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Robust switched controller design for linear
continuous-time systems

ADRIAN ILKA, VOJTECH VESELÝ

In this paper we study a novel approach to the design of a robust switched controller for 
continuous-time systems described by a novel robust plant model using quadratic stability and 
multi parameter dependent quadratic stability approaches. In the proposed design procedure with 
an output feedback a novel quadratic cost function is proposed which allows to obtain different 
performance dependence on the working points. Finally a numerical examples are investigated.

Key words: Switched system, robust controller, output feedback, quadratic stability, multi 
parameter dependent quadratic stability. 

1.  Introduction

The topic of robust hybrid systems has attracted considerable attention in the past 
decades. Wherever continuous and discrete dynamics interact, a hybrid system arises. 
The main motivation for studying hybrid systems comes from the two facts: 

●● hybrid systems have numerous application in the real world, and 

●● in a  real control, there are dynamical systems that cannot be stabilized by any 
continuous static (dynamic) output state controller but a stabilizing hybrid control 
scheme can be found. 

There are several approaches to model hybrid systems [1], [2], [3]. In the references 
authors consider a discrete event system and continuous dynamics modeled by differential 
or difference equation. Such models are used to formulate a general stability condition 
for hybrid systems. In this paper, we consider the class of hybrid systems known as the 
switched systems [4], [5], [6]. There are at last two approaches to stability analysis and 
controller synthesis of switched systems. The quadratic stability approach with a com-
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mon Lyapunov function gives stability of closed-loop switched systems under an arbitrary 
switching law, and a multiple Lyapunov function which is less conservative. The survey 
of the present status of switched systems can be consulted in the excellent paper and book 
of [7] and [1]. The research of switched system control design mainly focuses on the case 
when a plant is modeled by discrete-time systems. There are only a few references which 
deal with the case when the plant is modeled as a continuous-time system [8], [9].

In this paper a novel switched controller design procedure is obtained in the form 
of bilinear matrix inequality (BMI), using a new uncertain model of switched contin-
uous-time linear systems and a multi parameter dependent Lyapunov function. In the 
proposed approach there is no need to use the notion of the ‘dwell time’ [8], [9] which 
significantly complicates the robust switched controller design procedure.

Organization of the paper is as follows. Section 2 includes problem formulation of 
robust switched controller design and some preliminaries. In sec. 3 sufficient stability 
conditions in the form of BMI are given for the design of a robust switched controller. 
In sec. 4 the obtained results are illustrated by real examples.

2.  Preliminaries and problem formulation

Let us consider a class of uncertain linear continuous-time switched systems as follows 
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where ( ) nx t ∈  is the state vector, ( ) mu t ∈  is the control vector, ( ) ly t ∈  is the out-
put vector of the system to be controlled, Sσ ∈  is an arbitrary switching algorithm, p is 
the number of switched plant models and 
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are switching parameters. = 1jθ , when jσ  is an active plant mode, otherwise = 0jθ . 
Matrices ( )jA ξ , ( )jB ξ , = 0,1,j p

 belong to the convex set: a polytope with N  ver-
tices that can be formally defined as 
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There are two possibilities for the switching parameters , = 1,2,j j pθ  : 
(a) rates of change of the switching parameters are infinite, or 
(b) rates of change of switching parameters jθ  are finite. 

The switched output feedback control algorithm is 

	 ( ) = ( ) ( ) = ( ) ( )u t F y t F Cx tθ θ 		  (4)

where 

0
=1

( ) = .
p

j j
j

F F Fθ θ+∑

The structure of matrices , = 0,1,jF j p  can be defined by the designer. For the 
closed-loop system from (1) and (4) one obtains 

	 ( )( ) ( , ) (.,.) ( ) ( ) = ( , ) ( ).cx t A B F C x t A x tξ θ θ ξ θ+ 		  (5)

To asses the system performance we consider a novel positive definite quadratic 
cost function which allows to prescribe the performance for each mode Sσ ∈  

	 ( )
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p

j jj
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Definition 1 Consider the stable closed-loop system (5). If there exist a control law u* 

(4) and a positive scalar  J* such that the closed-loop system (5) is stable and the value 
of the closed-loop cost function (6) satisfies *J J≤ , then  J* is said to be the guaranteed 
cost and u* is said to be the guaranteed cost control law for the system (5). 

