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This article investigates identification of aircraft aerodynamic derivatives. The
identification is performed on the basis of the parameters stored by Flight Data
Recorder. The problem is solved in time domain by Quad-M Method. Aircraft dy-
namics is described by a parametric model that is defined in Body-Fixed-Coordinate
System. Identification of the aerodynamic derivatives is obtained by Maximum Like-
lihood Estimation. For finding cost function minimum, Lavenberg-Marquardt Algo-
rithm is used. Additional effects due to process noise are included in the state-space
representation. The impact of initial values on the solution is discussed. The presented
method was implemented in Matlab R2009b environment.

1. Introduction

The development of civil aviation is associated with permanent problem-
solving in safety and economy. Determining changes in aerodynamic char-
acteristics is one of the areas that could be used for both improving safety
and lowering costs.

At present, there is a lack of effective methods allowing for determining
changes in aerodynamic derivatives due to e.g. maintenance. In order to find
out the values of various aerodynamic derivatives, an identification experi-
ment could be performed. Such an approach is possible, however, because of
valid regulations, is highly unprofitable. Identification experiment costs would
be higher than possible profits (e.g. due to maintenance program changes).
Therefore, in civil aircraft, this approach is used only for flight simulators –
due to certification regulations.

A possible solution is to identify the aerodynamic characteristics on the
basis of parameters that are registered during each scheduled flight by flight
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data recorders (FDR). The use of FDR is obligatory, so there would be no
need for an additional certification process in contrast to the approach which
requires specially mounted sensors that register data during scheduled flight.

A separate issue is the safety level. Identification of aerodynamic deriv-
atives on the basis of FDR recordings concerns a specific aircraft in its
particular condition. Therefore, it provides information about system dynam-
ics that can be used for investigating aircraft accidents in order to raise the
safety level of civil aviation.

Summarizing, the use of FDR for the purpose of aircraft aerodynamic
characteristics identification may lead to benefits in safety and economy.

2. Quad-M method and basic assumptions

When dealing with dynamic objects, one often uses the Quad-M method.
In this method, one may distinguish four main stages, which for aircraft
aerodynamics identification on the basis of FDR recordings are [4], [7]:
I Manoeuvre – scheduled flight
I Measurement – FDR recording
I Model – rigid body model
I Method – identification method
Except of this stages, one should consider an additional one – validation.

In the analyzed case, first two stages are determined by flight plan and
the installed FDR capability, and therefore they can be treated as user-
independent. However, the following assumptions are made:
I exogenous input signal
I statistically independent measurements errors
I no process noise
I input signal provides full description of system dynamics
The form of the model depends on the considered problem, and for identi-
fication of aerodynamic characteristics it can be presented in the following
way:
I rigid body with 6 DOF and a plane of symmetry
I constant mass and uniform mass distribution
I constant gravity
I limited deflections of flight control surfaces and deflection rates
I flight control through deflections of flight control surfaces and engine

thrust
I linear influence of motion parameters changes on aerodynamic forces and

moments
I quasi-stationary flow
I flat earth approximation
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Usually, the model is described in the Body-Fixed-Coordinate system Oxyz
[2].

Fig. 1. Coordinate systems

Oxyz coordinate system is right-handed and orthogonal. Its origin is
fixed to an arbitrary point of the aircraft, but usually it is located at centre of
gravity of an aircraft (CG). Ox-axis lies in symmetry plane (xz), is parallel
to the mean aerodynamic chord and directed forward. Oy-axis is perpendic-
ular to the symmetry plane and directed towards right wing. Oz-axis lies in
symmetry plane and is directed downward.

Fig. 1. shows dependencies between Oxyz coordinate system and Oxgygzg
frame, which is carried by the aircraft, but is parallel to non-rotating rectan-
gular earth-fixed frame (O1x1y1z1).

