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Relaxed formulation of the design conditions
for Takagi-Sugeno fuzzy virtual actuators

ANNA FILASOVÁ, DUŠAN KROKAVEC and PAVOL LIŠČINSKÝ

The H∞ norm approach to virtual actuators design, intended to Takagi-Sugeno fuzzy
continuous-time systems, is presented in the paper. Using the second Ljapunov method, the
design conditions are formulated in terms of linear matrix inequalities in adapted bounded real
lemma structures. Related to the static output controller, and for systems under influence of
single actuator faults, the design steps are revealed for a three-tank system plant.

Key words: nonlinear dynamic systems, Takagi-Sugeno fuzzy models, fault tolerant con-
trol, static output controllers, virtual actuators, linear matrix inequalities.

1. Introduction

To increase the reliability of systems, fault tolerant control (FTC) usually fix a sys-
tem with faults for continuing its mission, while different approaches were studied in
FTC design (see, e.g., [1], [3], [15], [21], [23] and the references therein). The standard
approach to control reconfiguration discards the nominal controller from the control loop
and replace it with a new one with re-tuned parameters, to recover in a certain extent the
performance of the fault-free control system [14], [17], [24]. By contrast, instead of
adapting the controller to the faulty plant, the virtual approach keeps the nominal con-
troller in the reconfigured closed-loop system and virtually adapt the faulty plant to the
nominal controller [2], [13]. The reconfiguration block is chosen so as to hide a fault
for the controller input and offers a way for the minimum invasive control reconfigura-
tion [17], [18]. Designated to sensor faults the reconfiguration block is termed virtual
sensor, while in actuator faults is named virtual actuator.

Considering the properties of Takagi-Sugeno (TS) fuzzy models for a class of non-
linear systems [4], [19], [20], [22], the approach proposed in the paper adapts the virtual
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actuator technique for TS fuzzy systems. To achieve the desired control objectives, the
design conditions for TS fuzzy static output controllers as well as for TS fuzzy virtual
actuators are formulated using linear matrix inequality (LMI) techniques, by exploiting
the bounded real lemma approach, and by adapting the generalized H∞ norm principle
presented in [10], [11] to the standard Lyapunov second method.

The paper is organized as follows. Continuing with system description in Sec. 2 the
methods for TS fuzzy static output controller design, exploiting H∞ approach, are given
in Sec. 3 Demonstrating the separation principle for TS fuzzy virtual actuator design in
Sec. 4 the desired specifications, as well as the LMI forms of the design conditions for TS
fuzzy virtual actuator, are proven in Sec. 5 In response, Sec. 6 shows the performance of
the proposed approach using an application example and Sec. 7 gives some concluding
remarks.

Throughout the paper, the following notations are used: xxxT , XXXT denotes the transpose
of the vector xxx and the matrix XXX , respectively, for a square matrix XXX < 0 means that
XXX is symmetric negative definite matrix, rank( · ) remits the rank of a matrix, diag [ · ]
designates a block diagonal matrix, the symbol IIIn indicates the n-th order unit matrix, IR
identifies the set of real numbers and IRn, IRn×r refers to the set of all n-dimensional real
vectors and n× r real matrices, respectively.

2. System descriptions

The considered class of the Takagi-Sugeno continuous-time dynamic systems is de-
scribed in the fault-free conditions as

q̇qq(t) =
s

∑
i=1

hi(θθθ(t))
(
AAAiqqq(t)+BBBiuuuc(t)+VVV iddd(t)

)
, (1)

yyy(t) =CCCqqq(t) , (2)

where qqq(t) ∈ IRn, uuuc(t) ∈ IRr, yyy(t) ∈ IRm stand for state, control input and measurable
output, ddd(t) ∈ IRp is unknown disturbance, the system matrices AAAi ∈ IRn×n, BBBi ∈ IRn×r,
VVV i ∈ IRn×rv , CCC ∈ IRm×n for all i are finite valued and m = r.

The variables θ j(t), j = 1,2, . . . ,o, tied with the sector TS fuzzy model, span the
o-dimensional vector of premise variables

θθθ(t) =
[

θ1(t) θ2(t) · · · θo(t)
]
. (3)

It is supposed that the measurable premise variables, the nonlinear sectors and the nor-
malized membership functions hi(θθθ(t)) are chosen in such a way that the pairs (AAAi,BBBi)
are stabilizable and the pairs (AAAi,CCC) are detectable for for all i [5], while none premise
variable is independent of the elements of the input vector uuu(t). More details can be
found, e.g., in [4], [8], [9].
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The state-space description of the system with a single actuator fault is considered
as follows

q̇qq f a(t) =
s

∑
i=1

hi(θθθ(t))
(
AAAiqqq f a(t)+BBB f iuuu f a(t)+VVV iddd(t)

)
, (4)

yyy f a(t) =CCCqqq f a(t) , (5)

where qqq f a(t)∈ IRn denotes the system state variables vector, uuu f a(t)∈ IRr f labels the vec-
tor of acting control input variables, yyy f a(t)∈ IRm identifies the vector of output variables,
while the matrices BBB f i ∈ IRn×r f are of finite valued for all i and rank(BBB f i) < rank(BBBi).
Moreover, it is supposed that the pairs (AAAi,BBB f i) are controllable for all i and the input
vector uuu f a(t) is available for reconfiguration (all inputs to the plant are available as they
use the nominal controller, but one associated with the faulty actuator is broken). More-
over, it is believed that the nonlinear sectors boundaries are the same for the nominal or
the faulty TS fuzzy model.

