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USING MATCHED ASYMPTOTIC METHOD AND DISK FORM

MULTILAYERS

In this article, the thick truncated cone shell is divided into disk-layers form
with their thickness corresponding to the thickness of the cone. Due to the existence
of shear stress in the truncated cone, the equations governing disk layers are obtained
based on first shear deformation theory. These equations are in the form of a set of
general differential equations. Given that the truncated cone is divided into n disks,
n sets of differential equations are obtained. The solution of this set of equations,
applying the boundary conditions and continuity conditions between the layers, yields
displacements and stresses. The results obtained have been compared with those
obtained through the analytical solution and the numerical solution. For the purpose
of the analytical solution, use has been made of matched asymptotic method (MAM)
and for the numerical solution, the finite element method (FEM).

1. Introduction

Scientists have paid an enormous amount of attention to shells, result-
ing in numerous theories about their behavior of different kinds of shells.
Truncated conical shells have widely been applied in many fields such as
space fight, rocket, aviation, and submarine technology. The literature that
addresses the stresses of thick conical shells is quite limited. Most of the
existing literature deals with the stress or vibration analysis of thin conical
shells and is based upon a thin shell or membrane shell theory.

Mirsky and Hermann [1], derived the solution of thick cylindrical shells
of homogenous and isotropic materials, using the first shear deformation the-
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ory. Assuming the cone is to be long and the angle of the lateral side with
a horizontal plane is great, Hausenbauer and Lee [2] without considering
shear stresses obtained the radial, tangential and axial wall stresses in a thick-
walled cone under internal and/or external pressure. Raju et al. [3] introduced
a conical element for analysis of conical shells. Using the shear deformation
theory and Frobenius series, Takashaki et al. [4], obtained the solution of
free vibration of conical shells. Sundarasivarao et al. [5] analyzed a coni-
cal shell under pressure using the finite element method. Based on bending
theory, Tavares [6] determined the stresses, strains, and displacements of
a thin conical shell with constant thickness and axisymmetric load by the
construction of a Green’s function. Wu and Chiu [7] investigated thermally
induced dynamic instability of laminated composite conical shells subjected
to static and periodic thermal loads by means of the multiple scales method of
perturbation theory. Correia et al. [8] used the finite element method (FEM)
for analysis of a composite conical shell where the shear deformation theory
has been used for formulation. Jane and Wu [9] studied thermo-elasticity
problem in the curvilinear circular conical coordinate system. The hybrid
Laplace transformation and finite difference were developed to obtain the
solution of two dimensional axisymmetric coupled thermo-elastic equations.
Wu et al. [10] presented the three-dimensional solution of laminated conical
shells subjected to axisymmetric loadings using the method of perturbation.
Eipakchi et al. [11] used the mathematical approach based on the perturba-
tion theory, for elastic analysis a thick conical shell with varying thickness
under nonuniform internal pressure. Based on first shear deformation theory
and the virtual work principle, Ghannad et al. [12], have obtained an elastic
solution for thick truncated conical shells. Using the tensor analysis, Nejad
et al. [13] obtained a complete and consistent 3-D set of field equations to
characterize the behavior of functionally graded material (FGM) thick shells
of revolution with arbitrary curvature and variable thickness. The finite el-
ement method based on the Rayliegh-Ritz energy formulation is applied to
obtain the elastic behavior of the functionally graded thick truncated cone
[14]. Deformations and stresses inside multilayered thick-walled spheres are
investigated by Borisov [15]. In the paper, each sphere is characterized by its
elastic modules. Using a third-order shear deformation theory and matched
asymptotic expansion (MAE) of perturbation theory, Eipakchi [16] calcu-
lated the displacements and stresses of a thick homogeneous, isotropic, and
axisymmetric conical shells with varying thickness subjected to non-uniform
internal pressure. Making use of first-order shear deformation theory (FSDT)
and the virtual work principle, Ghannad and Nejad [17] generally derived the
differential equations governing the homogenous and isotropic axisymmetric
thick-walled cylinders with same boundary conditions at the two ends. Cui
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et al. [18] used a new transformation for solving the governing equations of
thin conical shells. The obtained equation is an ordinary differential equation
with complex coefficients. Shadmehri et al. [19] proposed a semi-analytical
approach to obtain the linear buckling response of conical composite shells
under axial compression load. The principle of minimum total potential ener-
gy was used to obtain the governing equations and Ritz method was applied
to solve them. Free vibration analysis of laminated conical shells is presented
by Civalek [20]. He provided results for isotropic, orthotropic, and laminated
cases for conical shells by using the numerical solution of governing differ-
ential equations of motion based on transverse shear deformation theory.