3. Mathematical model

Dynamic systems can be represented in state-space and described by:
state, output and measurement equations [3]. These are: vector-valued-
functions of state x (linear and angular velocities components), input u
(control surfaces deflections), output y (linear and angular velocities and
accelerations components), system parameters Θ (dimensional derivatives),
measurement noise v (corresponding to output vector) and time t.
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State equation:

ẋ=f(x (t) ,u (t) ,Θ) (1)

Output Equation:

y =g(x(t), u(t),Θ) (2)

Measurement equation in particular time point tk:

z(tk)= y(tk) + v(tk) (3)

The state equation is based on Newton’s Second Law of Motion. The
forces acting on aircraft in flight can be defined as longitudinal X, lateral
Y, and vertical Z force. Moments about those axis are rolling moment L,
pitching moment M and yawing moment N, respectively.

For Oxyz coordinate system, whose origin is located at CG, one can
write momentum Π and angular momentum KO equations as:

δ̃Π

dt
+Ω ×Π = F

δ̃KO

dt
+Ω×KO=MO

(4)

where:

F =[ X Y Z ]
T− force vector,

MO=
[

L M N
]T − moment vector,

Ω =[ P Q R ]
T− angular momentum,

δ̃− local derivative.

Aerodynamic derivatives are defined with respect to linear velocity
V= [ U V W ]

T
, angular momentum Ω and deflections of flight surfaces

δ.
The subscripts in flight control deflections stand for: ailerons A, elevator

H, rudder V and thrust Th. Dots above letters denote derivatives with respect
to time.
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Aerodynamic derivatives with respect to j- parameter are defined as fol-
lows:

Xj=
1
m
∂X
∂j

Yj=
1
m
∂Y
∂j

Zj=
1
m
∂Z
∂j

Lj=
1
Ixx

∂L
∂j

Mj=
1
Iyy

∂M
∂j

Nj=
1
Izz

∂N
∂j

(5)

where Ikl denotes the moment of inertia around the k-axis when the objects
are rotated around the l-axis and m stands for mass.

Applying kinematic equations and using small disturbances theory, one
obtains the equations of motion. The trim condition is straight symmetric
flight with wing levels. 0 denotes the trimmed state.

The equations of motion can be reduced to simultaneous homogeneous
differential equation by applying primed derivatives and ignoring second
order effects.

L′j=Lj+
Ixz

Izz
Nj

N′j=
Ixz

Ixx
Lj+Nj

(6)

To simplify state equation the following transformation can be performed:

M̃U=MU+MẆZU

M̃W=MW+MẆZW

M̃Q=MQ+MẆ (ZQ+U0)

M̃δH=MδH+MẆZδH

M̃δTh=MδTh+MẆZδTh

(7)

Defining state x as a vector of linear velocity V and angular momentum
Ω components increments, pitch Θ and roll Φ angles increments, and ap-
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plying process noise (despite earlier assumption), one obtains the following
dependencies:

ẋ= Ax + Bu + w (8)

where:
State vector:

x =[ ∆U ∆V ∆W ∆P ∆Q ∆R ∆Θ ∆Φ ]
T

(9)

Input vector:
u =[ ∆δH ∆δV ∆δA ∆δTh ]

T
(10)

Process noise:

w =[ wU̇ wU wV̇ wV wẆ wW wṖ wP . . . ]
T

(11)

State matrix:

A =



XU 0 XW 0 XQ 0 −g 0
0 YV 0 YP 0 YR+U0 0 g
ZU 0 ZW 0 ZQ+U0 0 0 0
0 L′V 0 L′P 0 L′R 0 0

M̃U 0 M̃W 0 M̃Q 0 0 0
0 N′V 0 N′P 0 N′R 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0



(12)

Input matrix:

B =



XδH 0 ZδH 0 M̃δH 0 0 0
0 YδV 0 L′δV 0 N′δV 0 0
0 YδA 0 L′δA 0 N′δA 0 0

XδTh 0 ZδTh 0 M̃δTh 0 0 0



T

(13)

The components of process noise (11) correspond to the terms in right hand
side of output equation (2) i.e. to linear and angular components of velocities.

4. Identification

Model identification is the third step in the Quad-M Method. This term
refers to parametric identification, i.e. means determining aircraft mathe-
matical model parameters for which the best fits between the model and
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Fig. 2. Identification scheme

the real object is achieved. The identification is based on input and output
measurements and makes it possible to find the state vector function. Fig. 2.
presents general scheme for aircraft identification on the basis of FDR.