3. Nominal TS fuzzy static output controller

Using the same set of membership functions, the fuzzy static output controller in the
parallel distributed form is defined as [8]

uuuc(t) =−
s

∑
j=1

h j(θθθ(t))KKK jyyy(t) =−
s

∑
j=1

h j(θθθ(t))KKK jCCCqqq(t) , (6)

where {KKK j ∈ IRr×m, j = 1,2, . . . ,s} is the set of control gain matrices. Therefore, the
nominal closed-loop system with unknown disturbance is described as

q̇qq(t) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAci jqqq(t)+VVV iddd(t)) , (7)

yyy(t) =CCCqqq(t) , (8)

where
AAAci j = AAAi−BBBiKKK jCCC, i, j = 1,2, . . .s . (9)

The design conditions are given by the following theorem.

Theorem 6 The equilibrium of the fuzzy system (1), (2), controlled by the fuzzy con-
troller (6), is globally asymptotically stable with quadratic constraint γ if there ex-
ist a positive definite symmetric matrix RRR ∈ IRn×n, matrices MMM ∈ IRm×m, NNN j ∈ IRr×n,
YYY i j ∈ IRn×n and a positive scalar γ ∈ IR such that for all i ∈ ⟨1,2, . . .s⟩, i < j ¬ s,
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i, j ∈ ⟨1,2, . . .s⟩, respectively, and hi(θθθ(t))h j(θθθ(t)) ̸= 0

YYY • =


YYY 11 YYY 12 · · · YYY 1s

YYY 21 YYY 22 · · · YYY 2s
...

...
. . .

...
YYY s1 YYY s2 · · · YYY ss

> 0, YYY i j = YYY T
ji , (10)

RRR = RRRT > 0 , (11)

MMMCCC =CCCRRR, (12) HHH ii +HHHT
ii +YYY ii ∗∗∗ ∗∗∗

VVV T
i −γIIIr ∗∗∗

CCCRRR 000 −IIIm

< 0 , (13)


HHH i j+HHH ji

2 +
HHHT

i j+HHHT
ji

2 +
YYY i j+YYY ji

2 ∗∗∗ ∗∗∗
VVV T

i +VVV T
j

2 −γIIIr ∗∗∗
CCCRRR 000 −IIIm

< 0 , (14)

where
HHH i j = AAAiRRR−BBBiNNN jCCC (15)

and IIIr ∈ IRr×r, IIIm ∈ IRm×m are identity matrices.
If the above conditions hold, the set of control law gain matrices is given as

KKK j = NNN jMMM−1, j = 1,2, . . . ,s (16)

Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof (compare [8]) Considering the quadratic Lyapunov function of the form

v(qqq(t)) = qqqT (t)PPPqqq(t)+
t∫

0

(yyyT (τ)yyy(τ)− γdddT (τ)ddd(τ))dτ > 0 (17)

where PPP ∈ IRn×n is a positive definite symmetric matrix and γ ∈ IR is square of the H∞
norm of the disturbance transfer function matrix, then the time derivative of v(qqq(t)) is

v̇(qqq(t)) = q̇qqT (t)PPPqqq(t)+qqqT (t)PPPq̇qq(t)+ yyyT (t)yyy(t)− γdddT (t)ddd(t)< 0 . (18)

Substituting (7), (8) into (18), and introducing the quadratic term

vv(θθθ(t)) = qqqT (t)ZZZ(θθθ(t))qqq(t) , (19)
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ZZZ(θθθ(t)) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))XXX i j > 0 , (20)

while {XXX i j = XXXT
i j ∈ IRn×n, i, j = 1,2, . . . ,s} is the set of matrices, then in the sense of

Krasovskii theorem (see, e.g., [7]) it can be set up

v̇(qqq(t)) =

=
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqT (t)(PPPAAAci j +AAAT
ci jPPP)qqq(t)+

+qqqT (t)PPPVVV iddd(t)+dddT (t)VVV T
i PPPddd(t)+qqqT (t)CCCTCCCqqq(t)− γdddT (t)ddd(t)¬

¬−
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqT (t)XXX i jqqq(t)< 0 .

(21)

Using the notation
qqqT

c (t) =
[

qqqT (t) dddT (t)
]
, (22)

(21) can be written as

v̇(qqqc(t)) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqT (t)PPPci jqqq(t)< 0 , (23)

where

PPPci j =

[
PPPAAAci j +AAAT

ci jPPP+XXX i j +CCCTCCC PPPVVV i

VVV T
i PPP −γIIIr

]
< 0 . (24)

Permuting the subscripts i and j in (23) gives

v̇(qqqc(t)) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqT (t)PPPc jiqqq(t)< 0 (25)

and adding of (23) and (25) results in

2v̇(qqqc(t)) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqT (t)(PPPci j +PPPc ji)qqq(t)< 0 . (26)

Rearranging the computation, (26) takes the form

v̇(qqq(t)) =

=
s
∑

i=1
h2

i (θθθ(t))qqqT (t)PPPciiqqq(t)+2
s−1
∑

i=1

s
∑

j=i+1
hi(θθθ(t))h j(θθθ(t))qqqT (t)PPPci j+PPPc ji

2 qqq(t)< 0 .