In the present study, one has the following.
(1) Based on FSDT and elasticity theory, the governing equations of

thick-walled disks are derived.
(2) Thick truncated cone is divided into disks with constant thickness

and constant height.
(3) With considering continuity between layers and applying boundary

conditions, the governing set of differential equations with constant coeffi-
cients is solved.

(4) The results obtained for stresses and displacements are compared
with the analytical solutions [14] and the solutions carried out through the
FEM. Good agreement was found among the results.

2. Formulation of problem

In the FSDT, the sections that are straight and perpendicular to the mid-
plane remain straight but not necessarily perpendicular after deformation and
loading. In this case, shear strain and shear stress are taken into consideration.

Geometry of a thick truncated cone with thickness h, and the length L, is
shown in Fig. 1. The location of a typical point m, within the shell element
is as 

m : (r, x) = (R + z, x)

0 ≤ x ≤ L & −h
2
≤ z ≤ h

2
(1)

where z is the distance of typical point from the middle surface. In Eq. (1),
R represents the distance of middle surface from the axial direction.

R = a +
h
2
− (tan β) x (2)

where β is half of tapering angle as
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β = tan−1
(
a − b

L

)
(3)

Fig. 1. Geometry of thick-walled truncated cone

Applied pressure to internal surface consists of two components as follow

Px = P sin β , Pz = P cos β (4)

where Px and Pz are components of internal pressure P along axial and radial
directions, respectively.

The general axisymmetric displacement field (Ux,Uz), in the first-order
Mirsky-Hermann’s theory [1] could be expressed on the basis of axial dis-
placement and radial displacement, as follows

Ux (x, z) = u(x) + φ(x)z , Uz (x, z) = w(x) + ψ(x)z (5)

where u(x) and w(x) are the displacement components of the middle surface.
Also, φ(x) and ψ(x) are the functions used to determine the displacement
field.

The kinematic equations (strain-displacement relations) in the cylindrical
coordinates system are
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

εx =
∂Ux

∂x
=

du
dx

+
dφ
dx

z

εθ =
Uz

r
=

( w
R + z

)
+

(
ψ

R + z

)
z

εz =
∂Uz

∂z
= ψ

γxz =
∂Ux

∂z
+
∂Uz

∂x
=

(
φ +

dw
dx

)
+

dψ
dx

z

(6)

The stress-strain relations (constitutive equations) for homogeneous and isotrop-
ic materials are as follows



σx

σθ

σz

τxz


= λ



1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0

0 0 0
1 − 2ν

2





εx

εθ

εz

γxz


(7)

where σi and εi (i = x, θ, z) are the stresses and strains in the axial (x),
circumferential (θ), and radial (z) directions. ν and E are Poisson’s ratio and
modulus of elasticity, respectively. In Eq. (6), λ is

λ =
E

(1 + ν) (1 − 2ν)
(8)

The normal forces (Nx , Nθ , Nz), bending moments (Mx , Mθ , Mz), shear
force (Qx), and the torsional moment (Mxz) in terms of stress resultants are



Nx

Nθ

Nz


=

h/2∫

−h/2



σx

(
1 +

z
R

)

σθ

σz

(
1 +

z
R

)


dz (9)



Mx

Mθ

Mz


=

h/2∫

−h/2



σx

(
1 +

z
R

)

σθ

σz

(
1 +

z
R

)


zdz (10)

Qx = K

h/2∫

−h/2

τxz

(
1 +

z
R

)
dz (11)
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Mxz = K

h/2∫

−h/2

τxz

(
1 +

z
R

)
zdz (12)

where K is the shear correction factor that is embedded in the shear stress
term. In the static state, for conical shells K = 5/6 [21].

On the basis of the principle of virtual work, the variations of strain
energy are equal to the variations of work of external forces as follows:

δU = δW (13)

where U is the total strain energy of the elastic body and W is the total work
of external forces due to internal pressure.

With substituting strain energy and work of external forces, we have (see
[12] for a detailed description)

L∫

0

R (x)

h/2∫

−h/2

(σxδεx + σθδεθ + σzδεz + τxzδγxz)
(
1 +

z
R

)
dzdx =

=

L∫

0

(PxδUx + PzδUz)
(
R − h

2

)
dx

(14)

Substituting Eqs. (6) and (7) into Eq. (14), and drawing upon calculus of
variation and the virtual work principle, we will have



NxR = −
∫

Px

(
R − h

2

)
dx + C0

Mx
dR
dx

+ R
(
dMx

dx
− Qx

)
= Px

h
2

(
R − h

2

)

Qx
dR
dx

+ R
(
dQx

dx

)
− Nθ = −Pz

(
R − h

2

)

Mxz
dR
dx

+ R
(
dMxz

dx
− Nz

)
− Mθ = Pz

h
2

(
R − h

2

)

(15)

and the boundary conditions are
[
(Nxδu + Mxδφ + Qxδw + Mxzδψ) R

]L
0 = 0 (16)

Eq. (16) states the boundary conditions which must exist at the two ends of
the cone.

