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Abstract. In this paper, a generalisation of previous author’s formulation of fractional continuum mechanics for the case of anisotropic non-lo-
cality is presented. The discussion includes a review of competitive formulations available in literature. The overall concept is based on the 
fractional deformation gradient which is non-local due to fractional derivative definition. The main advantage of the proposed formulation is its 
structure, analogous to the general framework of classical continuum mechanics. In this sense, it allows to define similar physical and geometrical 
meaning of introduced objects. The theoretical discussion is illustrated by numerical examples assuming anisotropy limited to single direction.
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1. Notation

Section 2

 D®, CD®, E®x – fractional derivative
 E – material parameter
 e®, EA – base vectors
 

where αi = (α1i, α2i, α3i), so

α =



α11 α12 α13

α21 α22 α23

α31 α32 α33


 , (6)

and finally

xi = K̃
1−αi(t)
X χi = R̃1−α1i

X1
R̃1−α2i

X2
R̃1−α3i

X3
χi =

=
1

Γ(1− α1i(t))Γ(1− α2i(t))Γ(1− α3i(t))
(7)

∫ ∫ ∫

H

χi(Y, t)dY1dY2dY3

|X1 − Y1|α1i(t)|X2 − Y2|α2i(t)|X3 − Y3|α3i(t)
,

where H = [a1, b1]× [a2, b2]× [a3, b3] denotes the interval of non-local interaction, and Γ is the Euler
gamma function

Γ(α) =

∫ ∞

0
e−ttα−1dt. (8)

Next, based on non-standard definition of motion by Eq. (4) the authors define the deformation gradient
Fα as

Fα =
∂χ(X, t)

∂X
, or Fα

aA =
∂

∂XA

(
R̃1−α1a

X1
R̃1−α2a

X2
R̃1−α3a

X3
χa

)
ea � EA, (9)

where ea and EA are base vectors in coordinate systems {xa} and {XA}, respectively.

Finally, the operator Fα, which is now non-local, plays the same role as the classical deformation
gradient. It is important to point out that Fα has a physical unit in general [m3−α1k−α2k−α3k ], in this
sense fractional strains also, and also for the first time the non-local fractional kinematics is defined on
an interval which represents a part of the body, and enables to analyse anisotropic non-local effect.

Concerning the second group of non-local fractional models, namely the one which bases on redef-
inition of constitutive law, let us first mention about paper by Di Paola et al. [39]. In this paper the
non-local elasticity relation was proposed as

σ(x, t)− αEα
x σ(x, t) = Eε(x, t), (10)

where σ is a Cauchy stress, α is a length scale (indicating non-standard physical unit [m1+α−1
]), Eα

x

is a fractional derivative, and E denotes Young modulus. It is clear that Eq. (10) is a generalisation of
well known Eringen model [53]. Later, Carpinteri et al. [41] considered a material constitutive law in a
form

σ(x, t) = E

[
du

dx
+

κα
2

(
C
a D

α
xu− C

xD
α
b u

)]
, (11)

where κα is a material constant and has anomalous physical dimensions [Pa · mα−1]. Interestingly,
Eq. (11) reflects the same basic formula as the one derived from Atanackovic and Stankovic [40] but
starting from fractional non-local strain measure [54].

As a concluding remark, it should be emphasised that an interesting direction of research is also an
attempt to unify non-local fractional models with theories dealing with fractal media or peridynamic
model [55].
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 – deformation gradient
 K®, L®, E® – fractional strain
 t – time
 u – 1D displacement
 x – 1D spatial coordinate
 x, X – spatial and material coordinates
 ® – order of fractional derivative
 

other interpretations for the future work. In other words, we examine some smoothed picture, without
going into detail about the sub-scale constituents/phenomena.

2 Existing fractional models of mechanics

Let us shortly discuss selected concepts of non-local fractional continuum mechanics.

Non-locality in the fractional continuum mechanics comes from the application of fractional derivative
which operates over the interval. This interval defines simultaneously the range of non-local interaction.
The fractional derivative means the derivative of an arbitrary order [49, 50], and in a special case when
the applied order becomes integer we obtain classical local formulation (classical local derivative where
the definition is given in a single point). In this sense, and because there are many different fractional
differential operators [51], and many different ways how to introduce them into the specific formulation,
we have nowadays several fractional continuum mechanics concepts. In general, one can distinguish
two ways of introducing spatial non-local effects through fractional calculus into continuum mechanics
[52]: (i) redefinition of kinematics; (ii) redefinition of constitutive law.

One of the first papers dealing with fractional kinematics was by Klimek [23] where the symmetric
fractional derivative had been used in the definition of strain, namely

Kα(x, t) =
1

2
( 0D

α
x − xD

α
L)u(x, t), (1)

where Kα is a fractional strain, Dα is a fractional derivative, x is a spatial coordinate, t denotes time,
and u is a displacement. In is important that the definition by Eq. (1) describes one dimensional problem
under small strain assumption, the terminals 0 and L show that for calculation of fractional strain at the
specific point of interest x we take all information from the body, and the fractional strain has physical
unit [m1−α]. Another proposition was by Lazopoulos [25]. He proposed a measure of fractional strain
in a form

Lα(x, t) =
1

2
( 0D

α
x + xD

α
L)

∂

∂x
u(x, t), (2)

where Lα stands for fractional strain, with similar comments as for Eq. (1) but with physical unit [m−α].
Later a closely related proposition was stated by Atanackovic and Stankovic [40], namely

Eα(x, t) =
1

2

(
C
−∞Dα

x − C
xD

α
∞
)
u(x, t), (3)

where Eα stands for fractional strain, where physical unit is once more [m1−α].

Seminal work dealing with the proposition of fractional kinematics at finite strain for three dimensions
was the paper by Drapaca and Sivaloganathan [38]. They started from the redefinition of motion, namely

x =

{
K̃

1−α(t)
X χ(X, t), −∞ < αIi(t) < 1, I, i = 1, 2, 3,

χ(X, t), αIi(t) = 1, I, i = 1, 2, 3,
(4)

where χ is a motion, x is a spatial coordinate, X denotes a material coordinate, and α is an order of
motion. In Eq. (4)

K̃
1−α(t)
X =



K̃

1−α1(t)
X 0 0

0 K̃
1−α2(t)
X 0

0 0 K̃
1−α3(t)
X


 , (5)
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configurations

 CRD®; D® – Riesz-Caputo fractional derivative

 E, e –  Green-Lagrange and Euler-Almansi strain tensors
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B,S continuum body in reference and current configurations
CRDα, Dα Riesz-Caputo fractional derivative
E, e Green-Lagrange and Euler-Almansi strain tensors
α
E, Ẽ

X
, Ẽ
x

fractional Green-Lagrange strain tensors
α
e, ẽ

X
, ẽ
x

fractional Euler-Almansi strain tensors

EA, ea base vectors in B and S
F deformation gradient
α
F, F̃

X
, F̃
x

fractional deformation gradients

f body force per unit mass
I, i identity in B and S
J Jacobian
α
J, J̃

X
, J̃
x

fractional Jacobians

n(ñ) outward (fractional) normal
P first Piola-Kirchhoff stress tensor
α
P, P̃

X
, P̃
x

first fractional Piola-Kirchhoff stress tensors

S second Piola-Kirchhoff stress tensor
α
S, S̃

X
, S̃
x

second fractional Piola-Kirchhoff stress tensors

dS(dS̃), ds(ds̃) material (fractional), spatial (fractional) surface elements
t time
t(n)(t̃(ñ)) traction (fractional) vector
U,u displacements in B and S
υ velocity in S
dV (dṼ ), dv(dṽ) material (fractional), spatial (fractional) volume elements
x,X spatial and material coordinate
dX(dX̃), dx(dx̃) material (fractional) and spatial (fractional) line elements
α order of fractional continua
α orders of anisotropic fractional continua
Γ Euler gamma function
δ Kronecker delta
�
ε fractional Cauchy strain tensor
ρ0 (ρ̃0), ρ (ρ̃) reference (fractional), spatial (fractional) mass density
σ (σ̃) Cauchy (fractional) stress tensor
φ, ϕ motion and its inverse
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1 Introduction

Reliable modelling of heterogeneous materials, ranging from marco- to micro- and nanoscale of obser-
vation, in terms of continuum mechanics concept, needs non-local formulations [1]. The first articles in
this area were released in the 1960s, and dates back to the scientists, such as Toupin [2], Mindlin [3],
Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-
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X
, ẽ
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n(ñ) outward (fractional) normal
P first Piola-Kirchhoff stress tensor
α
P, P̃

X
, P̃
x

first fractional Piola-Kirchhoff stress tensors

S second Piola-Kirchhoff stress tensor
α
S, S̃

X
, S̃
x

second fractional Piola-Kirchhoff stress tensors

dS(dS̃), ds(ds̃) material (fractional), spatial (fractional) surface elements
t time
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and u is a displacement. In is important that the definition by Eq. (1) describes one dimensional problem
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where Lα stands for fractional strain, with similar comments as for Eq. (1) but with physical unit [m−α].
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where Eα stands for fractional strain, where physical unit is once more [m1−α].

Seminal work dealing with the proposition of fractional kinematics at finite strain for three dimensions
was the paper by Drapaca and Sivaloganathan [38]. They started from the redefinition of motion, namely
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1. Introduction

In terms of continuum mechanics, reliable modelling of het-
erogeneous materials ranging from marco- to micro- and na-
no-scale of observation requires non-local formulations [1]. The 
first articles in this area were released in the 1960s, and date 
back to scientists such as Toupin [2], Mindlin [3], Eringen [4], 
Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], 
Fleck and Hutchinson [10]. Regardless of the details of specific 
formulation, it is common that non-local model introduces char-
acteristic length (or time) which is inherent to the inner material 
structure. This new material parameter can be measured direct-
ly from experiment, determined from experiments via inverse 
analysis, or derived theoretically from micromechanics [11–16].