(27)
Thus, for all i ∈ ⟨1,2, . . .s⟩, i < j ¬ s, i, j ∈ ⟨1,2, . . .s⟩, respectively, (27) implies

PPPcii < 0,
PPPci j +PPPc ji

2
< 0 . (28)
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Pre-multiplying the left-hand side and post-multiplying the right-hand of the matri-
ces PPPcii, PPPc ji by the transform matrix

SSS = diag
[

RRR IIIr

]
, RRR = PPP−1 (29)

the bilinear matrix inequalities (28) can be partly linearized. Thus, as a consequence,
(24) and (28) give [

AAAciiRRR+RRRAAAT
cii +RRRXXX iiRRR+RRRCCCTCCCRRR VVV i

VVV T
i −γIIIr

]
< 0 , (30)

 AAAci j+AAAc ji
2 RRR+RRR

AAAT
ci j+AAAT

c ji
2 +RRR XXX i j+RRR ji

2 RRR+RRRCCCTCCCRRR VVV i+VVV j
2

VVV T
i +VVV T

j
2 −γIIIr

< 0 , (31)

respectively, and by using the Schur complement property then (30), (31) imply
AAAciiRRR+RRRAAAT

cii +RRRXXX iiRRR VVV i RRRCCCT

VVV T
i −γIIIr 000

CCCRRR 000 −IIIm

< 0 , (32)


AAAci j+AAAc ji

2 RRR+RRR
AAAT

ci j+AAAT
c ji

2 +RRR XXX i j+XXX ji
2 RRR VVV i+VVV j

2 RRRCCCT

VVV T
i +VVV T

j
2 −γIIIr 000

CCCRRR 000 −IIIm

< 0 . (33)

Writing as
AAAci jRRR = (AAAi−BBBiKKK jCCC)RRR , (34)

then, since r = m, it is possible to eliminate the bi-linearity in (34) by setting

BBBiKKK jCCCRRR = BBBiKKK jMMMMMM−1CCCRRR = BBBiNNN jCCC , (35)

where
KKK jMMM = NNN j, MMM−1CCC =CCCRRR−1 (36)

and MMM ∈ IRm×m is a regular square matrix. This implies (12) as well as (15), since

AAAci jRRR = AAAiRRR−BBBiKKK jCCC = HHH i j . (37)

Using the membership functions properties, it can write for (19), (20),

qqqT (t)ZZZ(θθθ(t))qqq(t) =


h1(θθθ(t)PPPqqq(t)
h2(θθθ(t)PPPqqq(t)

...
hs(θθθ(t)PPPqqq(t)


T

RRR•XXX•RRR•


h1(θθθ(t)PPPqqq(t)
h2(θθθ(t)PPPqqq(t)

...
hs(θθθ(t)PPPqqq(t)

> 0 , (38)
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qqqT (t)ZZZ(θθθ(t))qqq(t) =


h1(θθθ(t)qqq⋄(t)
h2(θθθ(t)qqq⋄(t)

...
hs(θθθ(t)qqq⋄(t)


T

YYY •


h1(θθθ(t)qqq⋄(t)
h2(θθθ(t)qqq⋄(t)

...
hs(θθθ(t)qqq⋄(t)

> 0 , (39)

respectively, where

qqq⋄(t) = PPPqqq(t), RRR• = diag
[

RRR RRR · · · RRR
]
, YYY • = RRR•XXX•RRR• > 0 . (40)

Subsequently, using the notations

YYY i j = RRRXXX i jRRR , (41)

(32), (33) imply (13), (14), respectively, and (40) makes positiveness of (10). This con-
cludes the proof.

Consider the case r = m (square plants), where with each output signal is associated
a reference signal. Such regime is called the forced regime and in this case is defined as
follows:

Definition 4 A forced regime for the TS fuzzy system (1), (2) with the TS fuzzy static
output controller (6) is foisted by the control policy

uuuc(t) =−
s

∑
j=1

h j(θθθ(t))KKK jCCCqqq(t)+
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))WWW i jwww(t) , (42)

where www(t) ∈ IRm is desired output signal vector, and WWW i j ∈ IRm×m, i, j = 1,2, . . .s, is the
set of signal gain matrices.

Theorem 7 If a square TS fuzzy system (1), (2) is stabilizable by the control policy (42)
and for all i are satisfied the rank conditions

rank

[
AAAi BBBi

CCC 000

]
= n+m , (43)

then the matrices WWW i j, i, j = 1,2, . . . ,s are given as

WWW i j =−
(
CCC(AAAi−BBBiKKK jCCC)−1BBBi

)−1
(44)

and the relationship yyys = wwws is achieved at a steady state of the closed-loop system,
where yyys, wwws are steady-state values of the vectors yyy(t), www(t).
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Proof If all pairs (AAAi,BBBi) are stabilizable and rankCCC = rankBBBi = m for all i, there exist
such matrices KKK j that AAAci j = AAAi−BBBiKKK jCCC are stable matrices for all i, j and, as conse-
quence, rank(AAAi−BBBiKKK jCCC) = n. Because

rank

[
IIIn 000
−KKK jCCC IIIm

]
= n+m , (45)

then it yields for a KKK j that

rank

[
AAAi BBBi

CCC 000

]
=

= rank

[
AAAi BBBi

CCC 000

][
IIIn 000
−KKK jCCC IIIm

]
= rank

[
AAAi−BBBiKKK jCCC BBBi

CCC 000

]
,

(46)

while

rank

[
AAAi−BBBiKKK jCCC BBBi

CCC 000

]
=

= rank

[
IIIn 000

−CCC(AAAi−BBBiKKK jCCC)−1 IIIm

][
AAAi−BBBiKKK jCCC BBBi

CCC 000

]
=

= rank

[
AAAi−BBBiKKK jCCC BBBi

000 −CCC(AAAi−BBBiKKK jCCC)−1BBBi

]
.

(47)

Because rank(AAAi−BBBiKKK jCCC) = n and rankBBBi = m, it has to be

rank(CCC(AAAi−BBBiKKK jCCC)−1BBBi) = m , (48)

which implies (43).
In a steady-state, the disturbance-free equations (1), (2) and the control law equation

(42) imply

000 =
s

∑
i=1

s

∑
j=1

hi(θθθo)h j(θθθo)((AAAi−BBBiKKK jCCC)qqqs +BBBiWWW i jwwws) , (49)

yyys =CCCqqqs , (50)

where qqqs, yyys, wwws, θθθo are steady-state values of the vectors qqq(t), yyy(t), www(t), θθθ(t), respec-
tively. Then for all i, j it has to be satisfied

qqqs =−(AAAi−BBBiKKK jCCC)−1BBBiWWW i jwwws (51)

and the membership function property

s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t)) = 1 (52)
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allows that (51) can be written as

qqqs =
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqs =

=−
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAi−BBBiKKK jCCC)−1BBBiWWW i jwwws .
(53)

Note, the condition (52) is satisfied at every time instant, and therefore in a steady state,
too.

