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On the optimal control problem for two regions’
macroeconomic model

PLATON G. SURKOV

In this paper we consider a model of joint economic growth of two regions. This model
bases on the classical Kobb-Douglas function and is described by a nonlinear system of dif-
ferential equations. The interaction between regions is carried out by changing the balance of
trade. The optimal control problem for this system is posed and the Pontryagin maximum prin-
ciple is used for analysis the problem. The maximized functional represents the global welfare
of regions. The numeric solution of the optimal control problem for particular regions is found.
The used parameters was obtained from the basic scenario of the MERGE.

Key words: integrated assessment model for evaluating greenhouse gases reduction poli-
cies, optimal control, Pontryagin’s maximum principle.

1. Introduction

Economic growth in the world economy has a rather accurate assessment, but the
situation significantly changes when considering different regions of the world where
growth rates can greatly vary. In modern economic theory there are many models of
economic growth (see, for example [4, 13]). The interest of researchers is associated
with finding major factors and analysis of their impact on a performance of national
economies.

Dependencies of the country’s GDP on the existing in country fixed assets (capital),
a labor, determined by the number of working population, investment, etc. are studied,
among others, in macroeconomics. A problem of modeling and investigation such de-
pendencies become more complicated when considering the relationship of economies
of the different countries in the global context. By viewing a group of national econo-
mies, the global climate change should also be considered in some sense. It is quite
a complex and contradictory concept, but many related issues continue to provoke vig-
orous debates. Of course, human economic activities have an impact on environmental
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and social systems of regions, but the assessment of this impact seems to be quite a diffi-
cult problem in conjunction with the climate changes. The integrated assessment models
are used for research and forecasting of changes of various region characteristics; one
of them is the MERGE proposed in [5, 6] and modified in the works [2, 7]. This model
is a framework for research of climate changes and an assessment of their impact on the
development of social-economic systems of regions. Also it provides to build different
scenarios of their dynamics.

The present work is closely related to the economic-energy submodel of the MERGE,
which is intended for the simulation of region macroeconomic indicators on a large time
interval. It is a fully integrated applied model of the general equilibrium. At each time
point supply and demand are equalized by commodity prices in the energy sector, as
well as the national common product, uniting all goods produced outside the sector.
Each region is represented by as a single producer-consumer. Decisions about the in-
vestment are modeled by such choice of the consumption level sequence maximizing
the sum of discounted utilities of consumption. The module presented in the MERGE is
a discrete model with a possible non-uniform mesh of the considered time period. Op-
timal trajectories of components of the region economic-energy systems are found with
a help of the intertemporal optimization by maximizing the sum of discounted utilities
of the regional consumption in a whole time interval. The optimization problem in this
case is a problem of nonlinear programming and for its solution the iterative joint maxi-
mization method is used [10].

2. Model

In the present paper we consider a model of joint growth of two regions similar to
those used in the MERGE. Dynamics of main characteristics of each region are de-
scribed by the system obtained using a combination of Cobb—Douglas type classical
production functions which nested in the constant elasticity of substitution production
function:

Y. ==Y +(au® 1" 4+ by heye
Kr =—ukK +u, )
Er =—uk +v,

Nr :_ﬂNr+Wr’ l‘E[lO,T],
where Y (¢) is the economic output in every period ¢ (GDP); K, (¢) is the capital (fixed
assets); E (¢) is the electricity; N,.(¢) is the non-electric energy; / (¢) is a continuous
function described the labour and depending on the number of working population; «
is an elasticity of substitution between capital and labour; £ is an elasticity of substitu-
tion between electricity and non-electric energy; u is the coefficient of depreciation; p
is an elasticity of substitution between capital-labour and energy bundle; a and b are
scale productivity factors. Here and further we assume that »=1,2.
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We impose the restrictions on control parameters of the system (1) of the form:
0<a <u <b, 0<a <v <b, 0<a, <w <b.. 2

The functions u,.(-), v,.(-), and w,(-) satisfying the relations (2) will be called ad-
missible controls. Let us introduce a vector-function ¢,(-) = (u,(-),v,(-),w.(-))" and de-
note a set of the admissible controls by the symbol U < L, ([¢,,T 1.R%).

We suppose that the parameters of regions are known at the initial moment ¢, i.e.
it is given an initial state

Y()=Y', E()=E, K()=K', N(,)=N’ Y .E.K'.N'>0. (3)

r

3. Statement of the optimal control problem

Further, an optimal control problem of the system (1)—(3) is considered.