Nowadays there are many concepts dealing with non-lo-
cal formulations, like general non-local theories [17, 18], 
strain-gradient theories [2, 19], micropolar theories [20, 21] 
or theories of material surfaces [22]. Nevertheless, due to the 
development of new materials and constant miniaturization of 
electronic or medical devices, the continued progress in this 
subject is desirable. In a sense, as a response to this demand, 
a new branch of investigations was initiated in early 2000s by 
Klimek [23], Vazquez [24], Lazopoulos [25], namely the one 
using fractional calculus.

An important class of non-local models are those dealing 
with anisotropic non-locality – especially the one combined with 
damage description. Such formulations introduce the possibility 
of analysis of materials showing scale effect, but depending on 
direction. Let us mention herein the papers on this subject by: 
Kuhl et al. [26], where quasi-brittle materials were considered; 
Stumpf et al. [27], where the crack analysis based on the con-
cept of continua with microstructure and evolving defects was 
discussed; Germain et al. [28], where the anisotropic layered 
material was formulated; Abu-Al-Rub et al. [29], where coupled 
anisotropic damage and plasticity constitutive model to predict 
the concrete distinct behavior in tension and compression was 
considered; Alastrue et al. [30], where fully three-dimension-
al anisotropic elastic model for vascular tissue modelling was 
shown; and finally by Perzyna [31] and Sumelka et al. [32, 33], 
where the class of implicitly non-local (rate type [34]) anisotro-
pic models for metallic materials was considered. Nevertheless, 
considering the subject of this paper, the fractional anisotropic 
non-local models are nowadays still under development.

In this paper we propose a generalisation of an original con-
cept of isotropic fractional continuum mechanics presented in 
[35, 36] for description of anisotropic non-locality. As will be 
discussed, this formulation abandons not-only classical postu-
late of local action, but also the restriction imposed by objec-
tivity postulate (cf. discussion on objectivity in [37]). In this 
sense, this result will be analogous to the one obtained by Dra-
paca and Sivaloganathan [38], but is should be emphasised that 
both models cannot be reduced one to each other; they operate 
in different physical dimension space.

The definition of non-local model utilising fractional calcu-
lus belongs to recent trends in mechanics [23–25, 39–41, 38]. 
In comparison to previous formulations, the main advantage 
of the proposed formulation is its structure, analogous to the 

general framework of classical continuum mechanics. Therefore 
it allows, to some extent, to give similar physical and geomet-
rical meaning of introduced objects according to their classical 
counterparts (including of course some open questions resulting 
from the interpretation of fractional calculus itself [42]). Other 
crucial advantages are: (i) we deal with finite deformations; 
(ii) the generalised fractional measures of the deformation e.g. 
fractional deformation gradients or fractional strains have the 
same physical dimensions as the classical one; (iii) character-
istic length scale of the particular material is defined explicitly.

The paper is structured as follows. In Section 2, existing 
fractional models of mechanics are summarised. The non-lo-
cal fractional model accounting for anisotropic non-locality is 
presented in Section 3. In Section 4, benchmark examples are 
shown.

Remark 1. Naming convention. Throughout the paper, we fol-
low the naming convention common for the classical continuum 
mechanics. To show the influence of fractional calculus, we add 
the word “fractional”. Therefore, we introduce objects such as 
fractional deformation gradient or fractional strain.

It is important to notice that similar nomenclature (because 
of fractional calculus application) is used in theories dealing 
with fractal media, where fractal/fractional continua are con-
sidered [43–47, 38, 48]. Those two concepts should not be con-
fused. We read the influence of fractional differential operator, 
as in presented formulation, from phenomenological point of 
view leaving other interpretations for the future work. In other 
words, we examine some smoothed picture, without going into 
detail about the sub-scale constituents/phenomena.

2. Existing fractional models of mechanics

Let us shortly discuss selected concepts of non-local fractional 
continuum mechanics.

Non-locality in the fractional continuum mechanics comes 
from the application of fractional derivative which operates 
over the interval. This interval defines simultaneously the range 
of non-local interaction. The fractional derivative means the 
derivative of an arbitrary order [49, 50], and in a special case 
when the applied order becomes integer we obtain classical lo-
cal formulation (classical local derivative where the definition 
is given in a single point). In this sense, and because there are 
many different fractional differential operators [51] and many 
different ways of introducing them into the specific formula-
tion, we have nowadays several fractional continuum mechanics 
concepts. In general, one can distinguish two ways of introduc-
ing spatial non-local effects through fractional calculus into 
continuum mechanics [52]: (i) redefinition of kinematics; (ii) 
redefinition of constitutive law.

One of the first papers dealing with fractional kinematics 
was a work of Klimek [23] in which the symmetric fractional 
derivative was used in the definition of strain, namely

other interpretations for the future work. In other words, we examine some smoothed picture, without
going into detail about the sub-scale constituents/phenomena.
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we have nowadays several fractional continuum mechanics concepts. In general, one can distinguish
two ways of introducing spatial non-local effects through fractional calculus into continuum mechanics
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One of the first papers dealing with fractional kinematics was by Klimek [23] where the symmetric
fractional derivative had been used in the definition of strain, namely

Kα(x, t) =
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( 0D
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α
L)u(x, t), (1)

where Kα is a fractional strain, Dα is a fractional derivative, x is a spatial coordinate, t denotes time,
and u is a displacement. In is important that the definition by Eq. (1) describes one dimensional problem
under small strain assumption, the terminals 0 and L show that for calculation of fractional strain at the
specific point of interest x we take all information from the body, and the fractional strain has physical
unit [m1−α]. Another proposition was by Lazopoulos [25]. He proposed a measure of fractional strain
in a form

Lα(x, t) =
1

2
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∂
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where Lα stands for fractional strain, with similar comments as for Eq. (1) but with physical unit [m−α].
Later a closely related proposition was stated by Atanackovic and Stankovic [40], namely

Eα(x, t) =
1
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C
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u(x, t), (3)

where Eα stands for fractional strain, where physical unit is once more [m1−α].

Seminal work dealing with the proposition of fractional kinematics at finite strain for three dimensions
was the paper by Drapaca and Sivaloganathan [38]. They started from the redefinition of motion, namely

x =
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1−α(t)
X χ(X, t), −∞ < αIi(t) < 1, I, i = 1, 2, 3,

χ(X, t), αIi(t) = 1, I, i = 1, 2, 3,
(4)

where χ is a motion, x is a spatial coordinate, X denotes a material coordinate, and α is an order of
motion. In Eq. (4)
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where Kα is a fractional strain, Dα is a fractional derivative, x is 
a spatial coordinate, t denotes time, and u is a displacement. It 
is important that the definition in Eq. (1) describes one dimen-
sional problem under small strain assumption, the terminals 0 
and L show that for calculation of fractional strain at the specific 
point of interest x we take all information from the body, and 
the fractional strain has physical unit
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the definition is given in a single point). In this sense, and because there are many different fractional
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where where αi = (α1i, α2i, α3i), so
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and finally
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1−αi(t)
X χi = R̃1−α1i

X1
R̃1−α2i

X2
R̃1−α3i

X3
χi =

=
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Γ(1− α1i(t))Γ(1− α2i(t))Γ(1− α3i(t))
(7)

∫ ∫ ∫

H

χi(Y, t)dY1dY2dY3

|X1 − Y1|α1i(t)|X2 − Y2|α2i(t)|X3 − Y3|α3i(t)
,

where H = [a1, b1]× [a2, b2]× [a3, b3] denotes the interval of non-local interaction, and Γ is the Euler
gamma function

Γ(α) =

∫ ∞

0
e−ttα−1dt. (8)

Next, based on non-standard definition of motion by Eq. (4) the authors define the deformation gradient
Fα as

Fα =
∂χ(X, t)

∂X
, or Fα

aA =
∂

∂XA

(
R̃1−α1a

X1
R̃1−α2a

X2
R̃1−α3a

X3
χa

)
ea � EA, (9)

where ea and EA are base vectors in coordinate systems {xa} and {XA}, respectively.

Finally, the operator Fα, which is now non-local, plays the same role as the classical deformation
gradient. It is important to point out that Fα has a physical unit in general [m3−α1k−α2k−α3k ], in this
sense fractional strains also, and also for the first time the non-local fractional kinematics is defined on
an interval which represents a part of the body, and enables to analyse anisotropic non-local effect.

Concerning the second group of non-local fractional models, namely the one which bases on redef-
inition of constitutive law, let us first mention about paper by Di Paola et al. [39]. In this paper the
non-local elasticity relation was proposed as

σ(x, t)− αEα
x σ(x, t) = Eε(x, t), (10)

where σ is a Cauchy stress, α is a length scale (indicating non-standard physical unit [m1+α−1
]), Eα

x

is a fractional derivative, and E denotes Young modulus. It is clear that Eq. (10) is a generalisation of
well known Eringen model [53]. Later, Carpinteri et al. [41] considered a material constitutive law in a
form

σ(x, t) = E

[
du

dx
+

κα
2

(
C
a D

α
xu− C

xD
α
b u

)]
, (11)

where κα is a material constant and has anomalous physical dimensions [Pa · mα−1]. Interestingly,
Eq. (11) reflects the same basic formula as the one derived from Atanackovic and Stankovic [40] but
starting from fractional non-local strain measure [54].