In order to solve the set of differential equations (Eqs.(15)), with using
of Eqs. (6-12), and then using Eq. (15), we have
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
[B1]

d2

dx2 {y} + [B2]
d
dx
{y} + [B3] {y} = {F}

{y} =
{

du/dx φ w ψ
}T (17)

The coefficients matrices [Bi]4×4, and force vector {F}4×1 are as follows

[B1] =



0 0 0 0

0 (1 − ν) h3

12
R 0 0

0 0 µhR
µh3

12

0 0
µh3

12
µh3

12
R



(18)

[B2] =



0 (1 − ν) h3

12
0 0

(1 − ν) h3

12
(1 − ν) h3

12
dR
dx

−µhR − (µ − 2ν)
h3

12
0 µhR µh

dR
dx

0

0 (µ − 2ν)
h3

12
0

µh3

12
dR
dx



(19)

[B3] =



(1 − ν) hR 0 νh νhR
0 −µhR 0 0

−νh µh
dR
dx

− (1 − ν)α −h + (1 − ν)αR

−νhR 0 −h + (1 − ν)αR − (1 − ν)αR2


(20)

{F} =
1
λ



−
∫

Px

(
R − h

2

)
dx+C0

Px
h
2

(
R − h

2

)

−Pz

(
R − h

2

)

Pz
h
2

(
R − h

2

)



(21)
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where the parameters are as follows



µ =
5
12

(1 − 2ν)

α = ln


R +

h
2

R − h
2



(22)

The set of differential equation (Eq. (17)) is solved by matched asymptotic
method (MAM) in [12]. In the next section, a new method is presented for
solving set of Eqs. (15).

3. Solution with multilayer method (MLM)

In multilayer method (MLM), the truncated cone is divided into disk
layers with constant thickness t, and constant height h, (Figure 2).

Fig. 2. Dividing of truncated cone into disk form multilayer

Therefore, the governing equations convert to nonhomogeneous set of
differential equations with constant coefficients. x[k] and R[k] are length and
radius of middle of disks. k is number of disks. The modulus of elasticity
and Poisson’s ratio of disks are assumed be constant.
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The length of middle of an arbitrary disk (Figure 3) is as follows


x[k] =

(
k − 1

2

)
L
n(

x[k] − t
2

)
≤ x ≤

(
x[k] +

t
2

)

t =
L
n

(23)

where n is the number of disks and k is the corresponding number given to
each disks.

The radius of middle point of each disk is as follows

R[k] = a +
h
2
− (tan β) x[k] (24)

Thus (
dR
dx

)[k]
=

dR[k]

dx[k] = − tan β (25)

Fig. 3. Geometry of an arbitrary disk layer

With considering shear stress and based on FSDT, nonhomogeneous set
of ordinary differential equations with constant coefficient of each disk is
obtained.



[B1][k]
d2

dx2 {y}[k] + [B2][k]
d
dx
{y}[k] + [B3][k] {y}[k] = {F}[k]

{y}[k] =



(
du
dx

)[k]

φ[k]

w[k]

ψ[k]



(26)
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The coefficients matrices [Bi]
[k]
4×4, and force vector {F}k4×1 are as follows

[B1][k] =



0 0 0 0

0 (1 − ν) h3

12
R[k] 0 0

0 0 µhR[k] µh3

12

0 0
µh3

12
µh3

12
R[k]



(27)

[B2][k] =



0 (1 − ν) h3

12
0 0

(1 − ν) h3

12
− (1 − ν) h3

12
tan β −µhR[k] − (µ − 2ν)

h3

12
0 µhR[k] −µh tan β 0

0 (µ − 2ν)
h3

12
0 −µh

3

12
tan β



(28)

[B3][k] =



(1 − ν) hR[k] 0 νh νhR[k]

0 −µhR[k] 0 0
−νh −µh tan β − (1 − ν)α[k] −h + (1 − ν)α[k]R[k]

−νhR[k] 0 −h + (1 − ν)α[k]R[k] − (1 − ν)α[k]
(
R[k]

)2


(29)