The identification can be carried out in both frequency and time domain.
Due to physical nature of the process, we selected time domain identification.
The methods presented below concern analysis in the this domain.

One can distinguish four main classes of identification methods
I Equation Error Methods (EEM)
I Filter Error Methods (FEM)
I Output Error Methods (OEM)
I Artificial Neural Networks (ANN)

Basic differences between particular methods are as follows: Equation
Error Methods (e.g. Least Squares Method) minimize quadratic error in state
equation, Filter Error Methods (e.g. Kalman) minimize filter error, whereas
Output Error Method minimize the difference between the model response
and measurements (e.g. Maximum Likelihood Estimation). Due to a com-
pletely different approach, Artificial Neural Networks are a separate class of
identification methods.

Each identification method can be used in one of two modes: online
(parameters are used for identification during data gathering) or offline (pa-
rameters are used after data gathering process).

For the presented aerodynamic derivatives identification, there is no need
to process the data from FDR in online mode. Furthermore – the model ob-
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tained from offline identification is more accurate than that identified online.
Therefore, identification in offline mode was selected.

5. Maximum Likelihood Estimation

For aircraft identification, one can use the Maximum Likelihood Estima-
tion [5]. This method belongs to OEM group, and consist in determining such
a set of identified parameters Θ̂ (dimensional derivatives) that maximizes log-
likelihood L (z|Θ,R) for measurements z when Θ, and the covariance matrix
R.

Θ̂= arg {L (z|Θ,R)} (14)

Assumptions for the method are as follows [6]:
I the model is identifiable
I the support of probability density function does not depend on parameters
I random variables are independent and identically distributed
I the set of parameters contains an open neighbourhood in which

I log-likelihood function is twice continuously differentiable with re-
spect to the identified parameters

I third derivatives of log-likelihood exist and are absolutely bounded
I the Fisher Information Matrix is a negative defined one.
The idea of Maximum Likelihood Estimation is based on searching such
parameters’ estimates that maximize the conditional probability density func-
tion p (z|Θ,R). The measurements are assumed to be normally distributed,
however different multivariate distribution is also acceptable.

Referring to identification: for non-degenerate case and N particular dis-
crete time points, conditional probability density function for n-dimensional
Multivariate Normal Distribution is given in the following form:

p (z (tk) |Θ,R) =
1

((2π)n |R|) 1
2

exp
(
−1

2
[
z (tk)−y (tk)

]T R−1
[
z (tk)−y (tk)

])

(15)
Due to independence of variables, there is:

p (z|Θ,R) =
1

(
(2π)n |R|)N

2

exp

−
1
2

N∑

k=1

[
z (tk)−y (tk)

]T R−1
[
z (tk)−y (tk)

]

(16)

The quest for probability density maximum function can be replaced by
minimizing the negative log-likelihood function, which corresponds to (16).

L (z|Θ,R) =
1
2

N∑

k=1

[
z (tk)−y (tk)

]T R−1
[
z (tk)−y (tk)

]
+

N
2

ln |R|+nN
2

ln (2π)

(17)
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Maximum Likelihood Estimator of the covariance matrix from N discrete
time points is obtained from:

R̂=
1
N

N∑

k=1

[
z (tk)−y (tk)

] [
z (tk)−y (tk)

]T (18)

The above estimator makes it possible to simplify the cost function J due to
constant value of some terms in the log-likelihood function.

J (Θ,R) = |R| (19)

One can find minimum of the cost function given by (19) by applying any
optimization algorithm.

6. Levenberg-Marquardt Algorithm

For finding minimum of the cost function, Levenberg-Marquardt Al-
gorithm can be used. This method interpolate between the Gauss-Newton
Algorithm and the Steepest Descent in order to exploit their best features.

