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Disturbance attenuation problem using a differential 
game approach for feedback

linear quadratic descriptor systems

MUHAMMAD WAKHID MUSTHOFA

This paper studies the ∞  disturbance attenuation problem for index one descriptor sys-
tems using the theory of differential games. To solve this disturbance attenuation problem the 
problem is converted into a reduced ordinary zero-sum game. Within a linear quadratic setting 
the problem is solved for feedback information structure. 

Keywords: disturbance attenuation problem, zero-sum linear quadratic differential game, 
descriptor systems, feedback information structure.

1.  Introduction

The disturbance attenuation problem is an important issue in many practical ap-
plications since all practical control systems are subject to disturbances. Any form of 
disturbance is always detrimental to systems. Therefore, one of the biggest problems 
faced by a control designer is to design a controller that is capable to overcome various 
form of disturbances that might arise in the system [11]. One of the techniques to solve 
a disturbance attenuation problem uses a differential game approach [1], [2], and [14]. 
In this disturbance attenuation framework the control designer is the minimizing agent. 
They fight against disturbances or uncertainties which are represented by the maximiz-
ing agent.

The main problem discussed in this paper is how to solve the disturbance attenua-
tion problem by designing a robust optimal control, using a differential game approach, 
for descriptor systems that have index one, assuming a  feedback information frame-
work. [1] used this approach to find robust controllers for regular systems (nonsingular 
systems). In [21] the feedback zero-sum linear quadratic soft-constrained descriptor 
differential game for index one systems was solved by transforming it into a regular 
differential game. Following this same procedure, the robust control design problem 
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for descriptor systems can also be translated into a regular differential game. Hence, 
by merging results obtained in [1] and [21], we will solve the robust optimal control 
problem for descriptor systems here. Further, [20] solved this problem for an open-loop 
information framework.

Compared to the frequency-domain formulation the addressed technique, which is 
a time-domain approach, has the advantage that it allows one to formulate also finite 
planning horizon and time-varying versions of the problem, and thus also study the 
transient behavior [1], [18]. Moreover, the addressed technique seems to be the simplest 
and the most intuitive one, since after all the original robust optimal control problem is 
a minimax optimization control problem and hence a zero-sum game.

As already noted above, in this paper we consider the disturbance attenuation prob-
lem under the assumption that the dynamics of the underlying process are described 
by a descriptor system that has index one. Descriptor systems model static as well as 
dynamic constraints of a real plant using sets of coupled differential and algebraic equa-
tions. Applications of descriptor systems can be found in chemical processes [13], cir-
cuit systems [23, 24], economic systems [16], large-scale interconnected systems [17, 
28], mechanical engineering systems [9], power systems [27], and robotics [19].

The organization of this paper is as follows. Section 2 introduces the precise prob-
lem formulation of designing a disturbance attenuation problem by designing a robust 
optimal control using the differential game approach and translates the problem for 
a descriptor system into a regular differential game. Section 3 recalls from [21] the feed-
back zero-sum linear quadratic soft-constrained descriptor differential game for both 
a finite planning horizon and an infinite planning horizon. Section 4 presents the main 
result for the problem. We discuss the solution for the disturbance attenuation problem 
for both a finite and infinite planning horizon. At last, section 6 will conclude.

2.  Problem statement

We consider in this paper the dynamical system 
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×∈  and 1
21
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D

×∈ . Vector su U∈  models the action performed by the control 
designer to control the system, where sU  denotes the set of locally square integrable 
control functions yielding a stable closed-loop system. Vector ( )2 0,w L∈ ∞  represents 
disturbances and uncertainties arising in the system, where ( )2 0,L ∞  denotes the set 
of all measurable Lebesgue square integrable functions on ( )0,∞ . Vector ( )y t  is the 
measured output and ( )z t  is the controlled output. In the general context, the control 
u (t) is assumed to be a linear mapping from a subset of the measured outputs ( ) ,y s s t≤ .  
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The consistent initial state, x0 , is known (and is zero in the disturbance attenuation prob-
lem). Moreover, the controller is allowed to have perfect access to the system state (per-
fect-state measurements). System (1) is called regular if and only if ( )det 0E Aλ − ≠ . 
From [7] we recall the so-called Weierstrass’ canonical form. 