As a concluding remark, it should be emphasised that an interesting direction of research is also an
attempt to unify non-local fractional models with theories dealing with fractal media or peridynamic
model [55].
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3. Fractional kinematics, stresses  
and balance laws

3.1. Riesz-Caputo fractional derivative. There are many defi-
nitions of fractional derivative [56, 49, 50, 57, 51]. They all 
share one common attribute, i.e., they are all defined on an 
interval contrary to integer order differential operators defined 
in a point. In following part of this paper, the Caputo’s type 
derivative over the interval (a, b) is considered. We call such 
operator Riesz-Caputo (RC) derivative, cf. [59], and its defi-
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where ς(α) represents scalar valued function, C
a D

α
t f(t) is a left-sided Caputo’s derivative given by

(t > a and n = [α] + 1)

C
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α
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f (n)(τ)

(τ − t)α−n+1
dτ. (14)

In the remaining part of this paper the RC derivative defined in Eq. (12) is shortly denoted as Dα

with the possibility of writing variable under the D in case of a partial differentiation of multivariate
functions. For example D

X1

αf represents partial fractional derivative of f with respect to the variable

X1 over the interval which should be explicitly defined before X1 ∈ (a, b). It is clear that for α = 1 we
have

RC
a D1

bf(t) =
d

dt
f(t). (15)

Remark 2. Caputo’s derivative of a constant function. In general fractional derivative of a partic-
ular type of a constant function is not equal zero. Caputo’s derivative is an exception, thus makes its
application similar to classical integer order operator.

Remark 3. On initial and boundary conditions. It is fundamental that using Caputo’s type derivative,
one requires standard (like in the classical differential equations) initial and/or boundary conditions,
whereas for other types of fractional derivatives (e.g. RL or GL) the initial/boundary conditions are of
different type dependently on chosen definition.

Remark 4. On the type of applied fractional differential operator. The type of applied fractional
differential operator describes the type of non-locality. In other words, it governs the way in which
the information from the surrounding influences particular point of interest. Thus, one should choose
appropriate fractional differential operator, dependently on the material considered (in contrast the
choice of RC in the presented paper is due to reasons stated in Remarks 2 and 3).

Recall, as an example, that the definition of the classical Riesz-Feller [59] fractional operator has an
origin in processes with Lévy stable probability distribution. In this sense it should be possible to define
fractional differential operator in a way that e.g. it has an information about the distribution of grains
sizes in a particular metal.
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3.2. Fractional deformation gradients. It is important to 
emphasise that the specific fractional model presented in this 
paper was discussed in a series of papers devoted to fractional 
elasticity [60, 61], fractional thermoelasticity [36], fractional 
Kirchhoff-Love plates [62], and non-local rate independent 
plasticity [63]. Nevertheless, these results comprise the case 
of  isotropic non-locality and it was shown that for such 
a case the objectivity restriction known from classical me-
chanics holds.

As mentioned in the introduction, in this paper we analyse 
the case of anisotropic non-locality i.e. materials showing scale 
effect but depending on direction. Therefore, this formulation 
omits not only the classical postulate of local action, but also 
the restriction imposed by objectivity postulate, which can be 
important for some classes of materials [37]. In this sense, this 
result is analogous to the one obtained by Drapaca and Sivalo-
ganathan [38], but is should be emphasised that both models 
cannot be reduced one to each other, and operate in different 
physical dimension space.

The description is given in the Euclidean space. We refer to 
B as the reference configuration of the continuum body while 
S denotes its current configuration. Points in B are denoted by 
X and in S by x. Coordinate system for B is denoted by {XA} 
with base EA and for S we have {xa} with base ea.

The regular motion of the material body B can be written as
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The regular motion of the material body B can be written as

x = φ(X, t), (16)

and its inverse as
X = ϕ(x, t), (17)

thus φt : B � S is a C1 actual configuration of B in S , at time t. Here, it is important to emphasise that
to avoid confusion we introduce new symbol for motion marked in Sec. 2 by χ where we have followed
Drapaca and Sivaloganathan [38] notation. In this sense, in the presented formulation the position of the
non-local body is not changed contrary to [38], but the effort of the body (strains/stresses) is of course
different due to non-local action.

We define the fractional deformation gradient and its inverse as follows (α ∈ (0, 1))

F̃
X
(X, t) = �

X

α−1D
X

αφ(X, t), or F̃
X

aA = �
X

αaA−1
aA D

XA

αaAφaea � EA, (18)

and
F̃
x
(x, t) = �

x

α−1D
x

αϕ(x, t), or F̃
x

Aa = �
x

αAa−1
Aa D

xa

αAaϕAEA � ea, (19)

where Dα is a fractional differential operator in the sense of RC defined in previous section, and �X
and �x are length scales in B and S , respectively. As an example the matrix representation of object F̃

X
is

F̃
X
=




�
X

α11−1
11 D

X1

α11φ1 �
X

α12−1
12 D

X2

α12φ1 �
X

α13−1
13 D

X3

α13φ1

�
X

α21−1
21 D

X1

α21φ2 �
X

α22−1
22 D

X2

α22φ2 �
X

α23−1
23 D

X3

α23φ2

�
X

α31−1
31 D

X1

α31φ3 �
X

α32−1
32 D

X2

α32φ3 �
X

α33−1
33 D

X3

α33φ3


 . (20)

Hence, in general we can write

F̃
x
F̃
X
�= I = δABEA � EB, (21)

and
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3.2 Fractional deformation gradients

It is important to emphasise that the specific fractional model presented in this paper was discussed in
a series of papers devoted to fractional elasticity [60, 61]; fractional thermoelasticity [36], fractional
Kirchhoff-Love Plates [62], and non-local rate independent plasticity [63]. Nevertheless, these results
comprise the case of isotropic non-locality and it was shown that for such a case objectivity restriction
known from classical mechanics holds.

As mentioned in the introduction, in this paper we analyse the case of anisotropic non-locality i.e.
materials showing scale effect but depending on direction. Therefore, this formulation abandon not-
only classical postulate of local action, but also restriction imposed by objectivity postulate - what can
be important for some classes of materials [37]. In this sense, this result is analogous to the one obtained
by Drapaca and Sivaloganathan [38], but is should be emphasised that both models can not be reduced
one to each other, and operate in different physical dimension space.

The description is given in the Euclidean space. We refer to B as the reference configuration of the
continuum body while S denotes its current configuration. Points in B are denoted by X and in S by x.
Coordinate system for B is denoted by {XA} with base EA and for S we have {xa} with base ea.

The regular motion of the material body B can be written as

x = φ(X, t), (16)

and its inverse as
X = ϕ(x, t), (17)

thus φt : B � S is a C1 actual configuration of B in S , at time t. Here, it is important to emphasise that
to avoid confusion we introduce new symbol for motion marked in Sec. 2 by χ where we have followed
Drapaca and Sivaloganathan [38] notation. In this sense, in the presented formulation the position of the
non-local body is not changed contrary to [38], but the effort of the body (strains/stresses) is of course
different due to non-local action.
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where D® is a fractional differential operator in the sense of RC 
defined in previous section, and `X and `x are length scales in 
B and S, respectively. As an example, the matrix representation 
of object 

Sections 3,4
B,S continuum body in reference and current configurations
CRDα, Dα Riesz-Caputo fractional derivative
E, e Green-Lagrange and Euler-Almansi strain tensors
α
E, Ẽ

X
, Ẽ
x

fractional Green-Lagrange strain tensors
α
e, ẽ

X
, ẽ
x

fractional Euler-Almansi strain tensors

EA, ea base vectors in B and S
F deformation gradient
α
F, F̃

X
, F̃
x

fractional deformation gradients

f body force per unit mass
I, i identity in B and S
J Jacobian
α
J, J̃

X
, J̃
x

fractional Jacobians

n(ñ) outward (fractional) normal
P first Piola-Kirchhoff stress tensor
α
P, P̃

X
, P̃
x

first fractional Piola-Kirchhoff stress tensors

S second Piola-Kirchhoff stress tensor
α
S, S̃

X
, S̃
x

second fractional Piola-Kirchhoff stress tensors

dS(dS̃), ds(ds̃) material (fractional), spatial (fractional) surface elements
t time
t(n)(t̃(ñ)) traction (fractional) vector
U,u displacements in B and S
υ velocity in S
dV (dṼ ), dv(dṽ) material (fractional), spatial (fractional) volume elements
x,X spatial and material coordinate
dX(dX̃), dx(dx̃) material (fractional) and spatial (fractional) line elements
α order of fractional continua
α orders of anisotropic fractional continua
Γ Euler gamma function
δ Kronecker delta
�
ε fractional Cauchy strain tensor
ρ0 (ρ̃0), ρ (ρ̃) reference (fractional), spatial (fractional) mass density
σ (σ̃) Cauchy (fractional) stress tensor
φ, ϕ motion and its inverse
�X , �x length scales in B and S

1 Introduction

Reliable modelling of heterogeneous materials, ranging from marco- to micro- and nanoscale of obser-
vation, in terms of continuum mechanics concept, needs non-local formulations [1]. The first articles in
this area were released in the 1960s, and dates back to the scientists, such as Toupin [2], Mindlin [3],
Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-
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and

F̃
X
F̃
x
�= i = δabea � eb, (22)

where δij denotes the Kronecker delta.

Having in mind classical definition of material dX and spatial dx line elements, namely

dx = FdX, or dxa = FaAdXAea, (23)

and inverse transformation

dX = F−1dx, or dXA = F−1
Aa dxaEA, (24)

where

F(X, t) =
∂φ(X, t)

∂X
, or FaA =

∂φa

∂XA
ea � EA (25)

F−1(x, t) =
∂ϕ(x, t)

∂x
, or F−1

Aa =
∂ϕA

∂xa
EA � ea. (26)

we postulate the existence of fractional material and spatial line elements as

dx̃ = F̃
X
dX, or dx̃a = F̃

X
aAdXAea, (27)

and
dX̃ = F̃

x
dx, or dX̃A = F̃

x
AadxaEA. (28)

Using Eqs (23),(24),(27) and (28) we have

dx̃ =
α
FdX̃, or dx̃a =

α
F aAdX̃Aea, (29)

dX̃ =
α
F
x
dX, or dX̃B =

α
F
x

BAdXAEB, (30)

dx̃ =
α
F
X
dx, or dx̃b =

α
F
X

badxaeb, (31)

where
α
F = F̃

X
F−1F̃

x

−1,
α
F
x
= F̃

x
F and

α
F
X
= F̃

X
F−1. Figure 1 summarises the situation.
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Remark 5. On the non-locality of fractional deformation 
gradients. Classical deformation gradient F is local, while 
the fractional ones 
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 are non-local due to the defini-
tion of RC fractional differential operator. RC is based on 
an interval whose length depends on a particular material 
being described. Due to the definitions Eqs (18) and (19), 
their physical/geometrical interpretation is analogous, 
compared with the classical one; the difference is that they 

operate on fractional or mixed (classical/factional) line 
elements.

