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Abstract: The magnetic field due to a permanent magnet of a tube-side segment as shape 
and of radial-oriented magnetization is considered. Such a sheet modelling a single pole 
of the magnet is used to express the suitable contribution to magnetic quantities. 
A boundary-integral approach is applied that is based on a virtual scalar quantity attri-
buted to the magnet pole. Such an approach leads to express analytically the scalar 
magnetic potential and the magnetic flux density by means of the elliptic integrals. 
Numerical examples of the computed fields are given. The general idea of the presented 
approach is mainly directed towards designing the magnetic field within the air gap of 
electric machines with permanent magnets as an excitation source. Other technical 
structures with permanent magnets may be a subject of this approach as well.  
Key words: permanent magnets, boundary-integral method, elliptic integrals 

 
 
 

1. Introduction 
 
 Rotating electric machines with permanent magnets of both motor and generator type have 
a growing use, nowadays. Modern permanent high-energy magnets with almost linear B(H ) 
curve can produce the magnetic field exciting effectively such a machine. Contrary to an 
electromagnetic excitation, on which the classical design calculation of electric machines is 
based, an appropriate attempt for the corresponding design in the case of the permanent-
magnet excitation seems to be of special interest, mainly when the magnetic field distribution 
through a machine air gap is under consideration.  
 A main goal of the present paper is to study the magnetic field exerted by the permanent 
magnet of typical shape representing a segment of a tube-wall with radial magnetization that is 
applied for synchronous machines of radial air-gap flux, see Figure 1. The boundary-integral 
model of the permanent magnet can be proposed for design computation of permanent-magnet 
machines. Such a model may be regarded as a simpler alternative to the finite elements 
method (that is employed and implemented in various professional software), the use of which 
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for specialized design program of electric machines causes some difficulties in application of 
the 3-D net to the machine geometrical structure and also in interpretation of the magnetic 
field within the air gap being virtually subdivided into numerous volume elements of irregular 
shape.  

 

 

Fig. 1. Permanent magnet of a tube segment as shape stuck to a yoke 
 
 The model we present here is deprived of such drawbacks, hence the 3-D net is not neces-
sary in the boundary-integral approach. The issue of the boundary-integral model of perma-
nent magnet [3-6, 12] is focussed on a concept of the virtual boundary quantity Fm that we de-
fine by a “discontinuity jump” expressed by a difference between two components of the 
magnetic polarization Jn = e @ J that are normal to the magnet pole surface on both sides of it, i.e.  

  ,)()(m +− −= JJσ  (1) 

where J(–) and J(+) are the above components of magnetic polarization on the pole surface. We 
have the following boundary densities for the N- and S-pole of the homogeneously magneti-
zed permanent magnet being put in free space:  

  ,0)(N)(NmN JJJJ =−=−= +−σ  (2) 

  .0)(S)(SmS JJJJ −=−=−= +−σ  (3) 

 If the S-pole surface of the magnet sticks firmly to a ferromagnetic yoke, equation (2) 
determines mNσ  on the external side of the magnet and on its yoke side the following equa-
tion holds .yokeyokemS JBJJ −≈−=σ  For approximate evaluating the magnetic field in the 
air gap of an electric machine a super permeable yoke may be assumed to which 0mS ≈σ  cor-
responds.  
 Let us attribute the term surface density of magnetic charge1 to the quantity mσ  that is 
a fictitious single layer magnetic density involving the scalar magnetic potential. A usable out-

                                                 
1 The term surface density of magnetic charge awakes a room of doubt, as a concept of magnetic charge 
is not accepted in physics. However, this quantity of surface-density character engenders the magnetic 
field conform to the same principle as the surface density of electric charge generates the electric field. 
Craik [2] avoids this terminological problem using an enigmatic term pole strength for the quantity 
F = Mn where Mn is an outward component of magnetization. Our concept of quantity Fm corresponds to 
:0 F of Craig. It is worth to keep in mind that the common surface integral of Fm over both magnet pole 
surfaces, where the first Fm is constant positive and the second one constant negative, gives zero. Thus, 
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line of the boundary-integral approach is termed boundary element method. In a corresponding 
software, the numerical integrations are performed over the 2-D boundary elements that sub-
divide the boundaries of an examined object. We have shown in [7-9] that for the box-shape 
permanent magnets the analytical integration over the both magnet-pole rectangular surfaces 
can be applied and, moreover, it leads to correct results even in close distance from the magnet 
poles. A similar advantage can be reached for the magnet shape formed as a segment of a tube 
with radial magnetization. A mathematical procedure leading to obtaining a distribution in 
space, the magnetic flux density consists in calculation of the integrals over two (N and S) thin 
cylindrical magnet-pole sheets on which Fm is homogeneously distributed, hence, this ap-
proach seems to be also suitable for computing the magnetic field within the air gap of electric 
machines or of other apparatuses equipped with magnets of such a shape.  
 