Theorem 1 Assume that (1) is regular. Then, there exist nonsingular matrices X and Y 
such that 

	

1 00
=   a   = .

00
nT T

r

AI
Y EX nd Y AX

IN

  
  

   
		  (2)

Here A1 is a  matrix in Jordan form whose elements are the finite eigenvalues, 
k k

kI ×∈  is the identity matrix, and r rN ×∈  is a nilpotent matrix that is also in Jordan 
form. A1 and N are unique up to a permutation of Jordan blocks. 

System (1) is said to be of index one1 if N = 0 (its degree of nilpotency is one). Next, 
recall from, e.g., [8] that for all initial states in (1) there exists a smooth control that 
generates a smooth state trajectory if and only if (1) is impulse controllable2. Further, all 
impulsive modes of (1) can be transformed then into finite dynamic modes using static 
state feedback control. Since we do not want to consider impulsive control actions in 
this paper we restrict our attention to impulse controllable systems. As we consider the 
state feedback control problem, this motivates why we may assume for our problem, 
without loss of generality, that the system (1) has index one. The above discussion mo-
tivates then the next assumptions. 

Assumption 1. We use the following assumptions throughout this paper: 

1. matrix E  is singular 

2. ( )det 0E Aλ − ≠  

3. system (1) is impulse controllable. 

Assume the transfer function for the system (1) is 

	

11 12

21 22

:= .zw

G G
G

G G

 
 
 

		  (3)

Let K̂  denote the transfer function of the controller. Each controller K̂  induces a linear 
map = zwz G w , where the transfer function zwG  is given by the linear fractional trans-
formation (LFT), 

( ) ( )1

11 12 22 21
ˆ ˆ= .zwG G G I K G K G

−
+ − ⋅ ⋅

1  This equivalent (see e.g. [12]) to the assumption that [ ]( ) =rank E AW n r+ , where the image of 
matrix W equals the null space of E.

2   System (1) is impulse controllable (see e.g. [12]) if and only if [ ]( ) =rank E AW B n r+ .
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The design objective is to find a control that will keep the output (z) small, regard-
less of unpredictable disturbances (w). In mathematical term: Given a nonnegative num-
ber γ , find, if it exists, a controller K̂  such that

.
z

w
γ≤ 

 

Or, in terms of the above LFT, find a controller such that the norm of the linear op-
erator zwG  is smaller than γ . In case by the controller induced linear system is stable, 

the induced linear operator norm of 
( )

( )
0,2

= sup u
zw

w L

G w
G

w∈ ∞
 exists and equals the ∞  

norm of zwG  (see, e.g., Proposition 1.1 in [1]). Here ( )uG w  denotes a bounded causal 
linear operator from w to z, i.e., ( )= uz G w . Then, the design problem can be reformu-
lated into the following optimization problem. Find: 

	 ( )

( )
0,2

= .supinf inf
u

zw
u U u U w Ls s

G w
G

w∞∈ ∈ ∈ ∞
		  (4)

Denote this infimum by *γ . Unfortunately, this infimum cannot be realized by 
choosing a specific stabilizing controller. Therefore, usually, the addressed problem is 
restated as finding an admissible optimal controller *

su U∈ , for a  given attenuation 
level γ  (which must of course be larger than *γ ), such that <zwG γ

∞
.

To motivate the introduction of the soft-constrained control problem below, note 
that the right side in equation (4) defines an upper value for the game defined by dy

namical system (1) with objective function 
( )uG w

w
. Assume (see [1]) that there exists

a control policy *
su U∈ , and a corresponding *γ , that satisfies (4). Then (4) can be 

equivalently expressed as 

1.	there exist *
su U∈  and corresponding *γ  such that ( )

2 2*
* ,

u
G w wγ≤   for all 

( )2 0,w L∈ ∞ , where =γ γ , and 

2.	there exist no other su U∈  (say, û  ), and a  corresponding *ˆ <γ γ , such that 
( ) 2 2*

ˆ ˆ ,uG w wγ≤  for all ( )2 0,w L∈ ∞ . 