Problem P1. It is required to determine the functions Y (), K.(-), E (), N.(-),
c.(-),and f(-) solving the extremal problem

max J(Yr’KrﬂEr’Nr’cr’»fl‘)’ (4)

Y, K, .E,.N,.c,.f,

rerrrr

SO KB N e f) = [, (0G0 ©

ih'"™

satisfying the system (1) and ensuring the fulfillment of restrictions (2). Here d,(¢) is
a coefficient which represents the social discount factor and the economic loss factor
due to the impact of climate change, the functions d,(¢) are assumed to be given, and
d (t)>0 for te[t,,T], d(t)+d,(t)<1; f.(t) is the balance of trade (the difference
between regional export and import of consumer goods), this functions are also the con-
trol parameters satisfying the conditions

LO=70, LO==f0), |fOIb,, te]s,T]. (6)

Consumption C,(f) at the moment # is determined by the classical formula [5]:

C.(O)=Y,(0)~1.(1) = [() = G,(E.(1),N,(1)), (7

where / () is an investment used to built capital stock, we assume 7,(¢)=u,(¢);
G.(E (1),N.(1)) is the energy cost function that represents the total costs of extract-
ing resources and supplying electric and non-electric energy and is determined by the
equality
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G.(E,(1),N, (1) = g,E.() + LN (1), @®)

where the positive coefficients g, and 4. characterize the production cost of electricity
and non-electric energy, respectively.

The variables K, are not present explicitly in the definition of maximized functional
(5) and in the equations for characteristics Y .(¢), E (¢), and N,(¢), therefore the opti-
mal trajectories K, (¢) are determined only by the initial conditions K’ and the optimal
controls u;. Thus, we can ignore the corresponding equation of the system (1) when
solving the extremal problem (4).

Because of the economic sense of parameters of the system (1) let us impose restric-
tions in the following form:

0<a,B<l, p<0,u>0, al,b),a,b,a,bb,>0. ©)
Lemma 1 For the functions Y (t), E (¢t) and N (t) the following estimates are valid:

Y.()2Y,(ty), E()<E,ty), N.()<Ny(y), t[0,T], (10)
where

Vi) =Y+ plE(1-e ),
E;(t) =e™E)+u'b(1-e),
Ny (1) =€ N+ b (1-e™), (1

S =(a(a,)” n[lir}]lfl’“"’(r) +b(a))” (a,) )",
ety

t, = ,
' {T’ ér < /terO’

Proof for each region can be found in [12].

(12)

tyy & 2>uY’, . T, b >uE’, o T, b, >uN?,
' ly, b) < uE), ! ty, b, < uN,.

Theorem 1 Let the parameters of the system (1) satisfy the conditions (9), the restric-
tions on the controls (2), (6) and the initial values (3) satisfy the inequalities

Y, (t;)=b,—b, —g,E, (1)~ hN, (1) >0,

where Y, , E, , and N,, are defined by the formulas (11), t,, t., and ty, — by the for-

mulas (12), then the functions of consumption take only positive values
C()>0, te[t,T].

Proof By taking into account the functions of energy expenditures (8) the following
estimate for the functions of consumption (7) is valid
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CO=Y()-u®)~f()-gE@)-hN.()2Y (t)=b, —b, —g.E.(t) = h.N,(2).
By using the inequalities of Lemma we obtain that
C() 2 Y1)~ b, ~b, ~ g, E (1)~ hNiy (15).
We finished the proof of the Theorem. m
Further, we shall assume that the statement of Theorem is valid. Let us reduce the

system (1) by introducing the notation Z (t)=7Y.(t)—g,E.(t)—h N, (t). Then we re-
write the system (1) to the form

Z,(t) = ~pZ,(t) +(au” (7 (1) + by (w7 (1) — g v, ()~ hw, (1) (13)
with the corresponding boundary conditions
Z(0)=Z=Y'-gE ~hN,. (14)

As a result we obtain the following optimal control problem.

Problem P2 It is required to define functions Z(-), c¢/(-), and f,'(-), solving the extre-
mal problem

max J(Z,,c,, f.),

Zr ’CV ’fr

J(Z,.c 1) = [ 2, (0W(Z,(0) =, (1) = /(1)

satisfying the equations (13) with the boundary conditions (14) and ensuring the imple-
mentation of restrictions (2) and (6).
4. Solution of the problem P2

We use the Pontryagin maximum principle [8] for investigation of properties of the
vector functions ¢, (¢) and f,(¢), ¢t, <t < T, which are the control optimal programs for
the Problem P2.