 

2. Boundary-integral approach 
 

 Two kinds of field sources are considered in the boundary-integral approach: primary and 
secondary sources, see [3, 12]. Regarding an electric machine, the primary are of double type: 
  C Fm – surface densities upon the both magnet-pole surfaces, 
  C 1 – current linkage of armature winding of an electric machine supplied with an electric 

current depending on output of the machine. 
 At no-load, only the first of them is taken into account. The secondary sources are attribu-
ted to the boundary between the air and ferromagnetic core of the armature; it is approximated 
by:  

  ,)1/1( r2m nn BB ≈−= μσ  (4) 

where :r is relative permeability of the ferromagnetic material and Bn is magnetic flux density 
normal to the boundary that would be engendered by the primary sources at the positions of 
the boundary under fictitious assumption that the ferromagnetic part is removed from the 
magnetic structure. For the air gap of electric machine such a boundary is formed by heads of 
armature teeth and bottoms of slots. Following the above, the boundary-integral algorithm for 
computing the magnetic field within an air gap of electric machine should consist of 2 steps 
given bellow, the idea of which is schematically marked in Figure 2 representing a permanent 
magnet and a current linkage localized within a machine slots (the cylindrical shape of the cor-
responding elements is in the figure neglected). 
  1) To compute preliminary Bn (i.e. the radial component Br of B

r
 in the machine co-ordinate 

system) that depends not otherwise than on the primary sources ( Θσσ ,, mSmN  in Figure 
2a). It should be done only at field points situated on the positions of the heads of armature 
teeth and of bottoms of slots. It is supposed that the armature core is taken away (that is 
symbolized by the dashed line in Figure 2a), and, following (4), to interpret the Bn, ,nB′  

                                                                                                                                
the total “magnetic charge” of the permanent magnet becomes really zero and we can conclude that 
using correctly a concept of magnetic charge density as a virtual pole-sheet quantity we are not in con-
flict with the physical understanding of the magnetic phenomena, indeed. 
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,nB ′′  as the secondary source 2mσ  (in particular 2m2m2m ,, σσσ ′′′  in Figure 2b), being of 
opposite sign then .mNσ  

 

 
 

Fig. 2. Idea of computing the components of B within the air gap of an electric machine 
with permanent magnets, by means of the primary and secondary sources of Fm 

 

 
  2) To compute the finite values of B at the field points P of consideration within the air gap 

and being expressed by means of its particular vector components ,rr Be  ,θθ Be  ,zz Be  
where the first one is of primordial interest. The result values of components of B are 
superposed by both the primary sources (i.e. by Θσσ ,, mSmN ) and by the secondary ones 
( 2m2m2m ,, σσσ ′′′ ) that increase the primary-sources field.  

 The subscripts r, 2, z determine the radial, azimuthal and axial components of B, respec-
tively. The formulae of the particular components exerted by Fm are the main subject of the 
paper. A basic geometric pattern, on which the idea of computing the magnetic field under 
consideration is developed, is a single cylindrical sheet with Fm = const. 
 The model sketch of the sheet is shown in Figure 3. The cylindrical co-ordinate system 
with origin at 0 is applied. The sheet is characterized by radius D, extension arc 02ϑ  and 
length 2l0. The model is similarly valid for both permanent magnet pole surfaces as well as for 
the interface between a ferromagnetic core of the machine and its air gap. For the latter case, 

02ϑ  represents the extension arc of a tooth head and a slot bottom; the surface density m2σ   is 
attributed on these boundaries. The points P(r, 2, z) and ),,(Q),,(Q ζϑρθ ≡′′′ zr  represent the 
field and source points, respectively. The source points Q are localized at the sheet; the field 
points P are everywhere in space. The model is valid for the electric machine with both the 
inner or outer field system. In the first case the point P is located at the convex side of the 
sheet (r > D) and for the second case at its concave side (r < D).  
 Let us note that to determine the scalar magnetic potential at P due to Fm at Q, the Green 
function of the sheet model is P QG ( ) ,f= −R R  where RP, RQ are position vectors of points  
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Fig. 3. Model of a cylindrical sheet with Fm to compute the magnetic field at P 
 