Now, consider a parameterized family of cost functions (in 0γ ≥ ), 

	 ( ) ( ) 2 2
, := .uJ u w G w wγ γ− 		  (5)

Then, the statement 1. and 2. can be restated as finding the smallest 0γ ≥  under 
which the upper value of the game defined by (1) with objective function (5) is bounded 
above by zero, and a controller that achieves this upper value. Or, finding the minimal 
γ  for which 
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( )
( )

0,2

, .supinf
u U w Ls

J u wγ
∈ ∈ ∞

exist. Next, defining the following norm 

( ) ( ) ( )2

0

:= T
uG w z t z t dt

∞

∫

( ) ( ) ( )2

0

:=
T

w Ww t Ww t dt
∞

∫

and adding the assumption 

	 2 21 = 0,TC D 		  (6)

for the dynamical system (1) then the cost function (5) can be represented in a quadratic 
form, 

	
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0

, = .T T TJ u w x t Qx t u t R u t w t R w t dtγ γ
∞

 + − ∫ 		  (7)

Here 2 2:= TQ C C , 1 21 21:= TR D D , and 2 := TR W W . This converts the robust control 
design problem into a  linear quadratic zero-sum game defined by system (1) where 
the cost function for the first player (control designer) is (7) and for the second player 
(nature, disturbances and uncertainties) ( ),J u wγ− . The game defined by (1,7) is called 
the (zero-sum) soft-constrained differential game. This terminology is used to capture 
the feature that in this game there is no hard bound with respect to w [1]. In this closed-
loop game framework we assume that the controls given by both players are in linear 
feedback control form defined by 

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2=   a   = 0,su t F t x t U nd w t F t x t L∈ ∈ ∞ 		  (8)

where ( ) , = 1,2iF t i  is a piecewise continuous function and ( ) ( ),u t w t  depend only on 
the current state of the systems and time. So, for a fixed γ , the robust control design 
problem reduces to finding the optimal controller *

su U∈  that satisfies

	 ( )
( ) ( ) ( ) ( ) ( ) ( )1 2

0, 02

,supinf
T T T

u U w Ls

x t Qx t u t R u t w t R w t dtγ
∞

∈ ∈ ∞
 + − ∫ 		  (9)

subject to dynamical equation (1).
Following the procedure in [21], yields that ( )* *,u w  is a Feedback Saddle Point 

(FBSP) solution for the zero-sum differential game (1) with cost function (7) if and only 
if ( )* *

1 2,F F   is a FBSP solution f or the zero-sum differential game defined by 
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. The cost function for the control designer is 
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0
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∞
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where 
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γ

γ
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   

  
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11 > 0R  and 22 > 0R γ
 . In the Appendix we provided an adequate explanation about the 

transformation from descriptor differential game (1,7) into a regular reduced differential 
game (10,11), as well as the spellings of the matrices defined in (12).

3.  The feedback zero-sum linear quadratic soft-constrained descriptor 
differential game

In this section we recall some theorems of feedback zero-sum linear quadratic soft-
constrained differential games for index one descriptor systems from [21] that will be 
used as a framework in designing robust optimal controls. We will characterize the set 
of FBSP solutions for the game (1,7) using the reduced ordinary differential game de-
scribed by the dynamical system (10) with the cost function (11). The general index case 
was studied in [25], where the theory of projector chains is used to decouple algebraic 
and differential parts of the descriptor system, and then the usual theory of ordinary 
differential games is applied to derive both necessary and sufficient conditions for the 
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existence of feedback Nash equilibria for linear quadratic differential games. Further-
more, the open-loop version of such a game has been studied in [22], while the hard 
constrained version for such games can be found in [26] and [30]. We assume that the 
players act non-cooperatively and the information they have is the present state and the 
model structure.

In addition to linear feedback control in the form of equation (8), in this section we 
also restrict the controller in the sense that it must stabilize the system for all consistent 
initial states. As discussed in [5] we assume that the feedback matrix F belongs to the set 

	

( )
( )1 2

a     ,   
:= =

a  ,    ,

TT T ll finite eigenvalues of E A BF are stable
F F F

nd E A BF has index one

 +     +  
 	 (13)

where [ ]1 2=B B B . We assume that the matrix pairs ( )1, 1 , = 1,2iA B i , are stabilizable. 
So, in principle, each player is capable to stabilize the first part of the transformed sys-
tem on his own. Furthermore, to ensure that such a stabilizing control for player one 
is generated naturally through the solution (optimization) process, unstable modes of 

1A  will have to be observable through Q . So, we make the assumption that the pair
1
2

1,A Q
 
 
 

  is detectable [1]. To find the FBSP solution the following algebraic Riccati

equation (ARE) plays an important role 

	 ( )1
1 1 11 21 11 21 = 0.