The Gauss-Newton Algorithm uses linear approximation for finding cost
function minimum. Linearization is done by using Taylor series expansion:

(∇ΘJ)i ≈ (∇ΘJ)i−1 +
(
∇2

ΘJ
)
i−1 ∆Θ (20)

where (neglecting the higher-order terms):
Gradient vector

∇ΘJ = −
N∑

k=1

[
∂y (tk)
∂Θ

]T
R−1

[
z (tk)−y (tk)

]
(21)

Fisher Information Matrix

∇2
ΘJ = −

N∑

k=1

[
∂y (tk)
∂Θ

]T
R−1

∂y (tk)
∂Θ

(22)

Therefore, the parameter update can be calculated from expression:

Θi=Θi−1
(
∇2

ΘJ
)−1
i−1 (∇ΘJ)i−1 (23)

The Steepest Descent method uses the negative gradient direction calculated
in successive steps and the step-size parameter in order to find minimum of
the cost function. In this method, the parameter update is described by the
following formula:

Θi=Θi−1λ (∇ΘJ)i−1 (24)
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Combining (23) and (24) leads to:

Θi=Θi−1
(
∇2

ΘJ + λI
)−1
i−1 (∇ΘJ)i−1 (25)

Step-size λ determines the impact of the Gauss-Newton Algorithm and the
Steepest Descent on the parameter update: when it tends to 0, the Gauss-
Newton Algorithm is dominant, when to infinity the Steepest Descent is
prevailing.

When Levenberg-Marquardt Algorithm is used for finding cost function
minimum, an additional variable is defined – the reduction factor ν. In each
iteration, the cost function is calculated for an unchanged value of step-size
parameter λ and for the step-size parameter reduced by ν. Comparison of
cost functions (in successive steps) makes it possible to specify whether the
step-size parameter should be decreased, increased or remains unchanged.

The scheme of the procedure is as follows. When the cost function cal-
culated for a reduced λ is smaller than the cost function from previous iter-
ation, λ is reduced (the influence of Gauss-Newton Algorithm is increased).
If the above condition is not satisfied, but the cost function evaluated for
an unchanged λ is smaller than the cost function from previous iteration, λ
remains unchanged. If one of these conditions is satisfied, the parameters
are updated according to (25). Otherwise λ is increased (higher impact of
Steepest Descent) and the cost functions are compared again.

7. Results

Presented method was implemented in MATLAB environment. The pro-
gram was tested with the data obtained from [1].

Fig. 3. and Fig. 4. present verification of the identified parameters: red
lines denote flight parameters obtained through identification, whereas blue
lines denote measured data. For lateral-directional identification, ailerons de-
flection, rudder deflection and side slip angle was also measured, but there
was no need for identification of these parameters (therefore are not present-
ed).

The presented graphs refer to two cases, i.e. initial values of aerodynamic
derivatives far from or near to the solution.

8. Conclusions

Maximum Likelihood Estimation with Levenberg-Marquardt Algorithm
can be used for identification of aircraft aerodynamic characteristics. There-
fore, it can be used for obtaining aerodynamic derivatives on the basis of
flight data recorders.
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Fig. 3. Initial values far from the optimum

Fig. 4. Initial values near the optimum

However, special attention must be paid to defining initial values used
for identification. When these values significantly differ from the optimum,
identification error, i.e. the difference between identified and measured data
is larger and identification is slower than in the near-optimum case. For
this reason, additional studies are necessary – to determine initial values of
model’s parameters.

All drawings in this article are by Piotr Lichota.
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Identyfikacja pochodnych aerodynamicznych Metodą Największej Wiarygodności

S t r e s z c z e n i e

Artykuł zawiera informacje na temat identyfikacji pochodnych aerodynamicznych. Estymacja
opiera się o parametry zapisywane przez Pokładowy Rejestrator Lotu. Zagadnienie jest rozważane
w dziedzinie czasu przy użyciu podejścia Quad-M. Do opisu dynamiki samolotu wykorzystano
model parametryczny zdefiniowany w układzie sztywno związanym z samolotem. Do identyfikacji
wykorzystano Metodę Największej Wiarygodności. Do znalezienia minimum funkcji celu uży-
to algorytm Levenberga-Marquardta. W modelu uwzględniono wpływ dodatkowych czynników
reprezentowany przez szum przetwarzania. Omówiono wpływ wartości początkowych na rozwiąza-
nie. Prezentowane wyniki uzyskano w środowisku Matlab R2009b.