P and Q, respectively. The norm of this vector difference represents an Euclidean distance 
between P and Q that in the cylindrical co-ordinate system is expressed by: 

  2 2 22 cos( ) ( )PQ r r zρ ρ θ ϑ ζ= + − − + −R  (5) 

hence, the scalar magnetic potential at P can be defined, as a quantity proportional to the in-
verse of ,PQR  by the following double integral over the sheet surface, i.e. it can be given by: 

  ( )
0 0 0 0

0 0 0 0

2 2 2

d d d d, , ,
2 cos( ) ( )

l l

m
l lPQ

r z C C
r r z

ϑ ϑ

ψ ψ
ϑ ϑ

ρ ϑ ζ ρ ϑ ζψ θ
ρ ρ θ ϑ ζ− − − −

= =
+ − − + −∫ ∫ ∫ ∫R

 (6) 

where ).4/( 0μπσψ mC =  The above surface integral is non-singular everywhere except the 
point ( )θϑζ →→ ;Q z  for R = D. 
 The formulas of the cylindrical components of magnetic flux density B can be reached by 
the relevant differentiations of the magnetic scalar potential (6) with respect to the following 
co-ordinates of P to read: 

  ( ) [ ]0 0

0 0
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0 3
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where .)4/( πσmBC =  Integrals (7-9) are singular only at the same point as integral (6). 
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 The model of the magnetic field that leads to equations (7-9) should be able to compute the 
particular components of B but our goal of preference is Br that forms the main magnetic flux 
of electric machine. Equation (6) for the scalar magnetic potential is not of the first interest, 
therefore the computed values of mψ  may be employed for an approximate verifying the 
computed values of the particular components of B by a convenient finite-difference approach.  
 
 

3. Computing the magnetic scalar potential 
 
 Consider firstly equation (6) for ,ρ≠r  i.e. at field point P situated outside the sheet on 
which Fm is homogeneously distributed. The integral can be computed in a mixed way; the 
first integral with respect to the chosen first variable )or( ϑζ  leads to an exact solution, 
however the numerical integration shall be applied for the second variable.  
 1) Starting to integrate (6) with respect to variable . (according to Ryshik et al.2)  over the 

limits (!l0, + l0) we obtain:  

  ( ) ,d
)()()cos(2

)()()cos(2
ln,,

0

0 0
2

0
22

0
2

0
22

m ϑρ
ϑθρρ

ϑθρρ
θψ

ϑ

ϑ

ψ ∫
− +−++−−+

−−−+−−+
=

lzlzrr

lzlzrr
Czr  (10) 

The above integral have not exact solution thus the numerical integration procedure must 
be applied and the one-dimensional Gaussian quadrature formula is here conformed to.  

 2) We would like to focus the attention on the second sequence of integration that results in 
elliptic integrals; that rends to produce the uniform theory of computing as well the mag-
netic scalar potential as the particular components of the magnetic flux density. If we start 
to integrate equation (6) with respect to variable ϑ  over limits ),( 00 ϑϑ +−  the typical 
substitution of variable 2/)]([ ϑθπϕ −−=  should be applied that leads to the correspond-
ing integral limits 2/)]([ 0ϑθπϕ +−=a  and ,2/)]([ 0ϑθπϕ −−=b  and it gives 

.1sin2)cos( 2 −=− ϕϑθ  In consequence, formula (6) can be transformed to the following 
one:  

  ,d
sin1

d

)()(

2
2222

0

0

ζ
ϕ

ϕ

ζρ

ρψ
ϕ

ϕ
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−−++

=
−

b

a kzr
C

l

l

m  (11) 

where 

  .)()(/2 22 ζρρ −++= zrrk  

 Interpreting it as a modulus of an elliptic integral the second integral appearing in (11) can 
be represented by a difference of two incomplete elliptic integrals ),(F kbϕ minus ),,(F kaϕ  of 
the first kind of the arguments aϕ  and ,bϕ  respectively, see Appendix, to read: 

                                                 
2 See [11] – integral 2.261. 
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  ( ) ( ) ( )[ ] .d,F,F,,
0

0

abm ζϕϕρθψ ψ ∫
−
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l

l

kkk
r

Czr  (12) 