Lemma 1 [10] Consider the closed-loop switched system (5) with the control algorithm 
(4). Control algorithm (4) is the guaranteed cost algorithm if there exists a positive 
scalar ε  such that for the time derivative of the positive definite Lyapunov function 

( , )V ξ θ  (case b) the following condition holds 
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T
e c
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V
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x
ξ θ ε∂ ⋅ + ≤ − ∂ 
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when 0ε → . 

Note, that for the case a, the Lyapunov function has the form ( )V ξ  – quadratic sta-
bility with respect to the switching parameters θ .
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3.  Robust switched controller design

In this section two methods of robust switched controller design are described. 
The first method is connected with the notion of quadratic stability with respect to the 
switched parameters θ  (case a), where we assume that the rate of θ  change is infinite. 
In the references concerning the switched controller design, the authors refer to the case 
where switching can occur immediately. In some real cases the switching signal rate of 
change is finite, that is | |<θ ∞ . This assumption will be used in the second approach. In 
the proposed design procedure of the robust switched controller there is no need to use 
the notion of the ‘dwell time’ [8], [9]. In continuous time switching systems, the dwell 
time complicates significantly the robust switched controller design procedure.

3.1.  Robust quadratic stability approach

In this part we will assume that the rate of θ  change is infinite. The proposed meth-
od is based on the notion of quadratic stability. Let us assume that the Lyapunov func-
tion is in the form 

	 ( ) = ( )TV x P xξ ξ 		  (8)

where 

=1

( ) = .
N

i i
i

P Pξ ξ∑
Firstly let derivative (8) and obtain 
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where 
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The term ( )P ξ  in (9) can be used in the case if one wants to take into account the 
rate of system parameter changes. For the closed-loop system (5) one obtains 

	 ( ) ( )1 22 2 ( , ) = 0
T

cN x N x x A ξ θ+ −  	 (10)

where 1 2, n nN N ×∈  are auxiliary matrices. Substituting (10), (9) and (6) to (7) we have
 

	 = ( ) < 0T
eB z W zξ 	 (11)

where =T T Tz x x   , { }2 2= ( , )ijW W ξ θ ×  and 
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Because of the quadratic stability = 0,j k j kθ θ ≠ , the entries of matrix ( , )W ξ θ  can be 
simplified as follows 
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The first main result concerning the quadratic stability approach is summarized in 
the following theorem. 

Theorem 1 Closed-loop switched system (5) is robust quadratically stable with guaran-
teed cost for all   Sσ ∈ ,   ξξ ∈Ω  if it satisfies 

(a)
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Note that if ( , )W ξ θ  is convex with respect to , = 1,2,k k pθ  , then it is negative 
definite in the defined hyper rectangle ,θ ξ , if and only if takes negative values at the 
all vertices of θ . ( , )W ξ θ  is linear with respect to uncertain parameter , = 1,2,i i Nξ   therefore inequalities in theorem 1 for each Sσ ∈  split to 2 N  inequalities, ( )W θ . 
Proof immediately follows from the above discussion.

3.2.  Robust multi parameter dependent quadratic stability approach

In this subsection we assume the realistic case where the switching signal rate of 
change is finite, 

●● for the switching parameters it holds 
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●● the rate of switching parameter change jθ  is well defined and satisfies 
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●● the stable steady state points for all switching parameters jθ  are equal to zero or 
one. 

For the first derivative of the Lyapunov function 

	 ( , ) = ( , )TV x P xξ θ ξ θ 	 (16)
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Substituting (10), (17) and (6) to (7) one obtains the sufficient stability conditions for 
robust multi parameter dependent quadratic stability of closed-loop switched systems 
for all Sσ ∈  and sξ ∈Ω  as follows. 

Theorem 2 Closed-loop system (5) is robust multi parameter dependent quadratic sta-
ble with guaranteed cost if there exists a positive definite Lyapunov matrix ( , ) > 0P ξ θ ,  
auxiliary matrices 1 2,N N , and gain matrices (4) such that for an arbitrary switching 
algorithm Sσ ∈  and system uncertainty sξ ∈Ω  the following holds 
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Note that ( , )U ξ θ  is linear with respect to uncertain parameter ξ , therefore in-
equalities (18), (19) for all Sσ ∈  split to 2N  inequalities. If the solution of (18) is 
feasible, the designed robust switched controller for all Sσ ∈  ensures multi parameter-
dependent quadratic stability with a guaranteed cost for the rate of switching parameter 
changes given by (15).