Since, according to (50), it is

yyys =−
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))CCC(AAAi−BBBiKKK jCCC)−1BBBiWWW i jwwws , (54)

then, considering (9) and yyys = wwws, (54) implies (44). This concludes the proof.
It is evident that the static gains realized by the GGGi j matrices are ideal in control if the

plant parameters, on which the values of WWW i j depend, are known and do not vary with
time.

Note, the forced regime is basically designed for constant references and is very
closely related to shift of origin.

4. TS fuzzy virtual actuator

In a faulty case with a single actuator fault the control structure is modified by adding
the associated TS fuzzy virtual actuator block that masks the actuator fault, and allows
the TS fuzzy controller to perceive the system as it was before the fault, i.e., the nominal
TS fuzzy controller may still be used without it being necessary readjusted. To obtain
the TS fuzzy virtual actuator state-space description, the following theorem is proven at
first.

Theorem 8 (separation principle) The dynamics of TS fuzzy virtual actuator for the TS
fuzzy system with a single actuator fault (3), (4) is given as

ėee f a(t) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAc f i jeee f a(t)−BBBiuuuc(t)) , (55)

where
AAAc f i j = AAAi−BBB f iGGG j , (56)

eee f a(t) = qqq f a(t)−qqq(t) (57)

and eeea(t) ∈ IRn, AAAc f i j ∈ IRn×n, i, j = 1,2, . . .s.
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Proof Writing (1) and (4) compactly as[
q̇qq f a(t)
q̇qq(t)

]
=

s
∑

i=1
hi(θθθ(t))

[
AAAi 000
000 AAAi

][
qqq f a(t)
qqq(t)

]
+

+
s
∑

i=1
hi(θθθ(t))

([
BBB f i 000
000 BBBi

][
uuu f a(t)
uuuc(t)

]
+

[
VVV i

VVV i

]
ddd(t)

)
,

(58)

behavior of this extended system can be fully described also by using qqq f a(t) and by the
equation for the error vector eee f a(t) (57). Then, to perform the coordinate change, the
transform matrix TTT can be defined with respect to (57) as follows

TTT =

[
III 000
III −III

]
, TTT−1 =

[
III 000
III −III

]
, (59)

and, accordingly, it can be obtained

TTT

[
qqq f a(t)
qqq(t)

]
=

[
III 000
III −III

][
qqq f a(t)
qqq(t)

]
=

[
qqq f a(t)
eee f a(t)

]
, (60)

[
III 000
III −III

][
VVV i

VVV i

]
=

[
VVV i

000

]
,

[
III 000
III −III

][
BBB f i 000
000 BBBi

]
=

[
BBB f i 000
BBB f i −BBBi

]
, (61)[

III 000
III −III

][
AAAi 000
000 AAAi

][
III 000
III −III

]
=

[
AAAi 000
000 AAAi

]
. (62)

Thus, (58) can be rewritten in the following form[
q̇qq f a(t)
q̇qq(t)

]
=

s
∑

i=1
hi(θθθ(t))

[
AAAi 000
000 AAAi

][
qqq f a(t)
qqq(t)

]
+

+
s
∑

i=1
hi(θθθ(t))

([
BBB f i 000
BBB f i −BBBi

][
uuu f a(t)
uuuc(t)

]
+

[
VVV i

000

]
ddd(t)

)
.

(63)

Defining the covering of the faulty control input as follows

uuu f a(t) =−
s

∑
j=1

h j(θθθ(t))GGG jeee f a(t) , (64)

where GGG j ∈ IRr f×n, then the substitution of (64) in (63) leads to[
q̇qq f a(t)
ėee f a(t)

]
=

s
∑

i=1
hi(θθθ(t))

(
−

[
000
BBBi

]
uuuc(t)+

[
VVV i

000

]
ddd(t)

)
+

+
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))

[
AAAi −BBB f iGGG j

000 AAAi−BBB f iGGG j

][
qqq f a(t)
eee f a(t)

]
.

(65)
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Thus, the second row of the equation (65) imply (55). This concludes the proof.
Obviously, in view of the block structure of the extended system matrix of the system

(64), the separation principle holds and the gain matrices GGG j can be designed indepen-
dently on the TS fuzzy faulty system description if the couples (AAAi,BBB f i) are controllable.

Corollary 3 The state-space description of the TS fuzzy faulty closed-loop system with
activated TS fuzzy virtual actuator is as follows

q̇qq f a(t) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAc f i jqqq f a(t)+VVV f i ddd f a(t)) , (66)

yyy f a(t) =CCCqqq f a(t) , (67)

where the structures of VVV f i ∈ IRn×r f a , ddd f a ∈ IRr f a , r f a = r f + rv, are

VVV f i =
[

BBB f i VVV i

]
, dddT

f a(t) =
[

qqqT (t)
s
∑
j=1

h j(θθθ(t))GGGT
j dddT (t)

]
. (68)

Thus, the TS fuzzy faulty system with an actuator fault, under control of TS fuzzy nom-
inal static output controller covered by the TS fuzzy virtual actuator, operates in the
reconfiguration regime along with the unknown input disturbance ddd f a(t).

Proof Since the first row of the equation (65) gives

q̇qq f a(t) =
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAiqqq f a(t)−BBB f iGGG jeee f a(t)+VVV iddd(t)) =

=
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAiqqq f a(t)−BBB f iGGG j(qqq f a(t)−qqq(t))+VVV iddd(t)) ,
(69)

then, using the notations (56), (68), the equation (69) implies (66) and (5) gives (56).
This concludes the proof.