 If 00 ϑθ ≤≤  then 2/a πϕ ≤  but 2/b πϕ ≤  that needs to apply the extension-range 
formula3 to read ( ) ( ),,F)(K2,F bb kkk ϕϕ −=  where K(k) is complete elliptic integral of the 
first kind of the same modulus and .2/bb πϕπϕ ≤−=  
 If 2/0 πθϑ >>  then both 2/ba, πϕ ≤  and (12) can be applied, directly. 
 It is worth to mention that performing a numerical integration of (12) with respect to the va-
riable . the modulus k is taken as depended on the abscissa ui of the Gaussian quadrature to 
read .)()(/2 2

0
2 luzrrk i−++= ρρ  Thus, the particular i-term of quadrature can be evi-

dently computed as function of the elliptic integrals of the first kind of modulus ki and of 
arguments aϕ  and ,bϕ  or ,bϕ  respectively, applying the relevant professional software for 
complete and incomplete elliptic integrals for each Gaussian step.  
 
 

4. Computing the magnetic flux density 
 
 Radial component Br .  Both particular integrals occurring in (7) have analytical solutions 
and a sequence of them is of any choice. We would like to present the integration with respect 
to . at first, and then to .ϑ  We make use of [2]4 to obtain: 
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 The shortened notice of (13) is the following:  
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where )cos( ϑθρ −−= rs  and ).(cos2222 ϑθρρ −−+= rrt   
 We substitute the variable n in the same way as it is done with respect to the magnetic 
scalar potential, integrals (11-12), to get the elliptic integrals but in this case both: of the first 
kind and of the third kind of them are expected. Let us recognize the elliptic integrals, to 
which the substitution of the new variable leads. 
 Two similar terms of various sign at l0 can be distinguished in (13a). We mark them by the 
appropriate indices (!) or (+) to read .)()( +− −= rrr BBB  Let us discuss a substitution of 

ϕϑ →  for .)(−rB  Consider then  

                                                 
3 See [1] – equation 113.02. 
4 See [2] – integral 2.264.5. 
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 After substitution ,2/)]([ ϑθπϕ −−=  equation (14) leads to the following formula: 
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where: 

  ( ) ( )[ ],/4 2
0
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 The integrand in (15) consists of a difference of two terms, in fact. The first term deter-
mines the difference of two incomplete elliptic integrals of the third kind multiplied by (r + D), 
then 
  C ( ) ( ) ( )[ ].,,Π,,Π )(
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a)(
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 The second term containing sin2n multiplied by –2D leads to, see [1]5) 
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 Before giving the complete formula of ,)()( +− −= rrr BBB  the following expression on the 
limits of integral (13a) should be established.  
  C For 00 ϑθ ≤≤  the integral of limits ),( 00 ϑϑ +−  can be subdivided into two integrals as  
 follows: 
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 The integrand of 
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 hence, the following sum of integrals with limits expressed by na, b is valid to read:  

                                                 
5 See [1] – integral 337.01. 
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where ,2/2/)]([ 0a πϑθπϕ <−−=  and also .2/2/)( 0c πϑπϕ <−=  Therefore, the above 
operation leads to confine the elliptic integrals of the third kind to the arguments 2/πϕ ≤  
that is opportune in view of the computing technique.  

  C For 2/0 πθϑ ≤≤  the similar transformation of integral limits is not necessary because 
both limits are .2/ba, πϕ ≤  

C Hence we have finally in the case of :0 0ϑθ ≤≤  
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  C and in the case of :2/0 πθϑ ≤≤  
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 Thus, the complete and incomplete elliptic integrals of the first and third kind that appear 
in (17) and (18) are characterized by the squares of moduli are ,])()/[(4 2

0
22

)( lzrrk −++=− ρρ  
and ,])()/[(4 2

0
22

)( lzrrk +++=+ ρρ  respectively, the arguments of the incomplete elliptic 
integrals are 2/)]([ 0a ϑθπϕ +−=  and ,2/)( 0c ϑπϕ −=  the square of parameter of the el-
liptic integrals of the third kinds is .)/(4 22 ρρα += rr  The complete elliptic integrals do not 
occur in (17a) and (18a), hence, the moduli of incomplete elliptic integrals of the first and 
third kind are identical like those in (17) and (18), and also identical is the argument na but 
instead ofnc we have here .2/)]([ 0b ϑθπϕ −−=   
 Azimuthal component B2 . It seems to be reasonable that in the case of the azimuthal com-
ponent B2  of B the mixed integration of (8) should be applied: at first, the analytical formula 
of the integral with respect to variable . should be used, and next – with respect to ϑ  – the 
numerical integration shall follow it. The first integration leads to the equation: 
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that can be shortly written as: 
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 After transformation of variables ϕϑ →  as above, we get ==− )2sin()(sin ϕϑθ  
ϕϕ cossin2=  and ( ) .sin4 222 ϕρρ rrt −+=  Hence after simple operations, we obtain the 