4.  Examples

The first example has been used in [11]. Consider a simplified manual transmission 
model 

	

1 2
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=
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x x

x a x u v− + +
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	 (20)

where 1x  is the ground speed, 2x  is the acceleration, 0,1u∈〈 〉  is the throttle position, 
and {1,2,3,4}v∈  is the gear shift position. The function ( )a ⋅  is positive for positive 
argument. Model (20) can be transformed to the form 
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Substituting = 1.9a  and = [1,2,3,4]v  we can transform (21) to the form (1). With ran-
domly generated uncertainty the system matrices are: 
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Using theorems 1 and 2 with weighting matrices =Q qI , = 0.1q , =R rI , = 1r  and 
5= 1 10Uρ × , 5= 1 10Lρ

−× , 1= 5i sθ −
  we obtain the switched controller in the form (3) 

having the parameters depending on the cases discussed: 
Case of robust quadratic stability (Theorem 1) 

	

0

1

2

3

4

= [ 0.9654 0.1449 ]

= [ 1.9410 1.8581 ]

= [ 1.9408 1.8579 ]

= [ 1.9405 1.8576 ]

= [ 1.9409 1.8580 ].
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F

F

F

− −
− −
− −
− −
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Case of robust multi parameter-dependent quadratic stability (Theorem 2) 

	

0

1

2

3

4

= [ 0.4491 0.4268 ]

= [ 1.4232 2.1633 ]

= [ 1.4143 2.1504 ]

= [ 1.4219 2.1615 ]

= [ 1.4234 2.1637 ].

F

F

F

F

F

− −
− −
− −
− −

	 (23)

In the simulations we switched the gear shift as follows: 1= 1 0,0.3v if x ∈〈 〉 , 
1= 2 (0.3,0.6v if x ∈ 〉 , 1= 3 (0.6,0.8v if x ∈ 〉  and 1= 4 (0.8, )v if x ∈ ∞ , and the switch-

ing rate of v  is established with 1= 5i sθ −
 . The simulation results (Fig. 1, 2, 3 and 4) 

prove that the theorems hold, and we can see that the controller output in both cases 
achieves the maximal/minimal values ( 0,1u∈〈 〉 ).

Figure 1: Simulation results ( ), ( )w t y t  with switched controller (22) – QS

Figure 2: Calculated switching parameters ( )tθ  and the controller output  
with switched controller (22) – QS

The second example shows one of the possible applications of our approach to the 
robust switched controller design. Control systems over data networks are commonly 
referred to as networked control systems (NCSs). For the NCSs, the sampled data and 
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controller signals are transmitted through a network. As the result, it leads to a network-
induced delay in a networked control closed-loop system. The existence of such a kind 
of delay in a network-based control loop can induce instability or poor performance of 
control systems.

Figure 3: Simulation results ( ), ( )w t y t  with switched controller (23) – MPQS

Figure 4: Calculated switching parameters ( )tθ  and the controller output  
with switched controller (23) – MPQS

Assume that a  linear system with transfer function ( )G s  is integrated to NCSs, 
which inevitably leads to a change in the plant transfer function ( )

T sdG s e
− , where dT  is 

a variable plant time delay. The value of dT  depends on the load of the communication 
network. Assume that one can define four middle values of time delay , = 1,2,3,4diT i  
for the fourth communication network loads.

For a PI switched controller design and simulation a  laboratory model of a DC-
motor has been used. This model consists of two co-operating real DC servomotors. The 
first one serves as a motor and the second one as a generator. The mechanical intercon-
nection is realized by an inertia load. The power supply, signal measurement and motor 
control are performed by motor electronics. In electronics, there is an RC component 
connected to the input of the motor to enable the changes of the time constant and the 
gain of the controlled system. System dynamics parameters can be tuned with a poten-
tiometer.
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Input voltage ( )inu t  is used as a manipulated variable within the range 0 10V− . The 
revolutions per minute converted into voltage in the range 0 10V−  forms the measured 
output variable. The output is affected by the load (perturbation), which can be set 
manually using the potentiometer in the range 0 10V− . After the DC motor system was 
identified the following transfer function has been obtained 

	
2

0.0627 1.281
= .

