sults show the designed controller is superior. The main con-

tributions are to analyze the motions of the double-pendulum

overhead cranes and to fuse the input-shaping and SIRMs

fuzzy control methods for the transport control problem of

double-pendulum-type overhead cranes. The drawback of the

presented method is the measurability assumption because the

hook and payload angles, especially the payload angle, are dif-

ficult to measure. But the presented method is potential with

the development of sensor and measuring technologies.

Appendix

As mentioned, the crane in Fig. 1 contains the high and low

frequencies. To suppress the low frequency fl, one Zero Vi-

bration and Derivative (ZVD) shaper ZV Dfl
is designed by

ZV Dfl
=

[

Ati

ti

]

=

[

1/4 1/2 1/4

0 ρ 2ρ

]

. (A1)

Here Ati
hints an impulse of magnitude A is introduced

at time ti and ρ = π/(̟
1
). To suppress the high frequency

fh, the other ZVD shaper ZV Dfh
is designed by

ZV Dfh
=

[

Ati

ti

]

=

[

1/4 1/2 1/4

0 σ 2σ

]

. (A2)

Here σ = π/(̟
2
). Concerning the crane system, σ is

usually twice as large as ρ. To suppress both the frequen-

cies together, the following convolved shaper ZV Dcov can be

deduced from (A1) and (A2)

ZV Dcov =

[

Ati

ti

]

=

[

1

16

0

1

8

ρ

1

16

2ρ

1

8

σ

1

4

ρ + σ

1

8

2ρ + σ

1

16

2σ

1

8

ρ + 2σ

1

16

2ρ + 2σ

]

.

(A3)

The final control input can be obtained by convolving (A3)

and the output of the rate limiter in Fig. 4.

F = Fo ∗ ZV Dcov. (A4)

Here ∗ denotes convolving operator and Fo denotes the

output of the rate limiter in Fig. 4.
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