following formula for the both terms of the azimuthal component: 
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that leads to: 
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and then: 
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 The integrals in formulae (21) and (22) have the denominator being typical for elliptical 
integrals of the third kind. However, the member sin2n appearing in the nominator shatters 
a chance that an elliptic integral could be here conceivable. Thus, the numerical integration of 
(23) is a suitable solution to obtain the numerical value of B2 . 
 Axial component Bz .In the case of the axial component Bz of B for which equation (9) is 
valid the full analytical solution is possible. The first integration with respect to variable ., 
similarly as in the case of  the radial components, leads to the formula6: 
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6 See [11-integrals 2.264.5 and 6]. 
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where for )(2 ϑft =  see a comment to (13a). Substituting the new variables ,ϕϑ →  and car-
rying out necessary operations we obtain the formulae leading to the suitable elliptic integrals 
to read: 
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  ( ) .,, 21 zzz BBzrB +=θ  (27) 

 We observe that the elliptic integrals of the first and third kind, to which the integrals 
occurring in (25) and (26) are to be resolved, are quite similar to those ones being discussed in 
the case of the radial components of the magnetic flux density. Similarly, the choice of the 
elliptic integral arguments that are easy to be computed depends in a similar way on the value 
of ,θ  compare equation (17) and the following ones. The axial component Bz disappears at 
points P(r, 2, 0) situated on a surface (r, 2) being perpendicular and symmetrical to the sheet, 
because for z = 0 the term B2z disappears, evidently. Moreover, for z = 0 we have equality 
k(!) = k(+) that results in B1z becoming zero, too. 
 
 

5. Numerical examples 
 
 The test computer programs (coded in LAHEY FORTRAN) were accomplished in order to 
numerically study the above presented tube segment model provided with Fm. The specialized 
subroutines were programmed for the elliptic integrals. The software published by Press et al 
[10] has been adjusted to compute the complete elliptic integrals of the first kind K(k) and 
second kind E(k). For the corresponding incomplete elliptic integrals see APPENDIX, where 
employing the auxiliary Heuman’s lambda function for computing the elliptic integrals of the 
third kind has also been described. 
 The curves shown in Figures 4, 5 and 6 are related to the single test sheet upon which the 
Fm = 1 T is homogeneously distributed. The sheet is characterized by radius D = 100 mm, ex-
tension arc o802 0 =ϑ  and length 2l0 = 80 mm. 
 The radial distribution of the magnetic scalar potential along the line passing through the 
sheet center and perpendicular to it is given in Figure 4. The values of Rm have been chosen at 
a distance of –10 mm to +10 mm from the sheet surface. We observe that the values at the 
concave side of the sheet surpass those on the convex side. This result seems to be obvious in 
the light of the fact that the resulting distance from the totality of the source points Q to the 
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field points P is shorter for P being situated at the concave side of the sheet than for P at the 
convex side. For P(D, 0, 0) situated exactly at the center of the sheet both curves meet to-
gether, indeed. This common value of the magnetic scalar potential cannot be computed 
directly by the formulae either (10) or (12) because of singularity. We have obtained the 
corresponding values after performing a two-side extrapolation on the basis of the computed 
values at the vicinity to P(D, 0,0) from both sides of the sheet. 
 

 
 

Fig. 4. Functions ( )ρψ −= rfm  of the test sheet of data: D = 100 mm, ,802 0
o=ϑ  2l0 = 80 mm field 

points mm)10;0(∈− ρr , 2 = 0E, z = 0 mm 
 

 
 

Fig. 5. Functions  Br = f (2 ); for the same test sheet as in Figure 4; field points *r ! D* = 2,5 mm 
and 7,5 mm 2 0 (!60E, +60E), z = 0 mm 