T
TA K KA Q V KB W KB G V KB W KBγ

−   + + − + + + − +   
     	 (14)

where 11
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= T

R N
G

N Rγ
γ

 
 − 

 



 

. Furthermore, to ensure the ARE above has a solution, we 

introduce the following nonempty set 

	 { }1 2= inf , inf ,  = max ,CL CL CLγ∞ ∞ ∞ ∞ ∞Γ Γ Γ Γ 	 (15)

where 

{ }

( )

1 22

2 1 2
1 2

= > 0 , > 0 ,

= > 0 , := , 0 ,supinf
F F

R

J J F F

γ

γ γ

γ γ γ

γ γ γ

∞

∞

Γ ∀ ≥

  Γ ∀ ≥ ≤ 
  



 

 

and Jγ  denotes the upper value of the game. Then, applying Theorem 3 in [5] to Theo-
rem 4.8 in [1] yields the following theorem. 
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Theorem 2 Consider the infinite-horizon linear quadratic soft-constrained differen-
tial game (1,7) with feedback information structure, consistent initial state 0

n rx +∈  
is arbitrary and = 0Q∞ . Moreover assume that 11 22, > 0R R γ

  , (6) holds and the pair 
1
2

1,A Q
 
 
 

  is detectable. Then: 

1.	For each fixed t , the solution to 

	

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

1
1 1 11 21

11 21

=

          ,            = ,

T

T

f t f

K t A K t K t A Q V K t B W K t B G

V K t B W K t B K t Q

γ
− − − − + + + 

 × + − + 

   

 

	 (16)

	 ( ); fK t tγ , is non-decreasing in ft , that is if (16) has no conjugate point in a giv-
en interval 0, ft   , 

( ) ( )' ' ' '; ; 0,  > > 0.f f f f fK t t K t t t t tγ γ
′ ′− ≥ ≥

2.	If there exists a nonnegative definite solution of (14), there is a minimal solution, 
denoted Kγ

+ . This matrix has the property that ( ); 0fK K t tγ γ
+ − ≥  for all 0ft ≥ ,  

	 where ( ); fK t tγ  is the solution of (16) with = 0t f
Q . If 

1
2

1,A Q
 
 
 

  is observable,
 
	 then every nonnegative definite solution of (14) is positive definite. 

3.	The differential game (1,7) has equal upper and lower values if and only if the 
ARE (14) admits a nonnegative definite solution, in which case the common value 
is 

[ ] [ ]* 1
0 0= 0 0 .

t TT TfL x X I K I X xγ γ
− + −

4.	If the upper value is finite for > 0CLγ ∞ , then it is bounded and equals the lower 
value for all > CLγ γ ∞ . 

5.	If 0Kγ
+ ≥  exists, let *

iF  be given by 

	 ( )* *=i i iF F O Z I OO+ ++ − 	 (17)

	 where ( )m n ri
iZ

× +∈ , 
* *

12 1 22 2

=
I

O X
B F B F

 
 − −  

 and ( )* *
1 2,F F   are given by 

	

*
1111

*
212

= .
T T

T T

B K VF
G

B K WF
γ

γ
γ

+
−

+

 + 
−    − −   









	 (18)



453
DISTURBANCE ATTENUATION PROBLEM USING A DIFFERENTIAL GAME APPROACH  

FOR FEEDBACK LINEAR QUADRATIC DESCRIPTOR SYSTEMS

Then, *
1F  is the steady-state feedback controller that attains the finite upper val-

ue, in the sense that 

	
( )* *

1 2

2

, = ,sup
F

J F F Lγ γ
∞

	 (19)

and *
2F  is the maximizing feedback solution in (11). The pair ( )* *

1 2,F F  consti-
tutes a FBSP solution for the game (1,7). 