Corollary 4 The common description of TS fuzzy virtual actuator block is as follows

ėee f a(t) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAc f i jeee f a(t)−BBBiuuuc(t)) , (70)

uuuc(t) =−
s

∑
j=1

h jθθθ(t))KKK j
(
yyy f a(t)−CCCeee f a(t)

)
. (71)

Thus, in the autonomous regime, stability of TS fuzzy virtual actuator is determined
by the same system matrix (56) as stability of the TS fuzzy closed-loop system in the
reconfiguration regime.

If uuuc(t) will be bounded also eee f a(t) will be bounded for any bounded uuuc(t), which
implies that

ėee f a(t) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))AAAc f i jeee f a(t) (72)

will be bounded-input bounded-output (BIBO) stable [6].
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Proof Since it can write with (67)

yyy(t) =CCCqqq(t) =CCC(qqq f a(t)− (qqq f a(t)−qqq(t))) = yyy f a(t)−CCCeee f a(t) , (73)

substituting (73) into (6) gives (71). This concludes the proof.

5. Design of TS fuzzy virtual actuators

If all pairs (AAAi,BBB f i) are controllable then within the given structure of TS fuzzy
virtual actuators (70), the form of the unknown input disturbance ddd f a(t) (68) and the
system matrix (56), the conditions for design of TS fuzzy virtual actuator are given by
the following theorem.

Theorem 9 TS fuzzy virtual actuator (70) is stable with quadratic constraint γ◦ if there
exist a positive definite symmetric matrix RRR◦ ∈ IRn×n, matrices YYY ◦i j ∈ IRn×n, NNN◦j ∈ IRr f×n

and a positive scalar γ◦ ∈ IR such that for all i ∈ ⟨1,2, . . .s⟩, i < j ¬ s, i, j ∈ ⟨1,2, . . .s⟩,
respectively, and hi(θθθ(t))h j(θθθ(t)) ̸= 0

YYY ⋄ =


YYY ◦11 YYY ◦12 · · · YYY ◦1s

YYY ◦21 YYY ◦22 · · · YYY ◦2s
...

...
. . .

...
YYY ◦s1 YYY ◦s2 · · · YYY ◦ss

> 0 , YYY ◦i j = YYY ◦Tji , (74)

RRR◦ = RRR◦T > 0 , (75)
HHH◦ii +HHH◦Tii +YYY ◦ii ∗∗∗ ∗∗∗

VVV T
f i −γIIIr f a ∗∗∗

CCCRRR◦ 000 −IIIm

< 0 , (76)


HHH◦i j+HHH◦ji

2 +
HHH◦Ti j +HHH◦Tji

2 +
YYY ◦i j+YYY ◦ji

2 ∗∗∗ ∗∗∗
VVV T

f i+VVV T
f j

2 −γIIIr f a ∗∗∗
CCCRRR◦ 000 −IIIm

< 0 , (77)

where
HHH◦i j = AAAiRRR◦−BBB f iNNN◦j . (78)

Then, if the above conditions hold, the gain matrices GGG j of the TS fuzzy virtual actuator
associated with a single actuator fault are computed as

GGG j = NNN◦j(RRR
◦)−1, j = 1,2, . . . ,s. (79)
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Proof Defining the Lyapunov function as follows

v(qqq f a(t)) = qqqT
f a(t)PPP

◦qqq f a(t)+
t∫

0

(
yyyT

f a(r)yyy f a(r)− γ◦dddT
f a(r)ddd f a(r)

)
dr > 0 , (80)

where PPP◦ = PPP◦T > 0, PPP◦ ∈ IRn×n, and γ◦ > 0 is square of the H∞ norm of the enhanced
disturbance transfer functions matrix, then, evaluating the time derivative of v(qqq f a(t)), it
yields

v̇(qqq f a(t))= q̇qqT
f a(t)PPP

◦qqq f a(t)+qqqT
f a(t)PPP

◦q̇qq f a(t)+yyyT
f a(t)yyy f a(t)−γ◦dddT

f a(t)ddd f a(t)< 0 . (81)

Substituting (66), (67) into (81), and introducing the term

v f a(θθθ(t)) = qqqT
f a(t)ZZZ

◦(θθθ(t))qqq f a(t) , (82)

ZZZ◦(θθθ(t)) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))XXX◦i j > 0 , (83)

while {XXX◦i j = XXX◦Ti j ∈ IRn×n, i, j = 1,2, . . . ,s}, then it can be set up

v̇(qqq f a(t)) =

=
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqT
f a(t)(PPP

◦AAAc f i j +AAAT
c f i jPPP

◦)qqq f a(t)+

+qqqT
f a(t)PPP

◦VVV f i ddd f a(t)+dddT
f a(t)VVV

T
f iPPP
◦ddd f a(t)+

+qqqT
f a(t)CCC

TCCCqqq f a(t)− γ◦dddT
f a(t)ddd f a(t)¬

¬−
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))qqqT
f a(t)XXX

◦
i jqqq f a(t)< 0 .