 
 The azimuthal distribution of the radial component of the magnetic flux density (at the con-
vex side of the same sheet) is computed following formulae (17), (18) or in the occurrence of 
(17a), (18a) is presented in Figure 5. Over the sheet surface i.e. for 2 0 (!40E, +40E) the pattern 
of which is marked, the curves decline slightly from their maximal values at P(D + 2,5, 0, 0) or 
P(D + 7,5, 0, 0), respectively, but they are strongly declined at 2 taking values outside the above 
interval.  
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 A coincidence of the curve )( rfBr −= ρ  with curve )(m ρψ −= rf  may be verified at 
some field points of the curve, the values of which were computed similarly as those being 
raced in Figure 5, e.g. at point P0(102,5, 0, 0) to what Br = 547,9 mT corresponds. The values 
of mψ  at two points near to P0 are kA964,21)0;0;103(1m == fψ  and == )0;0;102(2m fψ  

kA,995,22=  see Figure 4. If we apply the central finite difference formula for )r = 103,0 – 
!102,0 = 1 mm we obtain approximately .mT9.5471/)964.21995.22(106

0 =−⋅⋅≈ μrB  The 
coincidence of the numerical value of  Br (computed directly by formulae using the elliptic 
integrals) with its approximate value obtained indirectly by way of numerical values of mψ  
seems to argue for practical applying the formulae based on the elliptic integrals that we 
evaluate to be characteristic for the mathematical model of the magnetic field exerted by the 
permanent magnet of tube segment as shape. 
 Figure 6 shows the azimuthal distribution of the azimuthal component Bθ = f(θ) for the 
convex side of the same sheet. The curves are traced for the two various values of r – D and 
for z = 0. The curve is asymmetrical with respect to the line 2 = 0. The maximum values 
correspond to the sheet edges.  
 Figure 7 shows the computed values of the norm ׀B׀ (continuous line) at the surface (r, z) 
and its two components Br and Bz (dashed lines) as functions of the longitudinal coordinate 
z at 2 = 0, and r – D = 5,0 mm. The third co-ordinate B2 disappears at this surface. The norm 
of the magnetic flux density is not evidently influenced by its longitudinal component at most 
part of the region over the magnet. This is not the case at the magnet edge regions and also 
outside the magnet region.  
 The following examples presented in Figures 8 and 9 are related to the permanent magnet 
of the tube segment as shape of the data: DN = 130 mm, h = 6.5 mm, then DS = 123.5 mm, 

,122 0
o=ϑ  2l0 = 85 mm. The magnet was installed into the multi-pole synchronous machine 

that was designed and manufactured in the Electrotechnical Institute in Warsaw. The typical 
magnetization data are Brem = 1,23 T, Hco = 965 kA/m. 
 

 

 

Fig. 6. Function B θ  = f (θ )  exerted at a convex side of the single sheet of data: D = 100 mm, ,802 0
o=ϑ  

2l0 = 80 mm, Fm = 1.0 T; coordinates of the field points r – D = 2.5 mm and 7.5 mm, 2 0 (!60E, +60E), 
z = 0.0 mm. 
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Fig. 7. Function ׀B׀= f (z) and their components Bz = f (z) and Br = f (z) exerted at a convex side of the 
single sheet of data: D = 100 mm, ,802 0

o=ϑ  2l0 = 80 mm, Fm = 1,0 T; the coordinates of the field 
points are r – D = 5.0 mm, θ = 0.0E, z 0 (!60 mm, +60 mm)  

 

 
Fig. 8. Function Br = f (θ) exerted by permanent magnet at its convex side, magnet data:  
DN = 130 mm, DS = 123.5 mm, ,122 0

o=ϑ  2l0 = 85 mm; Brem = 1.23 T, Hco = 965 kA/m;  
field points: r – DN = 2.5 mm, 2 0 (!8E, +8E), z = 0 mm 

 
 The pattern of the magnet spread out from !42,5 mm to +42.5 mm is marked. The curves 
presented are computed under supposition that the magnet is put in free space, hence its both 
poles give contributions to the total results. The figures present the azimuthal distributions of 
the radial component Br = f(2 ) due to the above permanent magnet at its convex and concave 
sides: Figures 8 and 9, respectively. The dashed curves correspond to the particular N-pole or 
S-pole contributions of the magnet and the continoues curves represent the resulting radial 
component of the magnetic flux density Br = BrN ! BrS. Observe, that maximum values of the 
resulting distributions are localized not at 2 = 0 but, approximately, over the edges of the 
magnet. It is due to the fact that the closed B-lines passing through the magnet centre are 
characterised by the longer path than the lines passing near the magnet edge surface. To the 
longer path the increased value of the magnetic potential difference corresponds that results in 
some decreasing of the magnetic flux density at the magnet centre. The fact that the computed 
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values reflect such a correctness of the distribution Br = f(2)  testifies in favour of the pre-
sented here theory based on the elliptic integrals that expresses the magnetic field engendered 
by the permanent magnet of a tube segment as shape. 