6.	If the upper value is finite for some > CLγ γ ∞ , then for all > CLγ γ ∞  the reduced 
closed-loop system 1 1 1=

CL
x A x  and 1 1 1

ˆ=
CL

x A x  where 

	
[ ] 111

1 1 11 21
21

:=
T T

T TCL

B K V
A A B B G

B K W
γ

γ
γ

+
−

+

 +
−  − − 







	 (20)

and 

	
[ ] 1 11

1 1 11
ˆ := 0

0

T T

CL

B K V
A A B G γ

γ

+
−  +

−  
 



 	 (21)

are both asymptotically stable. 

7.	For > CLγ γ ∞ , 0Kγ
+ ≥  is the unique solution of (14) in the class of nonnegative 

definite matrices which make 1CL
A  stable. 

8.	Since ( )1 1, , = 1,2iA B i  are stabilizable then the upper value is bounded for > CLγ γ ∞ . 

Proof We can restrict for the proof of most statements to the reduced order system. For 
part 1–4 see part (i) – (iv) of Theorem 4.8 from [1]. Part 5 follows by using the relation-
ship (38) again, using the results of Theorem 3 from [5]. Finally, part 6–8 result again, 
from part (vi) – (viii) of Theorem 4.8 in [1].                                                                  □

The more general version of Theorem 2 can be obtained by relaxing the detectability 

condition of 
1
2

1,A Q
 
 
 

 . By letting 2 = 0γ −  in (14) we arrive at the standard algebraic 

Riccati equation that arises in linear regulator theory for descriptor systems (see also [1] 
page 142 for the ordinary game) 

	 ( ) ( )1
1 1 1 1 11 1 1 = 0.T T T TA A Y B V R B Y V Q−Σ + Σ − Σ + Σ + +  	 (22)

Let 0+Σ ≥  denote its maximal solution. We are now in a position to state the follow-
ing theorem (For a proof we refer to Theorem 4.8’ in [1]). 
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Theorem 3. Consider the framework of Theorem 2, but with ( )1 1, , = 1,2,iA B i  stabiliz-

able and 
1
2

1,A Q
 
 
 

  having no unobservable modes on the imaginary axis. Moreover as

sume that 11 22, > 0R R γ
  , and (6) holds. Let +Σ  be the unique maximal solution of (22). 

Then: 
1.	There exists a finite 0CLγ ∞ ≥ , such that for all > CLγ γ ∞  the upper value is bounded 

and for < CLγ γ ∞  it is unbounded. 

2.	For all > CLγ γ ∞ , in the class of all symmetric matrices bounded from below by 
+Σ there is a minimal one that solves (14), to be denoted Kγ

+
 . This matrix has the 

additional property that ( ); 0fK K t tγ γ
+ − ≥  for all 0ft ≥ , where ( ); fK t tγ  is the 

solution of (16) with =t f
Q +Σ  and γ  fixed. 

3.	For all > CLγ γ ∞ , the differential game (1,7) has equal upper and lower value. 
If player one is restricted to stabilizing controllers, the common value is 

[ ] [ ]* 1
0 0= 0 0 .

TT TL x X I K I X xγ γ
∞ − + −



4.	For all > CLγ γ ∞ , the steady-state feedback controller *
iF  is given by

( )* *=i i iF F O Z I OO+ ++ − , where ( )m n ri
iZ

× +∈ , * *
12 1 22 2

=
I

O X
B F B F

 
 − −  

 and

( )* *
1 2,F F   are given by (18). *

1F  attains the finite upper value *Lγ
∞ , and 

( )* *
1 2

2

, = .sup
F

J F F Lγ γ
∞

The maximizing feedback solution above is again given by *
2F . 

5.	For all > CLγ γ ∞ , the two matrices (20) and (21) are stable (again with Kγ
+
  taken 

above). 

6.	For all > CLγ γ ∞ , the matrix Kγ
+
  defined in Theorem 2 is the unique solution of (14) 

in the class of nonnegative definite matrices which make (20) stable. 