2.081 2.506 1
s

Sys
s s

+
+ +

	 (24)

For 4 chosen middle values of the induced time delays = [0.1,0.2,0.3,0.4]dT s  and 
using the first order Padé approximation we computed 4 plant transfer functions which 
were transformed into the state space representation. The obtained 4 plant models were 
extended by one state for the switched PI controller design. Finally one obtains the plant 
models with added uncertainty in the form (1) 
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Using theorem 1 and 2 with weighting matrices =Q qI , = 0.01q , =R rI , = 3r  and 
= 10Uρ , 5= 1 10Lρ

−× , 1= 10i sθ −
  a  robust switched PI controller is obtained in the 

form (3): 
Case of robust quadratic stability (Theorem 1) 

BMIsolverfailed.

Case of robust multi parameter-dependent quadratic stability (Theorem 2) 

	

0
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3
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4
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= [ 0.0035 0.0061 ]

= [ 0.1788 0.1805 ] 10 .

F

F

F

F

F −

− −
− −
− −
− −

×

	 (25)

Measured results on the real plant (Fig. 5, 6 and 7) confirm that theorem 2 holds and 
that the robust multi parameter-dependent quadratic stability is less conservative than 
the robust quadratic stability. In the simulation the switching algorithm (middle time 
delay) is shown in Fig. 7 from which the scheduled parameters were calculated. 

Figure 5: Measured results ( ), ( )w t y t  with switched controller (25)
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Figure 6: Switched Controller output (25)

Figure 7: Time delay changes

5.  Conclusion

The paper addresses the problem of the robust switched controller design which 
ensures the closed-loop stability and guaranteed cost for a prescribed rate of change 
of system switching. A novel gain-scheduling plant model is presented for linear con-
tinuous-time invariant switched systems. The first proposed method is connected with 
the notion of quadratic stability with respect to switched parameter θ . In this case we 
assume that the rate of θ  change is infinite. In some real cases the rate of change of the 
switching signal is finite. This assumption was used in the second approach to obtain the 
robust switched controller design procedure. Other advantages of the proposed methods 
are that for the switched controller design, there is no need to use the approach of the 
‘dwell time’, which markedly complicates the design procedure. The rate of the switch-
ing signal change can be prescribed by the designer, which opens new possibilities 
for practical realizations and development of new theoretical approaches. The obtained 
design procedure can be implemented easily to the standard LMI or BMI approaches. 
Numerical examples illustrate the effectiveness of the proposed approach.



416 A. ILKA, V. VESELÝ

References

  [1]	 J. Lunze and F. Lamnabhi-Lagarrigue: Handbook of Hybrid Systems Control: 
Theory, Tools, Applications. Cambridge University Press, 2009.

  [2]	 R. Goebel and A.R. Teel: Solutions to hybrid inclusions via set and graphical 
convergence with stability theory applications. Automatica, 42(4), (2006), 573-
587.

  [3]	 M.S. Branicky, V.S. Borkar and S.K. Mitter: A unified framework for hybrid 
control: model and optimal control theory. IEEE Trans. on Automatic Control, 
43(1), (1998), 31-45.

  [4]	 D. Liberzon: Switching in Systems and Control. Systems & Control: Foundations 
& Applications. Birkhäuser Boston, 2003.

  [5]	 T. Soga and N. Otsuka: Quadratic stabilizability for polytopic uncertain contin-
uous-time switched linear systems by output feedback. American Control Confer-
ence (ACC), 2010, 3920–3925.

  [6]	 V. Veselý and D. Rosinová: Robust MPC controller design for switched systems 
using multi-parameter dependent Lyapunov function. Int. J. of Innovative Comput-
ing, Information and Control (IJICIC), 10(1), (2014), 269-280.

  [7]	 J. Lygeros: An Overview of Research Areas in Hybrid Control. 44th IEEE Conf. 
on Decision and Control and 2005 European Control Conf. (CDC-ECC’05.), 
(2005), 5600–5605.

  [8]	 J. Geromel and P. Colaneri: Stability and stabilization of continuous-time 
switched linear systems. SIAM J. on Control and Optimization, 45(5), (2006), 
1915-1930.

  [9]	 L.I. Allerhand and U. Shaked: Robust stability and stabilization of linear 
switched systems with Dwell Time. IEEE Trans. on Automatic Control, 56(2), 
(2011), 381-386.

[10]	 V.M. Kuncevič and M.M. Lyčak: Control System Design using Lyapunov Func-
tion Approach. Nauka, Moskva, 1977, (in Russian).

[11]	 M.S. Branicky. Multiple Lyapunov functions and other analysis tools for switched 
and hybrid systems. IEEE Trans. on Automatic Control, 43(4), (1998), 475-482.


	Tekst1: 10.1515/acsc-2015-0026