 

 
Fig. 9. Function Br = f (θ) exerted by the permanent magnet at its concave side, magnet data see Fig. 7; 

field points: DS – r = 2.5 mm, 2 0 (!8E, +8E), z = 0 mm 
 

 
Fig. 10. Function Br = f (θ) within the air gap of a permanent-magnet synchronous  
generator at no-load; 1 point of the circumferential position corresponds to 1/3 deg 

 
 The last numerical example concerns the generator with permanent magnets designed and 
made in the Electrotechnical Institute in Warsaw. The main data of the generator are: 
  C P = 1 kW; U = 52 V; I = 11,7 A; f = 20 Hz; n = 100 min–1; 2p = 12; Qs = 108 . 
 Main sizes: 
  C Rotor diameter Dr = 130 mm; air-gap thickness * = 1.0 mm, pole pitch Jp = 15E; slot pitch  
 JQ 3,33E; head of teeth = 2,33E. 

 The permanent magnet of data7 Brem = 1.23 T, Hco = 965 kA/m, h = 6.5 mm, o122 0 =ϑ .are 
glued to the yoke surface. 

                                                 
7 The same magnet data like for the two precedent examples. 
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  C Rapport of the pole pitch to the slot pitch was chosen to 9/2 i.e. being equal to a fraction 
number with intention to prevent a cogging torque of the generator. 

 Figure 10 shows the computed distribution of the radial component of magnetic flux den-
sity within the air gap at a level of 0.5* for the symmetric position of the tooth axis relatively 
to magnet pole. The test computer programs that have been used to compute the data for the 
two last examples have been ad hoc adapted for the case of the magnetic field within the air 
gap of the generator. The magnetic field was computed at 45 points of a half of pole pitch. The 
region of teeth and slots are marked in the figure as well as a pattern of the magnet pole. 
 
 

6. Final remarks 
 

 The main idea leading to determine the magnetic field produced by a permanent magnet of 
a tube segment as shape was inspired by the need to study the magnetic flux density within an 
air gap of electric machines equipped with such magnets. The main formulae expressing the 
scalar magnetic potential and three cylindrical components of magnetic flux density were 
formulated by the double integral over a pole surface of the magnet. Analytical solutions of 
those integrals lead to resulting formulae with the elliptic integrals. Numerical examples have 
shown that such an approach can be applied for computing a distribution of the magnetic flux 
density within an air gap of electric machines with permanent magnets. The corresponding 
software appropriate to perform the relevant computing can be coded on the basis of the 
mathematic formulae presented in the paper. This relatively simply software may be useful for 
designers of the electric machines in completing project calculations with the distribution of 
the particular components of magnetic flux density within the air gap. Such a specialized pro-
gram may be applied instead of the professional field-distribution software that are largely 
supplied on the computer markets but the use of which needs to do a lot of pre-processing 
works and to overcome difficulties resulting from the fact that majority of the professional 
field software operate with various physical fields and are not specialized for the magnetic 
fields. 
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Appendix – guide to elliptic integrals 

 The symbols of elliptic integrals in normal trigonometric notation conform to Byrd & 
Friedman monograph [1] are applied in the paper and listed below: 
  C n, na, n b, nc – arguments (general and particular) of the elliptic integrals; that are 

generally defined for n, placing values at the closed interval [0; B/2], 
C k – modulus of the elliptic integrals, generally 0 < k < 1, 

C 21 kk −=′  – complementary modulus of the elliptic integrals, 
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C " 2 – square of a characteristic parameter of the elliptic integral of the third kind, 

C ∫
−
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ϕ

ϕ

ϕϕ
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22 sin1

d),(F
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k  – incomplete elliptic integral of the first kind,  

C )(K),2/(F kk ≡π  – is said to be the complete elliptic integral of the first kind, 

C ∫ −=
ϕ

ϕϕϕ
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22 dsin1),(E kk  – incomplete elliptic integral of the second kind,  

C )(E),2/(E kk ≡π – is said to be the complete elliptic integral of the second kind, 
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k – incomplete elliptic integral of the thir kind, 