7.	For < CLγ γ ∞ , the algebraic Riccati equation (14) has no real solution that also 
makes (21) stable. 

4.  Disturbance attenuation problem

To eliminate the effect of disturbances on the system one can to provide a robust 
controller for the system. References and related issues of such problems for descriptor 
systems can be found in, e.g. [29], [10] and [15].
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We consider in this section the ∞  disturbance attenuation problem, i.e., the problem 
to find an admissible controller *

su U∈  for an attenuation level γ  such that <zwG γ
∞

. 
This problem is translated into a zero-sum linear quadratic differential game as finding 
an optimal control ( ) ( )* *

1= su t F x t U∈  that satisfies

	
( ) ( ) ( ) ( ) ( ) ( )1 2

(0, ) 02

supinf
T T T

u U w Ls

x t Qx t u t R u t w t R w t dtγ
∞

∈ ∈ ∞
 + − ∫ 	 (23)

or, equivalently, 

	

( ) ( )1 1 2 1 1
1 02

2

supinf
T T T

F F

I

x t I F F M F x t dt

F
γ

∞
  
       
    
∫





   



	 (24)

subject to dynamical equation (1) with ( )0 = 0x .
We will present the solution to this problem that follows from the solution of the cor-

responding soft-constrained game considered in the previous section under the assump-
tion that 22 > 0R γ

 . From Theorem 2 we know that for every > CLγ γ ∞  the soft-constrained 
differential game has a FBSP solution where the minimizing controller is denoted by 

( ) ( )* *
1=u t F x tγ γ . Furthermore, because of the existence of a conjugate point to RDE (16) 

on the interval 0, ft    as CLγ γ ∞→  the limit of ( )* .uγ  may not be well-defined. Hence in 
this paper we will only consider the suboptimal solution. To that end, let > 0ε  be suf-
ficiently small and define := CLεγ γ ε∞ + . Considering the fact above and applying Theo-
rem 3 in [5] and also Theorem 2, Theorem 3 to the problem (1,23) above results in the 
following theorem (see also Theorem 4.11 in [1] for the nonsingular game). 

Theorem 4 Consider the robust suboptimal control design (disturbance attenuation) 
problem (1,23) with feedback information structure and 0 = 0x . Let ( ),A B  be stabiliz-

able, 
1
2

1,A Q
 
 
 

  be detectable, 0Q ≥ , 11 22> 0, > 0R R γ
   and assume that (6) holds. Then, 

	

( ) ( )*
1 1 2 1 1

1 02
2

= =supinf
T T T

CL
F F

I

x t I F F M F x t dt

F
γγ γ

∞
∞

  
       
    
∫





   



	 (25)

that is the minimax attenuation level is equal to CLγ ∞ . Moreover, given any > 0ε , we 
have the bound 

	
( )*

1 2

2

, := .sup CL
F

J F Fγ γ εε
γ γ ε∞≤ + 	 (26)

Here the robust suboptimal controller that achieves this bound is ( ) ( )* *
1=u t F x tγ γε ε

∞  
where 



456 M. W. MUSTHOFA

	 ( )* *
1 1 1= ,F F O Z I OOγ γε ε

+ ++ − 	 (27)

( )1
1

m n r
Z

× +∈ , * *
12 1 22 2

=
I

O X
B F B Fγ γε ε

 
 − −  

 

, and ( )* *
1 2,F Fγ γε ε
   are given by 

	

*
1 111

*
2 21

=

T T

T T

F B K V
G

F B K W

γ γε ε
γε

γ γε ε

+

−
+

   +
   −

− −      

 



 

	 (28)

where Kγε

+  is the unique nonnegative definite solution of the ARE (14). Furthermore, 
for any > 0ε , *uγε

∞  leads to a bounded input bounded state stable system.

If the detectability assumption is replaced by 
1
2

1,A Q
 
 
 

  has no unobservable 

modes on the imaginary axis then the same results as above holds, with only Kγε

+  now 
taken as defined in Theorem 3, and the robust controller *uγε

∞  restricted to the class of 
stabilizing control laws. 

Proof Consider Kγε
 as the nonnegative definite solution of Riccati differential equa-

tion (16) associated with εγ . Then, see e.g. [[4], Proposition 5.15], for ft →∞ , 
=lim

t f

K Kγ γε ε

+

→∞
 where Kγε

+  is the nonnegative definite solution of ARE (14). Therefore,

from Theorem 2 item 3, the differential game (1,7) satisfies 

	

( ) ( ) ( )* *
1 2 1 2 1 2

1 12 2

, = , = , .sup supinf inf
F FF F

J F F J F F J F Fγ γ γ 	 (29)

Since the game uses a  feedback information framework, it is easily verified that 
( )* *