Remark 6. On the length scale parameters in fractional de-
formation gradients definitions. The main attention should be 
paid to the length scale parameters appearing in definitions Eqs 
(18) and (19) of the fractional deformation gradients.

It is important to notice that without those parameters, the 
unit of the fractional deformation gradients would be (in SI) 
[m1–®]. Therefore, the introduction of the length scales, simi-
larly to classical gradient continuum models, allows to finally 
obtain dimensionless quantity. Therefore, we can compare the 
lengths of line elements 
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Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-

2

 with the fractional ones 

Sections 3,4
B,S continuum body in reference and current configurations
CRDα, Dα Riesz-Caputo fractional derivative
E, e Green-Lagrange and Euler-Almansi strain tensors
α
E, Ẽ
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erator. RC is based on an interval whose length depends on a particular material being described. Due
to the definitions Eqs (18) and (19), their physical/geometrical interpretation, is analogous, compared
with the classical one - the difference is that they operate on fractional or mixed (classical/factional)
line elements.

Remark 6. On the length scale parameters in fractional deformation gradients definitions. The main
attention should be paid to the length scale parameters appearing in definitions Eqs (18) and (19) of
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It is important to notice that without those parameters, the unit of the fractional deformation gradients
would be (in SI) m1−α. Therefore, the introduction of the length scales, similarly to classical gradi-
ent continuum models, allows to finally obtain dimensionless quantity. Therefore, we can compare the
lengths of line elements dX and dx with fractional ones dX̃ and dx̃ what is crucial concerning possible
strains definitions.
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Remark 8. On the fractional deformation gradient properties.
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F
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while F̃
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and
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X
and F̃
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exists.

3.3 Fractional strains

We define the strains by analogy to the classical continuum mechanics based on the difference in scalar
products in actual and reference configurations. The introduced fractional deformation gradients allows
to define 4 concepts of strains. Thus, one can define:
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where E is the classical Green-Lagrange strain tensor or its fractional counterpart; e is the classical

Euler-Almansi strain tensor or its fractional counterpart, and depending on the formulation,
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F can be

replaced with F or F̃
X

or F̃
x

or
α
F. According to the chosen
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F the associated others variables like (they

all have, to some extent, classical meaning according to Remark 5, but simultaneously are non-local):
the left and right Cauchy-Green tensors; the orthogonal tensor and left or right stretch tensor from polar

decomposition of
�
F can be defined using analogical to classical rules.
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As in the classical continuum mechanics one can define the relation between strains and displacement
gradient tensor utilising introduced fractional gradient tensors F̃
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3.2 Fractional deformation gradients

It is important to emphasise that the specific fractional model presented in this paper was discussed in
a series of papers devoted to fractional elasticity [60, 61]; fractional thermoelasticity [36], fractional
Kirchhoff-Love Plates [62], and non-local rate independent plasticity [63]. Nevertheless, these results
comprise the case of isotropic non-locality and it was shown that for such a case objectivity restriction
known from classical mechanics holds.

As mentioned in the introduction, in this paper we analyse the case of anisotropic non-locality i.e.
materials showing scale effect but depending on direction. Therefore, this formulation abandon not-
only classical postulate of local action, but also restriction imposed by objectivity postulate - what can
be important for some classes of materials [37]. In this sense, this result is analogous to the one obtained
by Drapaca and Sivaloganathan [38], but is should be emphasised that both models can not be reduced
one to each other, and operate in different physical dimension space.

The description is given in the Euclidean space. We refer to B as the reference configuration of the
continuum body while S denotes its current configuration. Points in B are denoted by X and in S by x.
Coordinate system for B is denoted by {XA} with base EA and for S we have {xa} with base ea.

The regular motion of the material body B can be written as

x = φ(X, t), (16)

and its inverse as
X = ϕ(x, t), (17)

thus φt : B � S is a C1 actual configuration of B in S , at time t. Here, it is important to emphasise that
to avoid confusion we introduce new symbol for motion marked in Sec. 2 by χ where we have followed
Drapaca and Sivaloganathan [38] notation. In this sense, in the presented formulation the position of the
non-local body is not changed contrary to [38], but the effort of the body (strains/stresses) is of course
different due to non-local action.

We define the fractional deformation gradient and its inverse as follows (α ∈ (0, 1))

F̃
X
(X, t) = �

X

α−1D
X

αφ(X, t), or F̃
X

aA = �
X

αaA−1
aA D

XA

αaAφaea � EA, (18)

and
F̃
x
(x, t) = �

x

α−1D
x

αϕ(x, t), or F̃
x

Aa = �
x

αAa−1
Aa D

xa

αAaϕAEA � ea, (19)

where Dα is a fractional differential operator in the sense of RC defined in previous section, and �X
and �x are length scales in B and S , respectively. As an example the matrix representation of object F̃

X
is

F̃
X
=




�
X

α11−1
11 D

X1

α11φ1 �
X

α12−1
12 D

X2

α12φ1 �
X

α13−1
13 D

X3

α13φ1

�
X

α21−1
21 D

X1

α21φ2 �
X

α22−1
22 D

X2

α22φ2 �
X

α23−1
23 D

X3

α23φ2

�
X

α31−1
31 D

X1

α31φ3 �
X

α32−1
32 D

X2

α32φ3 �
X

α33−1
33 D

X3

α33φ3


 . (20)

Hence, in general we can write

F̃
x
F̃
X
�= I = δABEA � EB, (21)

and

7
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X

= F̃
X
− I, or �

X

αaA−1
aA D

XA

αaAUa = (F̃
X

aA − IaA)ea � EA, (41)

10

α
F
x
= I, (34)

α
F
X
= i, (35)

dx = dx̃, (36)

dX = dX̃. (37)

Remark 8. On the fractional deformation gradient properties.
α
F
x

and
α
F
X

are not two point tensors

while F̃
X

, F̃
x

and
α
F are. Based on the properties of motion Eq. (16) we have that the inverse of F̃

X
and F̃

x
exists.

3.3 Fractional strains

We define the strains by analogy to the classical continuum mechanics based on the difference in scalar
products in actual and reference configurations. The introduced fractional deformation gradients allows
to define 4 concepts of strains. Thus, one can define:

E =
1

2
(
�
F T

�
F− I), or EAB =

1

2
(

�
F T

Aa

�
F aB − IAB)EA � EB, (38)

e =
1

2
(i−

�
F −T

�
F −1), or eab =

1

2
(iab −

�
F −T

aA

�
F −1

Ab )ea � eb, (39)

where E is the classical Green-Lagrange strain tensor or its fractional counterpart; e is the classical

Euler-Almansi strain tensor or its fractional counterpart, and depending on the formulation,
�
F can be

replaced with F or F̃
X

or F̃
x

or
α
F. According to the chosen

�
F the associated others variables like (they

all have, to some extent, classical meaning according to Remark 5, but simultaneously are non-local):
the left and right Cauchy-Green tensors; the orthogonal tensor and left or right stretch tensor from polar

decomposition of
�
F can be defined using analogical to classical rules.

Remark 9. On the relation between fractional displacement gradient tensor and fractional strains.
As in the classical continuum mechanics one can define the relation between strains and displacement
gradient tensor utilising introduced fractional gradient tensors F̃

X
and F̃

x
.

The displacements in the material description U are defined as:

U(X, t) = x(X, t)−X, (40)

and its fractional gradient

GradŨ
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X

= F̃
X
− I, or �

X

αaA−1
aA D

XA

αaAUa = (F̃
X

aA − IaA)ea � EA, (41)

10

 
the associated other variables like (they all have, to some extent, 
classical meaning according to Remark 5, but simultaneously are 
non-local): the left and right Cauchy-Green tensors; the orthog-
onal tensor and left or right stretch tensor from polar decom-
position of 

α
F
x
= I, (34)

α
F
X
= i, (35)

dx = dx̃, (36)

dX = dX̃. (37)

Remark 8. On the fractional deformation gradient properties.
α
F
x

and
α
F
X

are not two point tensors

while F̃
X

, F̃
x

and
α
F are. Based on the properties of motion Eq. (16) we have that the inverse of F̃

X
and F̃

x
exists.

3.3 Fractional strains

We define the strains by analogy to the classical continuum mechanics based on the difference in scalar
products in actual and reference configurations. The introduced fractional deformation gradients allows
to define 4 concepts of strains. Thus, one can define:

E =
1

2
(
�
F T

�
F− I), or EAB =

1

2
(

�
F T

Aa

�
F aB − IAB)EA � EB, (38)

e =
1

2
(i−

�
F −T

�
F −1), or eab =

1

2
(iab −

�
F −T

aA

�
F −1

Ab )ea � eb, (39)

where E is the classical Green-Lagrange strain tensor or its fractional counterpart; e is the classical

Euler-Almansi strain tensor or its fractional counterpart, and depending on the formulation,
�
F can be

replaced with F or F̃
X

or F̃
x

or
α
F. According to the chosen

�
F the associated others variables like (they

all have, to some extent, classical meaning according to Remark 5, but simultaneously are non-local):
the left and right Cauchy-Green tensors; the orthogonal tensor and left or right stretch tensor from polar

decomposition of
�
F can be defined using analogical to classical rules.