(84)

Using the notation
qqq◦Tf a (t) =

[
qqqT

f a(t) dddT
f a(t)

]
, (85)

(84) can be rewritten as

v̇(qqq◦f a(t)) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))qqq◦Tf a (t)PPP
◦
ci jqqq
◦
f a(t)< 0 , (86)

where

PPP◦ci j =

[
PPP◦AAAc f i j +AAAT

c f i jPPP
◦+XXX◦i j +CCCTCCC PPP◦VVV f i

VVV T
f iPPP
◦ −γ◦IIIr f a

]
< 0 . (87)

Permuting the subscripts i and j with respect to (86), and adding the result to (86), it
yields

2v̇(qqq◦f a(t)) = =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))qqq◦Tf a (t)(PPP
◦
ci j +PPP◦c ji)qqq

◦
f a(t)< 0 (88)
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and, by rearranging, (88) takes the form

v̇(qqq◦f a(t)) =
s
∑

i=1
h2

i (θθθ(t))qqq◦Tf a (t)PPP
◦
ciiqqq
◦
f a(t)+

+2
s−1
∑

i=1

s
∑

j=i+1
hi(θθθ(t))h j(θθθ(t))qqq◦Tf a (t)

PPP◦ci j+PPP◦c ji
2 qqq◦f a(t)< 0 .

(89)

Then, for all i ∈ ⟨1,2, . . .s⟩, i < j ¬ s, i, j ∈ ⟨1,2, . . .s⟩, respectively,

PPP◦cii < 0,
PPP◦ci j +PPP◦c ji

2
< 0 . (90)

Premultiplying the left-hand side and post-multiplying the right-hand side of the matri-
ces PPP◦c ji by the transform matrix

SSS◦ = diag
[

RRR◦ IIIr f a

]
, RRR◦ = (PPP◦)−1, (91)

(87), (90) give[
AAAc f iiRRR◦+RRR◦AAAT

c f ii +RRR◦XXX◦iiRRR
◦+RRR◦CCCTCCCRRR◦ VVV f i

VVV T
f i −γ◦IIIr f a

]
< 0 , (92)

 AAAc f i j+AAAc f ji
2 RRR◦+RRR◦

AAAT
c f i j+AAAT

c f ji
2 +RRR◦

XXX◦i j+XXX◦ji
2 RRR◦+RRR◦CCCTCCCRRR◦ VVV f i+VVV f i

2
VVV T

f i+VVV T
f j

2 −γ◦IIIr f a

< 0 , (93)

which implies the equivalent inequalities
AAAc f iiRRR◦+RRR◦AAAT

c f ii +RRR◦XXX◦iiRRR
◦ VVV f i RRR◦CCCT

VVV T
f i −γ◦IIIr f a 000

CCCRRR◦ 000 −IIIm

< 0 , (94)


AAAc f i j+AAAc f ji

2 RRR◦+RRR◦
AAAT

c f i j+AAAT
c f ji

2 +RRR◦
XXX◦i j+XXX◦ji

2 RRR◦ VVV ai+VVV ai
2 RRR◦CCCT

VVV T
ai+VVV T

a j
2 −γ◦IIIr f a 000

CCCRRR◦ 000 −IIIm

< 0 , (95)

while
AAAc f i jRRR◦ = (AAAi−BBB f iGGG j)RRR◦ = HHH◦i j , NNN◦j = GGG jRRR◦. (96)

Analogously to (38) it is

qqqT
f a(t)ZZZ

◦(θθθ(t))qqq f a(t) =


h1(θθθ(t)PPP◦qqq f a(t)
h2(θθθ(t)PPP◦qqq f a(t)

...
hs(θθθ(t)PPP◦qqq f a(t)


T

RRR⋄XXX◦RRR⋄


h1(θθθ(t)PPP◦qqq f a(t)
h2(θθθ(t)PPP◦qqq f a(t)

...
hs(θθθ(t)PPP◦qqq f a(t)

> 0 ,

(97)
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qqqT
f a(t)ZZZ

◦(θθθ(t))qqq f a(t) =


h1(θθθ(t)qqq⋄f a(t)
h2(θθθ(t)qqq⋄f a(t)

...
hs(θθθ(t)qqq⋄f a(t)


T

YYY ⋄


h1(θθθ(t)qqq⋄f a(t)
h2(θθθ(t)qqq⋄f a(t)

...
hs(θθθ(t)qqq⋄f a(t)

> 0 , (98)

respectively, where

qqq⋄f a(t) = PPP◦qqq f a(t), RRR⋄ = diag
[

RRR◦ RRR◦ · · · RRR◦
]
, YYY ⋄ = RRR⋄XXX◦RRR⋄ > 0 . (99)

Subsequently, using the notations

YYY ◦i j = RRR◦XXX◦i jRRR
◦ , (100)

(94), (95) imply (76), (77), respectively, and (91) makes positiveness of (74). This con-
cludes the proof.

The role of the forced regime for TS fuzzy controller is to force the faulty system in
the steady-state the desired values of the reconfigurable output signals.

Theorem 10 A forced regime for the TS fuzzy system (1), (2) with the TS fuzzy static
output controller (6) and activated virtual actuator is foisted by the control policy

uuuc(t) =−
s

∑
j=1

h j(θθθ(t))KKK jyyy f a(t)+
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))(WWW i j +WWW ◦i j)www(t) , (101)

where
WWW ◦i j =CCC(AAAi−BBB f iGGG j−BBBiKKK jCCC)−1BBBiKKK j , (102)

WWW i j is given in (44) and www(t)∈ IRm is desired output signal vector, and WWW i j,WWW ◦i j ∈ IRm×m,
i, j = 1,2, . . .s.