0 0, = TJ u w x Mxγ  for some matrix M . So, in particular we have ( )* *, = 0J u wγ  if 
0 = 0x . Since ( ) ( )* * *, ,J u w J u wγ γ≤  this implies 

( ) ( ) ( ) ( ) ( ) ( )* *
* * 1 2

0 0

.

t tf f
TT T

u u
x t Qx t u t R u t dt w t R w t dtγ+ ≤∫ ∫

That is, 

	
( )

2 2

* .
u

G w wγ≤ 	 (30)

Next, According to (4) we can rewrite ( )*
1 2

2

,sup
F

J F Fγ γε ε
 as 

( )
( )*

*
1 2

2

, = .sup sup
u

F w

G w

J F F
w

γε
γ γε ε
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Then, according to the inequality (30) for εγ , we have 

( )
( )*

*
1 2

2

, = = ,sup sup sup
u

F w w

G w
w

J F F
w w

γε ε
γ γ εε ε

γ
γ≤

from which it follows equation (26) holds. Next, because for > εγ γ  the game admits 
FBSP solutions then the robust suboptimal controller follows from Theorem 2 part 2. 
Further, since Kγε

+  exists, using the results in part 5 of Theorem 2, the suboptimal robust 
controller then follows from (17) and (18). Finally, applying Theorem 3 to the problem 
(1,23) yields the last statement of Theorem 4.                                                               □

5.  Concluding Remarks

This paper studies the robust optimal control problem for descriptor systems. Some 
theorems dealing with the problem have been constructed both on a finite and infinite 
planning horizon. The paper shows how the soft-constrained differential game formula-
tion can be used to solve the disturbance attenuation problem and the key role played 
by the critical values CLγ ∞ .

The problem addressed in this paper is primarily restricted to the feedback informa-
tion structure. An extension to other information structures, like delayed and sampled-
data systems, and the case that the system is not perfect-state measurable seem to be 
interesting topics too, but this is an open problem left for future research.

Appendix. Transformation of the differential game

First, we state the following two lemmas that will be used in transforming the dif-
ferential game. The first lemma can be found in [6]. 

Lemma 1 Assume ( ),E A BF+  is regular and has index one. Then for all 
[ ]12 22 2, :=F G I B B FX∈ +  is invertible. 

Next, we recall from [3] the following lemma. 

Lemma 2 Assume n mC ×∈  and m nD ×∈ . Then the following holds: 

1. nI CD+  is invertible if and only if mI DC+  is invertible. 

2. If nI CD+  is invertible then ( ) ( )1 1
=m nC I DC I CD C

− −+ + . 

To transform the differential game, consider the descriptor differential game de-
scribed by the dynamical system 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 0

1 12

2 21

= , 0 =

   =

   = .

Ex t Ax t B u t B w t x x

y t C x t D w t

z t C x t D u t

+ +
+
+



	 (31)

With the cost function preferred to be minimized by the first player 

	
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0

, = T T TJ u w x t Qx t u t R u t w t R w t dtγ γ
∞

 + − ∫ 	 (32)

and for the second player ( ),J u wγ− , where ( ) ( ), n r n rE A + × +∈ , ( )r =ank E n , 
( )n r mi

iB
+ ×∈ , ( )

1
p n rC × +∈ , ( )

2
q n rC × +∈ , 2

12

p m
D

×∈ , 1
21

q m
D

×∈ , 1( ) = ( ) su t F x t U∈ , 
( )2 2( ) = ( ) 0,w t F x t L∈ ∞ , ( ) py t ∈ , and ( ) qz t ∈ . By Weierstrass’ canonical form 

(see e.g. [7]) there exists two nonsingular matrices X  and Y  such that 

00
=     = .