Remark 9. On the relation between fractional displacement gradient tensor and fractional strains.
As in the classical continuum mechanics one can define the relation between strains and displacement
gradient tensor utilising introduced fractional gradient tensors F̃

X
and F̃

x
.

The displacements in the material description U are defined as:

U(X, t) = x(X, t)−X, (40)

and its fractional gradient

GradŨ
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thus we have
thus we have

F̃
X
= GradŨ

X
+ I. (42)

Similarly, the displacements in spatial description u are defined as

u(x, t) = x−X(x, t), (43)

and its fractional gradient

gradũ
x
= i− F̃

x
, or �

x

αAa−1
Aa D

xa

αAauA = (iAa − F̃
x

Aa)EA � ea, (44)

thus we have
F̃
x
= i− gradũ

x
. (45)

By applying Eqs (42) and (45) into the fractional strain definitions Eqs (38) and (39) we obtain their
dependence on the fractional displacement gradients.

As in classical continuum mechanics, we can introduce small fractional Cauchy strain tensor, we have
(� = �

X
= �

x
)

�
ε =

1

2

[
gradũ

x
+ gradũ

x

T
]
, (46)

where
�
ε stands for fractional Cauchy strain. For 1D deformation Eq. (46) reads

�
ε =

ς(α)

2
�α−1

(
C

x−a Dα
xu−C

x Dα
x+bu

)
. (47)

Notice, that Eq. (47) is similar to definitions presented in [23] (Eq. 9), [25], [40] (Eq. 2.7) and [41]
(Eq. 20), but operates on finite interval (similarly to the ’short memory’ principle discussed in [49]),
and gives non-dimensional quantity. It should be emphasised, that in contrast to isotropic non-locality
discussed in previous papers (cf. [36]) a �= b, but it remains physically reasonable to assume some
relation between � and length of internal over which fractional derivative is calculates e.g. equivalence.

3.4 Stresses and balance laws

According to Fig. 1, material line element is dX or dX̃, while spatial dx or dx̃ (together with cor-
responding fractional/classical deformation gradient). The selection of a specific path causes that the
remaining one can be considered utilising the concept of dual variables [64]. For example, assuming
that we describe the deformation in terms of dX and dx̃, classical deformation (based on dX and dx)
appears as (one of possible) ’intermediate’ one. Therefore, it is clear that stresses, and balance laws
should be postulated dependently on chosen description of deformation in a standard manner (such
result is analogous to the one presented in [40] Eqs 2.7,2.17, and 2.18).

To understand this logic (without loss of generality) let us consider purely mechanical problem. It will
be observed that the restrictions to be held by fractional stresses are analogous to the classical one, but
fulfilled in auxiliary ’fractional’ (or phenomenological) space.

First, following Fig. 1, the material (spatial) volume element dV (dv) or its fractional counterpart
dṼ (dṽ), and the material (spatial) surface element dS (ds) or its fractional counterpart dS̃ (ds̃) are
introduced - cf. [60]. Next, the fractional Cauchy (true) traction vector t̃(ñ) exerted on ds̃ with outward
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X
+ I. (42)

Similarly, the displacements in spatial description u are defined as

u(x, t) = x−X(x, t), (43)

and its fractional gradient

gradũ
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1 Introduction

Reliable modelling of heterogeneous materials, ranging from marco- to micro- and nanoscale of obser-
vation, in terms of continuum mechanics concept, needs non-local formulations [1]. The first articles in
this area were released in the 1960s, and dates back to the scientists, such as Toupin [2], Mindlin [3],
Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-
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Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-

2

 and 

Sections 3,4
B,S continuum body in reference and current configurations
CRDα, Dα Riesz-Caputo fractional derivative
E, e Green-Lagrange and Euler-Almansi strain tensors
α
E, Ẽ
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) appears as (one of possible) ‘intermediate’ one. Therefore, 
it is clear that stresses and balance laws should be postulated 
dependently on chosen description of deformation in a standard 
manner (such result is analogous to the one presented in [40], 
Eqs 2.7,2.17, and 2.18).

To understand this logic (without loss of generality), let us 
consider a purely mechanical problem. It will be observed that 
the restrictions to be held by fractional stresses are analogous 
to the classical one, but fulfilled in auxiliary ‘fractional’ (or 
phenomenological) space.

First, following Fig. 1, the material (spatial) volume element 
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X
, Ẽ
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dV (dṼ ), dv(dṽ) material (fractional), spatial (fractional) volume elements
x,X spatial and material coordinate
dX(dX̃), dx(dx̃) material (fractional) and spatial (fractional) line elements
α order of fractional continua
α orders of anisotropic fractional continua
Γ Euler gamma function
δ Kronecker delta
�
ε fractional Cauchy strain tensor
ρ0 (ρ̃0), ρ (ρ̃) reference (fractional), spatial (fractional) mass density
σ (σ̃) Cauchy (fractional) stress tensor
φ, ϕ motion and its inverse
�X , �x length scales in B and S

1 Introduction

Reliable modelling of heterogeneous materials, ranging from marco- to micro- and nanoscale of obser-
vation, in terms of continuum mechanics concept, needs non-local formulations [1]. The first articles in
this area were released in the 1960s, and dates back to the scientists, such as Toupin [2], Mindlin [3],
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X
, ẽ
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thus we have
F̃
X
= GradŨ

X
+ I. (42)

Similarly, the displacements in spatial description u are defined as

u(x, t) = x−X(x, t), (43)

and its fractional gradient

gradũ
x
= i− F̃

x
, or �

x

αAa−1
Aa D

xa

αAauA = (iAa − F̃
x

Aa)EA � ea, (44)

thus we have
F̃
x
= i− gradũ

x
. (45)

By applying Eqs (42) and (45) into the fractional strain definitions Eqs (38) and (39) we obtain their
dependence on the fractional displacement gradients.

As in classical continuum mechanics, we can introduce small fractional Cauchy strain tensor, we have
(� = �

X
= �

x
)

�
ε =

1

2

[
gradũ

x
+ gradũ

x

T
]
, (46)

where
�
ε stands for fractional Cauchy strain. For 1D deformation Eq. (46) reads

�
ε =

ς(α)

2
�α−1

(
C

x−a Dα
xu−C

x Dα
x+bu

)
. (47)

Notice, that Eq. (47) is similar to definitions presented in [23] (Eq. 9), [25], [40] (Eq. 2.7) and [41]
(Eq. 20), but operates on finite interval (similarly to the ’short memory’ principle discussed in [49]),
and gives non-dimensional quantity. It should be emphasised, that in contrast to isotropic non-locality
discussed in previous papers (cf. [36]) a �= b, but it remains physically reasonable to assume some
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n(ñ) outward (fractional) normal
P first Piola-Kirchhoff stress tensor
α
P, P̃

X
, P̃
x

first fractional Piola-Kirchhoff stress tensors

S second Piola-Kirchhoff stress tensor
α
S, S̃

X
, S̃
x

second fractional Piola-Kirchhoff stress tensors

dS(dS̃), ds(ds̃) material (fractional), spatial (fractional) surface elements
t time
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1 Introduction

Reliable modelling of heterogeneous materials, ranging from marco- to micro- and nanoscale of obser-
vation, in terms of continuum mechanics concept, needs non-local formulations [1]. The first articles in
this area were released in the 1960s, and dates back to the scientists, such as Toupin [2], Mindlin [3],
Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-
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Fractional calculus for continuum mechanics – anisotropic non-localitynormal ñ is obtained as a transformation of classical Cauchy (true) traction vector t(n) exerted on ds
with outward normal n. Thus, according to the diagram in Fig. 1 we have

t̃(ñ) =
α
F
X
t(n) or t̃(ñ) b =

α
F
X

bat(n) aeb. (48)

As in classical set-up we postulate the relationship between fractional traction and fractional Cauchy
stress tensor

t̃(ñ) = ñσ̃, (49)

where σ̃ denotes fractional Cauchy stress tensor. Based on the above relations, and the fact that

ñ =
α
F
X
n, (50)

we have
α
F
X
t(n) =

α
F
X
nσ =

α
F
X
nσ̃, (51)

thus finally
σ̃ = σ, (52)

where σ is classical Cauchy stress tensor. Thus, according to relation Eq. (52) the fractional stresses
are transformation of the classical Cauchy measure to auxiliary ’fractional’ space.

Finally, before the balance of momentum in spatial description is postulated for fractional case, the
conservation of mass is considered in a form

ρ0dV = ρ̃0dṼ = ρdv = ρ̃dṽ, (53)

or shortly
�
ρ0 =

�
J

�
ρ, (54)

where ρ0 (ρ̃0) is the reference mass density (fractional counterpart), ρ (ρ̃) is spatial mass density (frac-

tional counterpart), and
�
J = det

�
F is a Jacobian (as before in the denotation

�
(·) one can replace (·) with

classical quantity or fractional counterpart). The following relation holds
∫

�
v

�
ρ

�
υ̇d

�
v =

∫

∂
�
v

�
td

�
s +

∫
�
v

�
ρfd

�
v, (55)

where υ is a velocity, and f is a body force per unit mass. By applying the divergence theorem to
Eq. (55) we have ∫

�
v

�
ρ

�
υ̇d

�
v =

∫
�
v
div

�
σ Td

�
v +

∫
�
v

�
ρfd

�
v, (56)

so

div
�
σ T +

�
ρf =

�
ρ

�
υ̇, (57)

or in the absence of inertia forces
div

�
σ T +

�
ρf = 0. (58)

Furthermore, the symmetry of
�
σ (so σ or σ̃) can be checked in classical manner utilising the balance

of moment of momentum.