Let us write the Hamilton—Pontryagin function for the problem assuming y, = —1:

2
H(ZJ Zr’l//rﬁcr’ f;) = Z(V/r(_ﬂzr + (au:‘zplfl_a)p(t) + bvrﬂpwl(*]_ﬁ)p)l/p - grvr - hrwr)
r=1

+d, (O)In(Z, —u, = £,(1)). (15)
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Then we find the partial derivatives of the hamiltonian corresponding to the coor-
dinates Z, :
OH d (1)
=, MYt .
0z, Z —u.—f.(t)

So the conjugate system 7, =—H, takes the form
Yy = dr (t)
Wr ;uy/r Zr_ur_f-r(t)'

The right ends of trajectories are free, therefore the conjugate variables satisfy the
transversality conditions

(16)

v, (T)=0. (17)

By using the equations (13) with the conditions (14), as well as (16) and (17), we
obtain the maximum principle boundary value problem for the Problem P2 of the form

Z, =—pZ, +(auP 1" () + WY — gy —hw,, Z.(1,)=Z],

o d _ (18)
W, =uy, Z u-10) w, (I)=0.

Proposition 1 Let the assumptions of the Theorem hold. Then the patrial derivatives of
the hamiltonian (15) corresponding to the controls u, are not equal to zero.

The validity of the proposition is established by analogy with the proof in [12].
Two cases follows from this assertion: either u.(t)=a, or u (t)=b, t€[t,,T].

u

Let us find derivatives of the hamiltonian corresponding to the controls /', v_,and w,:

oH _ d,(Z,() —u, (1) = [ (1) =d,()(Z,() —u, (1) + [ (1))
o (Z,() =u, (1) = f(ONZ, () —u, () + £ (1))

Z_H =y (BB(a(u’) 17 (1) + by w PP Y Py oty 1-Pe _ oy
v

I3

2

gi =y, (b(1- ) (a(u)” lr(l’“)p(t) + bvrﬁpwf“’ﬁ))”p’1 vfpwil’ﬂ)p’l —-h).
W

r

By equating the derivatives to zero, we have that

— dz(t)(Zl(t) — ul(t)) — d1(t)(Zz(t) — uz(t))
dy(t) +d,(1)

Vi =a oo pla " ~bal), (4

wi(t) =a"uw (1 (g, (plg""” —bg!), te[0.T],

where p, =g, /(bf). q,= fh,/ (1~ B)g,).and y =1/(1-p).

O]

]
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5. An algorithm of solving the Problem P1

An analytical solution of the problem P1 as an optimal control problem is compli-
cated because of the nonlinearity of the system (1), as well as concavity of the func-
tional (5). For the solution of this problem methods of concave optimization may be
used [3,11]. In this case we shall construct an optimal control by investigating the re-
strictions (2).

Let {r,};, 7,=t,, 7,=T, is a time mesh of the interval [¢,,7] with the step
5=(T—t))/n.Weassume f=0, u”=0,v”=0,and w” =0. In the i -th itera-
tion the optimal controls u” according to the Lemma can be selected as a, or as b,.
For the optimal controls £, v, and w” we assume that they can be selected as the
boundary values of intervals (6), (2) or as values defined by the formulas (19) respec-
tively.

For each collection of the control parameters cf”, .. .,c,(,") R ff”,. o f ™) we solve the

system of differential equations (1) with a help of the Euler method [1]. Then in (i +1)
-th step of the iteration procedure we obtain that

Yr(i+1) - Yr(i) + 5(_luYr(i) + (auiiﬂ)aplii)(l—a)p + bvii*fl)ﬁpwiiﬂ)(l—ﬂ)/))UP),
Kim) :Kr(i) +5(_yK£i> +u£i+l))’
Er(i+1) :Efi) +5(_ﬂEr(i) +v£i+1))’
NOD = N9 4 §(=uN® + W), i=0,....n~1.

We take into account the found values of functions in the mesh points to obtain the
functional J (5) by calculating the integral using the rectangle method [9]:

J=83 S0 nc,

=1 r=1

where

CO=y® _y® _ O _GOED Ny,
Finally, we choose the largest value of the functional among obtained and empha-
size the corresponding set of controls, which will be optimal.