00
nT T

r

JI
Y EX and Y AX

IN

  
  

   

Under the index one assumption, with 
( )
( ) ( )1 1

2

:=
x t

X x t
x t

− 
 
 

 where ( )1
nx t ∈  and

( )2
rx t ∈  the game (31,32) has an FBSP equilibrium actions ( )* *,u w  if and only if 

( )* *,u w  are FBSP equilibrium actions for the game 

	

( )
( )

( )
( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 1 1
1 2 0

2 2 2

1
11 12 12

2

1
21 22 21

2

0 00
= , =

0 00 0

                     =

                     = ,

n T T

r

x t A x t xI
Y B u t Y B w t X x

x t I x t x

x t
y t C C D w t

x t

x t
z t C C D u t

x t

−       
+ +       

        
 

+    
 
 

+    
 





	 (33)

where the first player has the quadratic cost functional 

	
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1
1 2 1 2

20

, = .T T T T Tx t
J u w x t x t X QX u t R u t w t R w t dt

x tγ γ
∞   
  + −   
   
∫      (34)

From (33) we use Lemma 1 for the infinite planning horizon to show that 

( ) [ ] ( ) ( )( )

[ ] [ ] [ ] ( )
( )

2 1 2

1 1
1 2 1 2

2 2

= 0

       = 0 .

T
r

T
r

x t I Y B u t B w t

F x t
I Y B B X X

F x t

− +

  
−   

   
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From this we get, after some simple rewriting that 

	

( ) [ ]( ) [ ] ( )
( )

1

2 12 22 2 12 22 1 1

1

=

       =: .

x t I B B FX B B FX x t

Hx t

−
− +

	 (35)

Substitution of (35) into the differential game (33,34) shows that ( )* *,u w  are FBSP 
equilibrium actions for the game (31,32) if and only if ( )* *

1 2,F F  are FBSP equilibrium 
actions for the game 

	

( ) [ ] ( ) ( ) [ ]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
1 1 11 12 1 1 0

2

11 1 12 2 12

21 1 22 2 21

= ,  0 = 0

 =

 = ,

n

F I
x t A B B X x t x I X x

F H

y t C x t C x t D w t

z t C x t C x t D u t

−    
+    

   
+ +
+ +



	 (36)

with cost functional for the first player given by 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

1
1 2 1 1

10

1
1 1 1 1 1

1

1
1 1 2 2 2

1

, =

                

                

T T T T

T T T T T

T T T T T

x t
J F F x t x t H X QX

x t H

x t
x t x t H X F R F t X

x t H

x t
x t x t H X F R F X dt

x t H

γ

γ

∞       
  

 
 +   

 
  −   
 

∫

or, equivalently, 

	

( ) ( ){

( )

1 2 1 1 2 1

0
2

1 1

2

0 0

, = 0 0

0 0

                          .

T T T T T

Q

J F F x t I H X I F F R

R

I
I

F X x t dt
H

F

γ

γ

∞  
         
 − 

 
   ×         

∫
	 (37)

Now introducing 

	
:= ,i i

I
F F X

H

 
 
 

 	 (38)

we can rewrite the game (36,37) in the form 

	
( ) [ ] ( ) ( ) [ ] 11

1 1 11 21 1 1 0
2

= ,   0 = 0
F

x t A B B x t x I X x
F

−
  

+     







	 (39)
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and 

	

( ) ( ){

( )

1 2 1 1 2 1

0
2

1 1

2

0 0

, = 0 0

0 0

                           

T T T T T

Q

J F F x t I H X F F R

R

I
X

H

F x t dt

F

γ

γ

∞  
       
 − 

  
  

     × 
  
  
    

∫   





	 (40)

Next, notice that by Lemma 2, 

	

[ ]( ) [ ]
[ ] [ ]( )
( )

1

12 22 2 12 22 1

1

12 22 2 12 22 1

12 1 22 2

=

   =

   = .

H I B B FX B B FX

B B F I X B B F X

B F B F

−

−

− +

− +

− + 

	 (41)

Using (41) shows that ( )* *
1 2,F F  are FBSP equilibrium actions for the game (36,37) if 

and only if ( )* *
1 2,F F   are FBSP equilibrium actions for the game (39) with cost function 

	

( ) ( ) ( )1 2 1 1 2 1 1

0
2

, = ,T T T

I

J F F x t I F F M F x t dt

F
γ γ

∞
  
       
    
∫     



	 (42)

where 

11

22

= T

T T

Q V W

M V R N

W N R
γ

γ

 
 
 
  

  

   

  

and 

1 1: TQ X QX , 1 2 12:= TV X QX B− , 1 2 22:= TW X QX B− , 12 2 2 22:= T TN B X QX B , 

11 12 2 2 12 1:= T TR B X QX B R+ , 22 22 2 2 22 2:= T TR B X QX B Rγ γ− . 
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