As a concluding remark, it is clear that formulation in a material description needs proper definitions
for the first and the second (fractional) Piola-Kirchhoff stress tensors. Thus, dependently on chosen
fractional strains definition we have:
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or shortly
�
ρ0 =

�
J

�
ρ, (54)

where ρ0 (ρ̃0) is the reference mass density (fractional counterpart), ρ (ρ̃) is spatial mass density (frac-

tional counterpart), and
�
J = det

�
F is a Jacobian (as before in the denotation

�
(·) one can replace (·) with

classical quantity or fractional counterpart). The following relation holds
∫

�
v

�
ρ

�
υ̇d

�
v =

∫

∂
�
v

�
td

�
s +

∫
�
v

�
ρfd

�
v, (55)

where υ is a velocity, and f is a body force per unit mass. By applying the divergence theorem to
Eq. (55) we have ∫

�
v

�
ρ

�
υ̇d

�
v =

∫
�
v
div

�
σ Td

�
v +

∫
�
v

�
ρfd

�
v, (56)

so

div
�
σ T +

�
ρf =

�
ρ

�
υ̇, (57)

or in the absence of inertia forces
div

�
σ T +

�
ρf = 0. (58)

Furthermore, the symmetry of
�
σ (so σ or σ̃) can be checked in classical manner utilising the balance

of moment of momentum.

As a concluding remark, it is clear that formulation in a material description needs proper definitions
for the first and the second (fractional) Piola-Kirchhoff stress tensors. Thus, dependently on chosen
fractional strains definition we have:

12

, (51)

thus finally
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ρ0dV = ρ̃0dṼ = ρdv = ρ̃dṽ, (53)

or shortly
�
ρ0 =

�
J

�
ρ, (54)

where ρ0 (ρ̃0) is the reference mass density (fractional counterpart), ρ (ρ̃) is spatial mass density (frac-

tional counterpart), and
�
J = det

�
F is a Jacobian (as before in the denotation

�
(·) one can replace (·) with

classical quantity or fractional counterpart). The following relation holds
∫

�
v

�
ρ

�
υ̇d

�
v =

∫

∂
�
v

�
td

�
s +

∫
�
v

�
ρfd

�
v, (55)

where υ is a velocity, and f is a body force per unit mass. By applying the divergence theorem to
Eq. (55) we have ∫

�
v

�
ρ

�
υ̇d

�
v =

∫
�
v
div

�
σ Td

�
v +

∫
�
v

�
ρfd

�
v, (56)

so

div
�
σ T +

�
ρf =

�
ρ

�
υ̇, (57)

or in the absence of inertia forces
div

�
σ T +

�
ρf = 0. (58)

Furthermore, the symmetry of
�
σ (so σ or σ̃) can be checked in classical manner utilising the balance

of moment of momentum.

As a concluding remark, it is clear that formulation in a material description needs proper definitions
for the first and the second (fractional) Piola-Kirchhoff stress tensors. Thus, dependently on chosen
fractional strains definition we have:

12

, (52)

where 

Sections 3,4
B,S continuum body in reference and current configurations
CRDα, Dα Riesz-Caputo fractional derivative
E, e Green-Lagrange and Euler-Almansi strain tensors
α
E, Ẽ
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normal ñ is obtained as a transformation of classical Cauchy (true) traction vector t(n) exerted on ds
with outward normal n. Thus, according to the diagram in Fig. 1 we have

t̃(ñ) =
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n(ñ) outward (fractional) normal
P first Piola-Kirchhoff stress tensor
α
P, P̃

X
, P̃
x

first fractional Piola-Kirchhoff stress tensors

S second Piola-Kirchhoff stress tensor
α
S, S̃

X
, S̃
x

second fractional Piola-Kirchhoff stress tensors

dS(dS̃), ds(ds̃) material (fractional), spatial (fractional) surface elements
t time
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normal ñ is obtained as a transformation of classical Cauchy (true) traction vector t(n) exerted on ds
with outward normal n. Thus, according to the diagram in Fig. 1 we have

t̃(ñ) =
α
F
X
t(n) or t̃(ñ) b =

α
F
X

bat(n) aeb. (48)

As in classical set-up we postulate the relationship between fractional traction and fractional Cauchy
stress tensor

t̃(ñ) = ñσ̃, (49)

where σ̃ denotes fractional Cauchy stress tensor. Based on the above relations, and the fact that

ñ =
α
F
X
n, (50)

we have
α
F
X
t(n) =

α
F
X
nσ =

α
F
X
nσ̃, (51)

thus finally
σ̃ = σ, (52)

where σ is classical Cauchy stress tensor. Thus, according to relation Eq. (52) the fractional stresses
are transformation of the classical Cauchy measure to auxiliary ’fractional’ space.

Finally, before the balance of momentum in spatial description is postulated for fractional case, the
conservation of mass is considered in a form

ρ0dV = ρ̃0dṼ = ρdv = ρ̃dṽ, (53)

or shortly
�
ρ0 =

�
J

�
ρ, (54)

where ρ0 (ρ̃0) is the reference mass density (fractional counterpart), ρ (ρ̃) is spatial mass density (frac-

tional counterpart), and
�
J = det

�
F is a Jacobian (as before in the denotation

�
(·) one can replace (·) with

classical quantity or fractional counterpart). The following relation holds
∫

�
v

�
ρ

�
υ̇d

�
v =

∫

∂
�
v

�
td

�
s +

∫
�
v

�
ρfd

�
v, (55)

where υ is a velocity, and f is a body force per unit mass. By applying the divergence theorem to
Eq. (55) we have ∫

�
v

�
ρ

�
υ̇d

�
v =

∫
�
v
div

�
σ Td

�
v +

∫
�
v

�
ρfd

�
v, (56)

so

div
�
σ T +

�
ρf =

�
ρ

�
υ̇, (57)

or in the absence of inertia forces
div

�
σ T +

�
ρf = 0. (58)

Furthermore, the symmetry of
�
σ (so σ or σ̃) can be checked in classical manner utilising the balance

of moment of momentum.

As a concluding remark, it is clear that formulation in a material description needs proper definitions
for the first and the second (fractional) Piola-Kirchhoff stress tensors. Thus, dependently on chosen
fractional strains definition we have:
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or shortly
�
ρ0 =

�
J

�
ρ, (54)

where ρ0 (ρ̃0) is the reference mass density (fractional counterpart), ρ (ρ̃) is spatial mass density (frac-

tional counterpart), and
�
J = det

�
F is a Jacobian (as before in the denotation

�
(·) one can replace (·) with

classical quantity or fractional counterpart). The following relation holds
∫

�
v

�
ρ

�
υ̇d

�
v =

∫

∂
�
v

�
td

�
s +

∫
�
v

�
ρfd

�
v, (55)

where υ is a velocity, and f is a body force per unit mass. By applying the divergence theorem to
Eq. (55) we have ∫

�
v

�
ρ

�
υ̇d

�
v =

∫
�
v
div

�
σ Td

�
v +

∫
�
v

�
ρfd

�
v, (56)

so

div
�
σ T +

�
ρf =

�
ρ

�
υ̇, (57)

or in the absence of inertia forces
div

�
σ T +

�
ρf = 0. (58)

Furthermore, the symmetry of
�
σ (so σ or σ̃) can be checked in classical manner utilising the balance

of moment of momentum.

As a concluding remark, it is clear that formulation in a material description needs proper definitions
for the first and the second (fractional) Piola-Kirchhoff stress tensors. Thus, dependently on chosen
fractional strains definition we have:

12

, (55)

where 
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normal ñ is obtained as a transformation of classical Cauchy (true) traction vector t(n) exerted on ds
with outward normal n. Thus, according to the diagram in Fig. 1 we have

t̃(ñ) =
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α
F
X

bat(n) aeb. (48)

As in classical set-up we postulate the relationship between fractional traction and fractional Cauchy
stress tensor
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where P, P̃
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,
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P and S, S̃

X
, S̃
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,
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S are classical/fractional the first and the second Piola-Kirchhoff stress

tensors, respectively. As previously, taking αij = 1 (local kinematics) the introduced stresses definitions
reduce to the corresponding classical one
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Remark 10. On physical interpretation of the parameters α and �. Introducing non-locality utilising
fractional calculus we simultaneously add a set material parameters α and �. The order of fractional
continua α (together with type of applied fractional differential operator) controls the way in which
the information flows from the surrounding influencing particular point of interest. The length scale �
defines the amount of this information (size of this surrounding). So, both parameters are crucial. In the
following example we will observe that both α � 1 and � � 0 recovers classical solution - as it should
be.

4 Examples

In the example section, the influence of fractional kinematics on the fractional strains is presented based
on the assumed different motions. The following notations for strains are proposed (cf. Eqs (38) and
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Remark 10. On physical interpretation of the parameters ® 
and `. Introducing non-locality utilising fractional calculus 
we simultaneously add a set of material parameters ® and 
`. The order of fractional continua ® (together with type of 
applied fractional differential operator) controls the way in 
which the information flows from the surrounding influenc-
ing particular point of interest. The length scale ` defines the 
amount of this information (size of this surrounding). Thus, 
both parameters are crucial. In the following example we 
will observe that both ®

3.2 Fractional deformation gradients

It is important to emphasise that the specific fractional model presented in this paper was discussed in
a series of papers devoted to fractional elasticity [60, 61]; fractional thermoelasticity [36], fractional
Kirchhoff-Love Plates [62], and non-local rate independent plasticity [63]. Nevertheless, these results
comprise the case of isotropic non-locality and it was shown that for such a case objectivity restriction
known from classical mechanics holds.