Proof Since (70), (71) implies

ėee f a(t) =
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))((AAAc f i j−BBBiKKK jCCC)eee f a(t)+BBBiKKK jyyy f a(t)) , (103)

in a steady-state of the closed-loop with virtual actuator the equation (103) gives

000 =
s

∑
i=1

s

∑
j=1

hi(θθθo)h j(θθθo)((AAAc f i j−BBBiKKK jCCC)eee f ao +BBBiKKK jyyy f ao) , (104)

where eee f ao, yyy f ao, θθθo are steady-state values of the vectors eee f a(t), yyy f a(t), θθθ(t), respec-
tively. This means that it has to be satisfied for all i, j,

eee f ao =−(AAAc f i j−BBBiKKK jCCC)−1BBBiKKK jyyy f ao . (105)
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Since it is desired that yyy f ao = wwwo, considering the membership function property (52)
then (105) can be rewritten as

eee f ao =
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))eee f ao =

=−
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAc f i j−BBBiKKK jCCC)−1BBBiKKK jwwwo .
(106)

With respect to desired output variables at the steady-state of the closed-loop system
with activated virtual actuator, it can write for the forced mode that

eee f a(t) =−
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))(AAAc f i j−BBBiKKK jCCC)−1BBBiKKK jwww(t) . (107)

Then, substituting (73) into (42), it is obtained

uuuc(t) =−
s

∑
j=1

h j(θθθ(t))KKK j(yyy f a(t)−CCCeee f a(t))+
s

∑
i=1

s

∑
j=1

hi(θθθ(t))h j(θθθ(t))WWW i jwww(t) (108)

and (107) together with (108) takes the form

uuuc(t) =−
s
∑
j=1

h j(θθθ(t))KKK jCCCyyy f a(t)+

+
s
∑

i=1

s
∑
j=1

hi(θθθ(t))h j(θθθ(t))(WWW i j +CCC(AAAc f i j−BBBiKKK jCCC)−1BBBiKKK j)www(t) .
(109)

Thus, using the notations (56), (102), then (109) implies (101). This concludes the proof.

6. Illustrative example

The three-tank system with three input and three output variables is described by the
set of equations

dq1(t)
dt

=
u1(t)

F1
−

α1sign[q1(t)−q2(t)]
√

2g |q1(t)−q2(t)|

F1
3
∑

i=1
λiqi(t)

3

∑
i=1

λiqi(t) ,

dq2(t)
dt

=
u2(t)

F2
−

α2
√

2gq2(t)
F2 q2(t)

q2(t)+
α1sign[q1(t)−q2(t)]

√
2g |q1(t)−q2(t)|

F1
3
∑

i=1
λiqi(t)

3

∑
i=1

λiqi(t)+

+
α3sign[x3(t)− x2(t)]

√
2g |x3(t)− x2(t)|

F3
3
∑

i=1
ηixi(t)

3

∑
i=1

ηiqi(t)
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u1

q1

α1

u2

q2

α3

u3

q3

α2

1

Figure 1. The three-tank system

dq3(t)
dt

=
u3(t)

F3
−

α3sign[q3(t)−q2(t)]
√

2g |q3(t)−q2(t)|

F3
3
∑

i=1
ηiqi(t)

3

∑
i=1

ηiqi(t) ,

yk(t) = qk(t), k = 1,2,3 ,

where the measured output variables yk(t) are water levels qk(t), k = 1,2,3 in tanks [m]
and the incoming flows are considered as the input variables uk(t), k = 1,2,3 [m3/s],
while the bounds of the output and input variables were

qmin
1 = qmin

3 = 0.02 [m], qmin
2 = 0.01 [m],

qmax
1 = qmax

3 = 1.00 [m], qmax
2 = 0.95 [m],

umin
1,2,3 = 0 [m3/s], umax

1,2,3 = 0.005 [m3/s]
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The model parameters are

g - the gravitational acceleration 9.80665(m/s2),

Fk- the same section of all tanks k = 1,2,3 0.25(m2),

α1- the equivalent section of the pipe
between the first and the second tank 6.5×10−4 (m2),

α3- the equivalent section of the pipe
between the third and the second tank 6.5×10−4 (m2),

α2- the equivalent section of the outlet pipe
from the second tank 9.0×10−4 (m2),

λk,ηk - real scalars,
sign(·) - sign function.

Respecting the nonlinear structure of the system dynamic equations, and minimizing
the number of premise variables, the premise variables were chosen as

θ1(t) =
α1sign[q1(t)−q2(t)]

√
2g |q1(t)−q2(t)|

F1
3
∑

i=1
λixi(t)

,

θ2(t) = α2
F2

√
2g

q2(t)
,

θ3(t) =
α3sign[q3(t)−q2(t)]

√
2g |q3(t)−q2(t)|

F3
3
∑

i=1
ηiqi(t)

,

which, with the resulting sector bounds for premise variables, computed from the given
bounds on input variables, and under the following numbering of combinations of the
sector bounds

i = 1← (θmax
1 ,θmax

2 ,θmax
3 ), i = 2← (θmax

1 ,θmax
2 ,θmin

3 ),

i = 3← (θmax
1 ,θmin

2 ,θmax
3 ), i = 4← (θmax

1 ,θmin
2 ,θmin

3 ),

i = 5← (θmin
1 ,θmax

2 ,θmax
3 ), i = 6← (θmin

1 ,θmax
2 ,θmin

3 ),

i = 7← (θmin
1 ,θmin

2 ,θmax
3 ), i = 8← (θmin

1 ,θmin
2 ,θmin

3 ),

imply the structures of the local sub-system matrices

AAAi =

 −λ1θi
1 −λ2θi

1 −λ3θi
1

λ1θi
1 +η1θi

3 λ2θi
1 +η2θi

3−θi
2 λ3θi

1 +η3θi
3

−η1θi
3 −η2θi

3 −η3θi
3

 ,



RELAXED FORMULATION OF THE DESIGN CONDITIONS
FOR TAKAGI-SUGENO FUZZY VIRTUAL ACTUATORS 217

BBB =


1
F1

0 0
0 1

F2
0

0 0 1
F3

 , CCC =

 1 0 0
0 1 0
0 0 1

 .
The choice of real scalars λk, ηk, k = 1,2,3, gives the possibility to obtain different
parameters of the matrix AAAi (different linear parameter varying (LPV) form of the sys-
tems) [12]. The general limitation is that the couples (AAAi,BBB) have to be stabilizable and
the couples (AAAi,CCC) have to be detectable for all i. In this sense the scalars were interactive
setting as