6. Results of the numerical modeling

By using the algorithm described in the previous section let us construct a solu-
tion of the problem P1 for specific values of parameters of the system (1) and restric-
tions (2). We consider two cooperated regions (R1 and R2, numbers »=1 and r=2
respectively), region R1 has macroeconomic characteristics belonging to Russian Fed-
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eration, and R2 has characteristics of Ukraine. By using results of the work [5] we set up
the following values of parameters: o =0.3, #=0.45, £=0.05, p=-1.5. We inves-
tigate the dynamics of main indexes on the time interval from 2010 to 2018 years; the
initial state is following: ¥,” = $2.242 trillion, K| =$6.061 trillion, E =1.038 TkWh,
N{ =20.3344 EJ [14], ¥, =$0.306 trillion, K; =$0.857 trillion, Ej =0.2 TkWh,
Nj =5.258 EJ [16]. Hereinafter the symbol $ is USD2005.

Parameters of the energy expenditures function (8) are defined by the formu-
las g, =%0.09 trillion/TkWh, h =$0.0054 trillion/EJ, g, =$0.0563 trillion/TkWh,
h, =$0.0025 trillion/EJ [5].

We assume that the differences between exports and imports f (#) do not exceed
$0.03 trillion. The functions /() describing a labor productivity and being measured
in efficiency units are chosen as constants: /,(#) =1,(¢) =1. The discount factors of utility
are defined by the formulas d (#) =0.032 and d,(¢) = 0.005. By using the relations for
the regions’ basic characteristics introduced in [5], we find out a =5.44 and 6 =0.64 .

As boundary values of the controls u, we choose the investment volumes of 2008
and 2010 years, i.e. a, =$0.005 trillion, b, =$0.5 trillion [14, 17]. As boundary val-
ues of the control u, we choose the investment volumes of 1996 and 2010 years, i.e.
a2 =$0.005 trillion, b’ =$0.03 trillion [16].

We choose bounds of the control v, as a, =0.01 TkWh and b, =0.08 TkWh which
base on the production growth of electricity in 2008-2009 and 2009-2010 years respec-
tively [14]. For the second region we choose bounds of the control v, as the growth
rate of electricity production in 2005-2010 and 1987—-1988 years [16]. As a result we
have that @’ =0.005 TkWh and 57 =0.012 TkWh. For the controls w, we define the
following restrictions: a,, =0.01 EJ, b, =0.6, a> =0.01 EJ and b2 =0.15 EJ. Then we
choose a step of the time interval mesh equal to one year, i.e. n=8.

Graphics of the GDP and the electricity production of regions are demonstrated in
Fig. 1-4. The black lines illustrate results obtained with a help of the algorithm of solv-
ing problem P1. Data of International Monetary Fund [15] are presented by the grey line
in Fig. 1 and Fig. 2. Data of the MERGE’ basic scenario is shown also by the grey line
in Fig. 3 and Fig. 4.
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Figure 1: Realized GDP of region R1.
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Figure 3: Electricity production Figure 4: Electricity production
of region R1. of region R2.

Investment of the region R1 taken as the control parameter u, reach the maximum
b} from 2010 to 2018 years, but investment of the region R2 (u,) take b’ from 2010 to
2015 years, then take the value a_ up to 2018 year.

In the considered problem for the given parameters set, the optimal control u, has
a single switch point. The optimal controls of energy production are defined by the
formulas

V(=B w(H)=b..

The optimal control f*(¢) conforming to the difference between imports and ex-
ports for each region is shown in Fig. 5 and Fig. 6 respectively.

Graphics demonstrate a similar behavior in Fig. 1, whereas essential distinctions
are observed at the GDP graph of Ukraine (Fig. 2). Discrepancies between obtained
values and the IMF forecast can be explained by that at first the data of 2011-2013
years is used by the IMF for prediction, but we use only data at the initial moment
(2010 year). Secondly there are differences in the forecasts of electricity production

(Fig. 4).
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Figure 5: Difference between import and export Figure 6: Difference between import and export

of region R1. of region R2.
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7. Summary

In this paper we investigated one economic model of two regions’ joint growth. The
model described by nonlinear differential equations and the nonlinearity of this system
is provided by the classical Cobb-Douglas function and the constant elasticity of substi-
tution production function.

The optimal control problem was posed for this model and we applied the Pontry-
agin maximum principle to carry out the analysis. The problem is significantly compli-
cated, so we tried to simplify it for simulation. We used the macroeconomic parameters
belonging to real regions. They had been found out from the MERGE. The proposed
approach was applied and we obtained good results of simulation. The deep analysis
of some of them will be held in future investigations. One of the main directions of
research is considering a several interacting regions.
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