As mentioned in the introduction, in this paper we analyse the case of anisotropic non-locality i.e.
materials showing scale effect but depending on direction. Therefore, this formulation abandon not-
only classical postulate of local action, but also restriction imposed by objectivity postulate - what can
be important for some classes of materials [37]. In this sense, this result is analogous to the one obtained
by Drapaca and Sivaloganathan [38], but is should be emphasised that both models can not be reduced
one to each other, and operate in different physical dimension space.

The description is given in the Euclidean space. We refer to B as the reference configuration of the
continuum body while S denotes its current configuration. Points in B are denoted by X and in S by x.
Coordinate system for B is denoted by {XA} with base EA and for S we have {xa} with base ea.

The regular motion of the material body B can be written as

x = φ(X, t), (16)

and its inverse as
X = ϕ(x, t), (17)

thus φt : B � S is a C1 actual configuration of B in S , at time t. Here, it is important to emphasise that
to avoid confusion we introduce new symbol for motion marked in Sec. 2 by χ where we have followed
Drapaca and Sivaloganathan [38] notation. In this sense, in the presented formulation the position of the
non-local body is not changed contrary to [38], but the effort of the body (strains/stresses) is of course
different due to non-local action.

We define the fractional deformation gradient and its inverse as follows (α ∈ (0, 1))

F̃
X
(X, t) = �

X

α−1D
X

αφ(X, t), or F̃
X
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X

αaA−1
aA D

XA

αaAφaea � EA, (18)
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x
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x
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x
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Aa D
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αAaϕAEA � ea, (19)

where Dα is a fractional differential operator in the sense of RC defined in previous section, and �X
and �x are length scales in B and S , respectively. As an example the matrix representation of object F̃

X
is

F̃
X
=
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X
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X1
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X2
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X

α33−1
33 D

X3

α33φ3


 . (20)

Hence, in general we can write

F̃
x
F̃
X
�= I = δABEA � EB, (21)

and
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solution – as it should be.

4. Examples

In the example section, the influence of fractional kinematics 
on the fractional strains is presented based on the different mo-
tions assumed. The following notations for strains are proposed 
(cf. Eqs (38) and (39)):
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P̃
X

= J̃
X
σF̃

X

−T
, S̃

X
= J̃

X
F̃
X

−1
σF̃

X

−T
= F̃

X

−1
P̃
X
, (60)

P̃
x
= J̃

x

−1
σF̃

x

−T
, S̃

x
= J̃

x

−1
F̃
x
σF̃

x

−T
= F̃

x
P̃
x
, (61)

α
P =

α
Jσ

α
F
−T

,
α
S =

α
J

α
F
−1

σ
α
F
−T

=
α
F
−1 α

P, (62)
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P and S, S̃

X
, S̃
x
,
α
S are classical/fractional the first and the second Piola-Kirchhoff stress

tensors, respectively. As previously, taking αij = 1 (local kinematics) the introduced stresses definitions
reduce to the corresponding classical one
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Remark 10. On physical interpretation of the parameters α and �. Introducing non-locality utilising
fractional calculus we simultaneously add a set material parameters α and �. The order of fractional
continua α (together with type of applied fractional differential operator) controls the way in which
the information flows from the surrounding influencing particular point of interest. The length scale �
defines the amount of this information (size of this surrounding). So, both parameters are crucial. In the
following example we will observe that both α � 1 and � � 0 recovers classical solution - as it should
be.
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2. Formulation based on the fractional spatial line element  

Sections 3,4
B,S continuum body in reference and current configurations
CRDα, Dα Riesz-Caputo fractional derivative
E, e Green-Lagrange and Euler-Almansi strain tensors
α
E, Ẽ

X
, Ẽ
x

fractional Green-Lagrange strain tensors
α
e, ẽ

X
, ẽ
x

fractional Euler-Almansi strain tensors

EA, ea base vectors in B and S
F deformation gradient
α
F, F̃

X
, F̃
x

fractional deformation gradients

f body force per unit mass
I, i identity in B and S
J Jacobian
α
J, J̃

X
, J̃
x

fractional Jacobians

n(ñ) outward (fractional) normal
P first Piola-Kirchhoff stress tensor
α
P, P̃

X
, P̃
x

first fractional Piola-Kirchhoff stress tensors

S second Piola-Kirchhoff stress tensor
α
S, S̃

X
, S̃
x

second fractional Piola-Kirchhoff stress tensors

dS(dS̃), ds(ds̃) material (fractional), spatial (fractional) surface elements
t time
t(n)(t̃(ñ)) traction (fractional) vector
U,u displacements in B and S
υ velocity in S
dV (dṼ ), dv(dṽ) material (fractional), spatial (fractional) volume elements
x,X spatial and material coordinate
dX(dX̃), dx(dx̃) material (fractional) and spatial (fractional) line elements
α order of fractional continua
α orders of anisotropic fractional continua
Γ Euler gamma function
δ Kronecker delta
�
ε fractional Cauchy strain tensor
ρ0 (ρ̃0), ρ (ρ̃) reference (fractional), spatial (fractional) mass density
σ (σ̃) Cauchy (fractional) stress tensor
φ, ϕ motion and its inverse
�X , �x length scales in B and S

1 Introduction

Reliable modelling of heterogeneous materials, ranging from marco- to micro- and nanoscale of obser-
vation, in terms of continuum mechanics concept, needs non-local formulations [1]. The first articles in
this area were released in the 1960s, and dates back to the scientists, such as Toupin [2], Mindlin [3],
Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-
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X
, ẽ
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In following examples 1D deformation is considered. We assume for brevity that: (i) � = �
X

= �
x
;

(ii) 0 < α ≤ 1; (iii) the deformation in a particular point of interest XA is calculated for terminals
a = XA − �L and b = �R +XA (this is because of anisotropy of non-locality that XA in general does
not necessarily lay in the middle of interval (a, b)).
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. We observe, that anisotropic fractional deformation intro-

duces in general directional deformation e.g. due to evolving micro-structure or existence of electro-
magnetic, thermic, and/or chemical processes [38].
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In following examples 1D deformation is considered. We assume for brevity that: (i) � = �
X
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a = XA − �L and b = �R +XA (this is because of anisotropy of non-locality that XA in general does
not necessarily lay in the middle of interval (a, b)).
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Let us consider a particular type of motion, namely the case when motion is a linear function of co-
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X
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X
, ẽ
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magnetic, thermic, and/or chemical processes [38].
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x
=

1

2
(i− F̃

x

T F̃
x
). (67)

4. Formulation based on the fractional spatial line element (dx̃) and the fractional material line
element (dX̃)

α
E =

1

2
(
α
F T

α
F− I),

α
e =

1

2
(i−

α
F −T

α
F −1). (68)

In following examples 1D deformation is considered. We assume for brevity that: (i) � = �
X

= �
x
;

(ii) 0 < α ≤ 1; (iii) the deformation in a particular point of interest XA is calculated for terminals
a = XA − �L and b = �R +XA (this is because of anisotropy of non-locality that XA in general does
not necessarily lay in the middle of interval (a, b)).

4.1 Example 1

Let us consider a particular type of motion, namely the case when motion is a linear function of co-
ordinate. We compare for brevity the deformation based on F and F̃

X
. Thus, the motion is described

as
x = φ(X) = (1 + β)X1e1 +X2e2 +X3e3. (69)

For such a case we have

F =



(1 + β) 0 0

0 1 0
0 0 1


 , (70)

and (we omit the underset X for ς)
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and
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where M = ς(α)
2Γ(2−α)�

α−1
(
�1−α
L + �1−α

R

)
. We observe, that anisotropic fractional deformation intro-

duces in general directional deformation e.g. due to evolving micro-structure or existence of electro-
magnetic, thermic, and/or chemical processes [38].
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Ẽ
x
=

1

2
(F̃
x

−T F̃
x

−1 − I), ẽ
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x

fractional Green-Lagrange strain tensors
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Γ Euler gamma function
δ Kronecker delta
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ε fractional Cauchy strain tensor
ρ0 (ρ̃0), ρ (ρ̃) reference (fractional), spatial (fractional) mass density
σ (σ̃) Cauchy (fractional) stress tensor
φ, ϕ motion and its inverse
�X , �x length scales in B and S

1 Introduction

Reliable modelling of heterogeneous materials, ranging from marco- to micro- and nanoscale of obser-
vation, in terms of continuum mechanics concept, needs non-local formulations [1]. The first articles in
this area were released in the 1960s, and dates back to the scientists, such as Toupin [2], Mindlin [3],
Eringen [4], Dillon [5], Dafalias [6], Bažant [7], Maugin [8], Aifantis [9], Fleck and Hutchinson [10].
Regardless of the details of specific formulation, it is common that non-local model introduces charac-
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4.2 Example 2

Lets consider a motion being a non-linear function of the material coordinates XA. As before, for
brevity, the deformation based on F and F̃

X
is compared. Thus, the motion is described by

x = φ(X) = eX1e1 +X2e2 +X3e3. (74)

In this case the classical solution is presented as

F =



eX1 0 0
0 1 0
0 0 1


 ⇒ E =

1

2



e2X1 − 1 0 0

0 0 0
0 0 0


 . (75)

The calculation of F̃
X

requires detailed explanation. By analogy to the first example F̃
X

22 = F̃
X

33 = M

whereas F̃
X

11 will be approximated numerically, because analytical solutions under fractional calculus

are very limited [65, 57]. Therefore, according to Eq. (12) we need to calculate adequate left and right
Caputo derivatives for φ. We have
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X

11 = �α−1 RC
a D
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b e

X1 = �α−1 ς(α)

2

(
C
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X1+�R
eX1

)
. (76)

where for calculations purposes ς(α) = Γ(2− α), and � = 1
2(�L + �R).