λ1 = 0.20, λ2 = 0.69, λ3 = 0.16, η1 = 0.69, η2 =−0.36, η3 = 0.06,

which results in the following TS model matrix parameters

AAA1 =

 −0.0163 −0.0563 −0.0132
0.1340 −0.1832 0.0229
−0.1178 0.0623 −0.0097

 , AAA2 =

 −0.0163 −0.0563 −0.0132
−0.0060 −0.1091 0.0114

0.0223 −0.0118 0.0018

 ,
AAA3 =

 −0.0163 −0.0563 −0.0132
0.1340 −0.0242 0.0229
−0.1178 0.0623 −0.0097

 , AAA4 =

 −0.0163 −0.0563 −0.0132
−0.0060 0.0499 0.0114

0.0223 −0.0118 0.0018

 ,
AAA5 =

 0.0033 0.0116 0.0027
0.1145 −0.2511 0.0070
−0.1178 0.0623 −0.0097

 , AAA6 =

 0.0033 0.0116 0.0027
−0.0256 −0.1770 −0.0046

0.0223 −0.0118 0.0018

 ,
AAA7 =

 0.0033 0.0116 0.0027
0.1145 −0.0921 0.0070
−0.1178 0.0623 −0.0097

 , AAA8 =

 0.0033 0.0116 0.0027
−0.0256 −0.0180 −0.0046

0.0223 −0.0118 0.0018

 ,

BBB =

 4 0 0
0 4 0
0 0 4

 , VVV =

 0.6397
0.3172
0.4827

 .
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The controller gain matrices KKKh was synthesized by solving (10)-(14) using the SeDuMi
package [16] while with γ= 1.7387 the following controller gain matrices were produced

KKK1 =

 2.4009 0.1687 0.2252
0.1692 2.0665 0.1308
0.2253 0.1305 2.2623

 , KKK2 =

 2.4000 0.1516 0.2424
0.1521 2.0850 0.1202
0.2427 0.1197 2.2659

 ,
KKK3 =

 2.3984 0.1689 0.2245
0.1692 2.1450 0.1307
0.2246 0.1303 2.2631

 , KKK4 =

 2.4002 0.1515 0.2424
0.1521 2.1636 0.1194
0.2422 0.1193 2.2656

 ,
KKK5 =

 2.4055 0.1744 0.2266
0.1749 2.0498 0.1285
0.2267 0.1283 2.2642

 , KKK6 =

 2.4033 0.1571 0.2439
0.1578 2.0670 0.1180
0.2439 0.1174 2.2662

 ,
KKK7 =

 2.4051 0.1746 0.2270
0.1748 2.1291 0.1287
0.2270 0.1284 2.2640

 , KKK8 =

 2.4041 0.1572 0.2441
0.1577 2.1473 0.1175
0.2444 0.1174 2.2665

 .
Note, the design condition results stable sets of the closed-loop subsystems matrix eigen-
values.

Considering the second actuator fault (the second column of BBB is zero column), then
by solving (74)-(77) the gain matrices were designed for TS fuzzy virtual actuator as
follows

GGG1 =

 0.9870 0.3095 0.0993
0.2450 1.2381 0.0842
0.1092 0.1327 0.9055

 , GGG2 =

 0.9853 0.2996 0.1059
0.2396 1.2474 0.0801
0.1153 0.1279 0.9068

 ,
GGG3 =

 0.9861 0.3094 0.0991
0.2516 1.2845 0.0853
0.1089 0.1325 0.9058

 , GGG4 =

 0.9854 0.2996 0.1059
0.2463 1.2939 0.0810
0.1151 0.1276 0.9067

 ,
GGG5 =

 0.9894 0.3133 0.1000
0.2459 1.2287 0.0830
0.1096 0.1316 0.9062

 , GGG6 =

 0.9871 0.3032 0.1066
0.2404 1.2373 0.0790
0.1156 0.1266 0.9069

 ,
GGG7 =

 0.9893 0.3134 0.1002
0.2526 1.2756 0.0843
0.1097 0.1317 0.9061

 , GGG8 =

 0.9874 0.3033 0.1067
0.2472 1.2847 0.0800
0.1158 0.1267 0.9071

 ,
where γ◦ = 5.7914.

In the simulation, the forced mode was established for the TS fuzzy controller and the
system initial conditions qqqT (0)=[qqqmin

1 qqqmin
2 qqqmin

3 ] and wwwT (t) = [0.65 0.55 0.60 ]. As the
results, Fig. 2 presents the system outputs response reflecting the second actuator fault.
Starting and continuing the system activity in nominal conditions to the time instant t =
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Figure 2. System output responses

200s when the second actuator fault was being occurred, the TS fuzzy virtual actuator in
the forced mode was activated at the time instant t = 220s. Working further with activated
TS fuzzy virtual actuator, the desired output was changed to wwwT (t) = [0.25 0.15 0.20 ]
at the time instant t = 400s and, subsequently, to wwwT (t) = [0.45 0.35 0.30 ] at the time
instant t = 700s. It is clear, following the intervention of TS fuzzy virtual actuator in the
operative area, the first and the third output of the system was stabilized at the desired
levels. In the given structure of the system, it can not set the desired level value in the
second tank in case of failure of the second actuator, but this level value is stabilized in
the dependency on the desired level values of the first and third tanks.

7. Concluding Remarks

The proposed H∞ based method gives new design features offered in collection of
feasible algorithms for TS fuzzy virtual actuator design. The design conditions are ac-
counted in terms of bounded real lemma structure of LMIs and exploit the standard
numerical optimization. The TS fuzzy virtual actuator block is performed as an au-
tonomous algorithm that may be activated with dependence on the fault detection and
isolation subsystem response after singular actuator fault localization.
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