C ),(Π),,2/(Π 22 kk ααπ ≡  – is said to be the complete elliptic integral of the third kind. 
 The incomplete elliptic integrals of both the first and the second kind can be also expressed 
for the argument n placing values outside the interval [0, B/2]. For instance: 
  C ),,(K),(K kk ϕϕ −=−  and a similar formula ),,(E),(E kk ϕϕ −=−  
  C ),,(K)(K2),(K kkk ϕϕπ ±=±  and similarly ).,(E)(E2),(E kkk ϕϕπ ±=±  
 A general formula expressing the incomplete elliptic integral of the third kind for the 
argument n taking values outside their basic interval does not exist. 
 The elliptic integrals of both the first and second kind are largely tabulated. This form is, 
however, not useful for a computer design. Various professional software for the elliptic 
integrals are accessible on software markets. All of them are based upon some infinite series, 
e.g. the complete elliptic integral of the first kind for k 2 < 1 and 0 < n < B/2 can be computed 
by the hypergeometric series F(", $; (; z) to get: 
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 For the numerical example given in the paper the software published by Press et al [10] has 
been adjusted to compute the complete elliptic integrals K(k) and E(k). For the incomplete 
elliptic integrals of the first and the second kind we used the following series given by Byrd 
and Friedman [2]: 
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 It is essential that in order to compute the magnetic scalar potential and the components of 
the magnetic flux density at the vicinity of the magnetizing sheet (e.g. within an air gape of 
electric machines) the software shall be clear-sightedly chosen. It should be necessary to com-
pute the elliptic integrals correctly even for k2 approaching closely to 1. Our experience, which 
we have gained using the series given above, showed that they converge rather slowly and 
a high number of several hundred series terms should be included into reckoning. 
 In order to compute values of the elliptic integral of the third kind, we prefer to use two 
intermediate functions 70 and S0. The first of them is termed Heuman’s lambda function be-
ing defined as follows:  

  C ( ) [ ],),(F)(K),(E)(K),(F)(E2,Λ0 kkkkkkk ′−′+′= βββ
π

β  

where ),(F k ′β  and ),(E k ′β  are associated elliptic integrals of the first and second kind, 
respectively. To S0 an own term is not attributed.  
 The relevant procedure leading to the values of the complete elliptic integrals of the third 
kind is the following one: 
C The first step consist in determining the value of the argument $ that depends on the 

parameters k, kN, "2 and on a mutual relation between them. For the values of the above 
parameters that we deal according to the model shown in Figure 3, the typical relation 
k2 < "2 < 1 is valid, for which 
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  C In the second step, the Heuman’s function 70($, k) has to be computed conform to its basic 
definition given above that makes use on the relevant values of the elliptic integrals of the 
first and second kinds.  

  C The third step, the final equation of the complete elliptic integral of the third kind is com-
puted by the equation:  
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 The incomplete elliptic integrals can be calculated in accordance with the same general 
idea but we need to distinguish two detailed cases: I: (k 2 < " 2 < k < 1) and II: (k 2 < k < " 2 < 1) 
In the case I the argument $ is identical as given above for the complete elliptic integral of the 
third kind, and in the case II it is equal to ./1sin 21 k ′−= − αβ  The equations of the in-
complete elliptic integral are: 
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in which the formulae SI and SII can be calculated by the following infinite series, that con-
verge very fast, generally: 
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where: v = (BF(n, k))/(2K(k)); w = (BF($, kN ))/(2K(k)); p = (BK(kN ))/(2K(k)); q = e!2p. 
 We have performed a number of numerical experiments to compare the values of the 
elliptic integrals of the third kind of both complete and incomplete type. We have examined 
the problem of numerical accuracy of the results obtained by various approaches. In particular, 
the results reached from the software published in [10] have been compared with the results 
obtained following the procedure suggested above, and, more over, some special values of 

),,(Π 2 kαϕ  for "2 = k2 having exact solution were considered.  
 The main conclusion related to the procedure leading to the most exact computed results of 
the elliptic integrals of the third kind occurring within the framework of the theory of the 
magnetic field produced by the permanent magnet of a tube segment as shape is that one, 
which we presented above. The case where both k2 and "2 are approaching to 1 seems to be 
the critical point for computing the correct values of ),(Π 2 kα  and ),,(Π 2 kαϕ . The computer 
programs performing the relevant calculations should be coded on the basis of numbers 
expressed by minimum 16 decimal digits, e.g. in the technique of double precision in 
FORTRAN-LAHEY. 
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