The following approximations utilising the modified trapezoidal rule can be used for the calculations
[57] (for different formulations cf. [66, 67]). For the left sided derivatives we use:

a = t0 < t1 < ... < tj < ... < tm = t, h =
tm − t0

m
=
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m
, m ≥ 2, (77)

C
a D

α
t f(t)
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{
[(m− 1)n−α+1 − (m− n+ α− 1)mn−α]f (n)(t0) +

f (n)(tm) +
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j=1

[(m− j + 1)n−α+1 − 2(m− j)n−α+1 + (m− j − 1)n−α+1]f (n)(tj)
}
, (78)

where f (n)(tj) denotes classical n-th derivative at t = tj .

Similarly, for the right sided derivatives we use:

t = t0 < t1 < ... < tj < ... < tm = b, h =
tm − t0

m
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m
, m ≥ 2, (79)
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[(m− 1)n−α+1 − (m− n+ α− 1)mn−α]f (n)(tm) +

f (n)(t0) +
m−1∑
j=1

[(j + 1)n−α+1 − 2jn−α+1 + (j − 1)n−α+1]f (n)(tj)
}
. (80)

The obtained results are shown in Figs (2), (3) and (4), where the comparison of fractional strain mea-
sure Ẽ

X
against the anisotropy of non-locality, the order of derivative α, and length scale � is presented.
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X
against the anisotropy of non-locality, the order of derivative α, and length scale � is presented.

15

4.2 Example 2

Lets consider a motion being a non-linear function of the material coordinates XA. As before, for
brevity, the deformation based on F and F̃

X
is compared. Thus, the motion is described by

x = φ(X) = eX1e1 +X2e2 +X3e3. (74)

In this case the classical solution is presented as

F =



eX1 0 0
0 1 0
0 0 1


 ⇒ E =

1

2



e2X1 − 1 0 0

0 0 0
0 0 0


 . (75)

The calculation of F̃
X

requires detailed explanation. By analogy to the first example F̃
X

22 = F̃
X

33 = M

whereas F̃
X

11 will be approximated numerically, because analytical solutions under fractional calculus

are very limited [65, 57]. Therefore, according to Eq. (12) we need to calculate adequate left and right
Caputo derivatives for φ. We have

F̃
X

11 = �α−1 RC
a D

X1

α
b e

X1 = �α−1 ς(α)

2

(
C

X1−�L
Dα

X1
eX1 − C

X1
Dα

X1+�R
eX1

)
. (76)

where for calculations purposes ς(α) = Γ(2− α), and � = 1
2(�L + �R).

The following approximations utilising the modified trapezoidal rule can be used for the calculations
[57] (for different formulations cf. [66, 67]). For the left sided derivatives we use:

a = t0 < t1 < ... < tj < ... < tm = t, h =
tm − t0

m
=

t− a

m
, m ≥ 2, (77)

C
a D

α
t f(t)

∼=
hn−α

Γ(n− α+ 2)

{
[(m− 1)n−α+1 − (m− n+ α− 1)mn−α]f (n)(t0) +

f (n)(tm) +

m−1∑
j=1

[(m− j + 1)n−α+1 − 2(m− j)n−α+1 + (m− j − 1)n−α+1]f (n)(tj)
}
, (78)

where f (n)(tj) denotes classical n-th derivative at t = tj .

Similarly, for the right sided derivatives we use:

t = t0 < t1 < ... < tj < ... < tm = b, h =
tm − t0

m
=

b− t

m
, m ≥ 2, (79)

C
t D

α
b f(t)

∼= (−1)n
hn−α

Γ(n− α+ 2)

{
[(m− 1)n−α+1 − (m− n+ α− 1)mn−α]f (n)(tm) +

f (n)(t0) +
m−1∑
j=1

[(j + 1)n−α+1 − 2jn−α+1 + (j − 1)n−α+1]f (n)(tj)
}
. (80)

The obtained results are shown in Figs (2), (3) and (4), where the comparison of fractional strain mea-
sure Ẽ
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X
against the anisotropy of non-locality, the order of derivative α, and length scale � is presented.

15

4.2 Example 2

Lets consider a motion being a non-linear function of the material coordinates XA. As before, for
brevity, the deformation based on F and F̃

X
is compared. Thus, the motion is described by

x = φ(X) = eX1e1 +X2e2 +X3e3. (74)

In this case the classical solution is presented as

F =



eX1 0 0
0 1 0
0 0 1


 ⇒ E =

1

2



e2X1 − 1 0 0

0 0 0
0 0 0


 . (75)

The calculation of F̃
X

requires detailed explanation. By analogy to the first example F̃
X

22 = F̃
X

33 = M

whereas F̃
X

11 will be approximated numerically, because analytical solutions under fractional calculus

are very limited [65, 57]. Therefore, according to Eq. (12) we need to calculate adequate left and right
Caputo derivatives for φ. We have

F̃
X

11 = �α−1 RC
a D

X1

α
b e

X1 = �α−1 ς(α)

2

(
C

X1−�L
Dα

X1
eX1 − C

X1
Dα

X1+�R
eX1

)
. (76)

where for calculations purposes ς(α) = Γ(2− α), and � = 1
2(�L + �R).

The following approximations utilising the modified trapezoidal rule can be used for the calculations
[57] (for different formulations cf. [66, 67]). For the left sided derivatives we use:

a = t0 < t1 < ... < tj < ... < tm = t, h =
tm − t0

m
=

t− a

m
, m ≥ 2, (77)

C
a D

α
t f(t)

∼=
hn−α

Γ(n− α+ 2)

{
[(m− 1)n−α+1 − (m− n+ α− 1)mn−α]f (n)(t0) +

f (n)(tm) +

m−1∑
j=1

[(m− j + 1)n−α+1 − 2(m− j)n−α+1 + (m− j − 1)n−α+1]f (n)(tj)
}
, (78)

where f (n)(tj) denotes classical n-th derivative at t = tj .

Similarly, for the right sided derivatives we use:

t = t0 < t1 < ... < tj < ... < tm = b, h =
tm − t0

m
=

b− t

m
, m ≥ 2, (79)

C
t D

α
b f(t)

∼= (−1)n
hn−α

Γ(n− α+ 2)

{
[(m− 1)n−α+1 − (m− n+ α− 1)mn−α]f (n)(tm) +

f (n)(t0) +
m−1∑
j=1

[(j + 1)n−α+1 − 2jn−α+1 + (j − 1)n−α+1]f (n)(tj)
}
. (80)

The obtained results are shown in Figs (2), (3) and (4), where the comparison of fractional strain mea-
sure Ẽ
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where f (n)(tj) denotes classical n-th derivative at t = tj .

Similarly, for the right sided derivatives we use:

t = t0 < t1 < ... < tj < ... < tm = b, h =
tm − t0

m
=

b− t

m
, m ≥ 2, (79)

C
t D

α
b f(t)

∼= (−1)n
hn−α

Γ(n− α+ 2)

{
[(m− 1)n−α+1 − (m− n+ α− 1)mn−α]f (n)(tm) +

f (n)(t0) +
m−1∑
j=1

[(j + 1)n−α+1 − 2jn−α+1 + (j − 1)n−α+1]f (n)(tj)
}
. (80)

The obtained results are shown in Figs (2), (3) and (4), where the comparison of fractional strain mea-
sure Ẽ

X
against the anisotropy of non-locality, the order of derivative α, and length scale � is presented.

15

 against 
the anisotropy of non-locality, the order of derivative ®, and 
length scale ` are presented.
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It should be noticed that for ` ! 0 (thus, simultaneously 
the length of the interval over which fractional measures are 
calculated approaches to zero) fractional strain measure merge 
with the classical definition (which are defined in a point) in-
dependently of the chosen order of fractional derivative and 
anisotropy of non-locality. Similarly, if ® ! 1, once more the 
classical strains are captured, however independently of cho-
sen `.

Another interesting result is the observation that one could 
model size effect utilising fractional strains. It is clearly present-
ed in Figs (2), (3) and (4), where the dependence of the results 
against assumed length scale ` is shown.

Recall that the introduced fractional strains measures have 
meaning analogous to the classical one. The difference is that 
the particular value of strains in a point includes the informa-
tion from its finite surrounding (controlled by `L and `R) in the 
way defined by order of fractional continua (controlled by ®).

5. Conclusions

In this paper, the new concept of generalisation of the classical 
continuum mechanics utilising fractional calculus is presented. 
Due to fractional derivative properties, the obtained formula-

Fig. 2 The fractional strains Figure 2: The fractional strains Ẽ
X

and ẽ
X

against the anisotropy of non-locality and the order of derivative

α for � = 0.5

17

 and Figure 2: The fractional strains Ẽ
X

and ẽ
X

against the anisotropy of non-locality and the order of derivative

α for � = 0.5

17

 against the anisotropy of non-lo-
cality and the order of derivative ` = 0.5

Fig. 3. The fractional strains Figure 2: The fractional strains Ẽ
X

and ẽ
X

against the anisotropy of non-locality and the order of derivative

α for � = 0.5

17

 and Figure 2: The fractional strains Ẽ
X

and ẽ
X

against the anisotropy of non-locality and the order of derivative

α for � = 0.5

17

 against the anisotropy of non-lo-
cality and the order of derivative ® for ` = 0.05
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tion is non-local, and this non-locality is of anisotropic type. It 
should be pointed out that the defined non-local model can be 
applied to any known constitutive model of elasticity, hyper/
hypo-elasticity, visco/plasticity etc.

The anisotropic non-locality introduces a set material pa-
rameters: orders of fractional continua (®ij) and length scales 
(`ij)}. They control the way in which the information from the 
surrounding influences particular point of interest. This result 
by far enhances modelling approach and allows one to closely 
mimic the experimental observations.

Based on two examples picturing anisotropy limited to sin-
gle direction, the role of the non-local definition of strains based 

on the fractional differential operators is presented along with 
the numerical treatment of the fractional derivatives. To con-
clude, fractional models of mechanics give the opportunity for 
deeper insight into the analysed problem, contrary to classical 
local formulation.
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