{F}[k] =
1
λ



−P sin β
(
R[k] − h

2

)
x + C0

Ph
2

(
R[k] − h

2

)
sin β

−P
(
R[k] − h

2

)
cos β

Ph
2

(
R[k] − h

2

)
cos β



(30)

where the parameters are as follows

α[k] = ln


R[k] +

h
2

R[k] − h
2


(31)

Defining the differential operator P (D), Eq. (26) is written as


[P (D)][k] = [B1][k] D2 + [B2][k] D + [B3][k]

D2 =
d2

dx2 , D =
d
dx

(32)
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Thus
[P (D)][k] {y}[k] = {F}[k] (33)

The above differential Eq. has the total solution including general solution
for homogeneous case {y}[k]h and particular solution {y}[k]p , as follows:

{y}[k] = {y}[k]h + {y}[k]p (34)

For the general solution for homogeneous case, {y}[k]h = {V }[k] em[k]x is substi-
tuted in [P (D)][k] {y}[k] = 0.

∣∣∣m2 [B1][k] + m [B2][k] + [B3][k]
∣∣∣ = 0 (35)

Thus ∣∣∣∣∣∣∣∣∣∣∣∣∣

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (36)

B11 = (1 − ν) hR[k] (37)

B12 = B21 = m (1 − ν) h3

12
(38)

B13 = −B31 = νh (39)

B14 = −B41 = νhR[k] (40)

B22 = m2 (1 − ν) h3

12
R[k] − m (1 − ν) h3

12
tan β − µhR[k] (41)

B23 = −mµhR[k] (42)

B24 = −B42 = −m (µ − 2ν)
h3

12
(43)

B32 = mµhR[k] − µh tan β (44)

B33 = m2µhR[k] − mµh tan β − (1 − ν)α[k] (45)

B34 = B43 = m2µh
3

12
− h + (1 − ν)α[k]R[k] (46)

B44 = m2µh
3

12
R[k] − m

µh3

12
tan β − (1 − ν)α[k]

(
R[k]

)2
(47)

The result of the determinant above is a six-order polynomial which is a
function of m, the solution of which are 6 eigenvalues mi. The eigenvalues
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are 3 pairs of conjugated root. Substituting the calculated eigenvalues in
following equation, the corresponding eigenvectors {V }i are obtained.

[
m2 [B1][k] + m [B2][k] + [B3][k]

]
{V }[k] = 0 (48)

Therefore, the homogeneous solution for is

{y}[k]h =

6∑

i=1

C[k]
i {V }[k]i em[k]

i x (49)

The particular solution is obtained as follows

{y}[k]p =
[
[B3][k]

]−1 {F}[k] (50)

Therefore, the total solution for is

{y}[k] =

6∑

i=1

C[k]
i {V }[k]i em[k]

i x +
[
[B3][k]

]−1 {F}[k] (51)

In general, the problem for each disk consists of 8 unknown values of
Ci, including C0 (Eq. (15)), C1 to C6 (Eq. (51)), and C7 (equation u[k] =∫

(du/dx)[k] dx + C7).

4. Boundary and continuity conditions

4.1. Boundary conditions

In this problem, the boundary conditions of cone is clamped-clamped
ends, then we have



u
φ

w
ψ


x=0

=



u
φ

w
ψ


x=L

=



0
0
0
0


(52)

Therefore 
Ux (x, z)
Uz (x, z)


x=0,L

=


0
0

 (53)

4.2. Continuity conditions

Because of continuity and homogeneity of the cone, at the boundary
between two layers, forces, stresses and displacements must be continuous.
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Given that shear deformation theory applied is an approximation of one order
and also all equations related to the stresses include the first derivatives of
displacement, the continuity conditions are as follows


U [k−1]

x (x, z)
U [k−1]

z (x, z)


x=x[k−1]+ t

2

=


U [k]

x (x, z)
U [k]

z (x, z)


x=x[k]− t

2

(54)


U [k]

x (x, z)
U [k]

z (x, z)


x=x[k]+ t

2

=


U [k+1]

x (x, z)
U [k+1]

z (x, z)


x=x[k+1]− t

2

(55)

and 

dU [k−1]
x (x, z)

dx
dU [k−1]

z (x, z)
dx


x=x[k−1]+ t

2

=



dU [k]
x (x, z)
dx

dU [k]
z (x, z)
dx


x=x[k]− t

2

(56)



dU [k]
x (x, z)
dx

dU [k]
z (x, z)
dx


x=x[k]+ t

2

=



dU [k+1]
x (x, z)

dx
dU [k+1]

z (x, z)
dx


x=x[k+1]− t

2

(57)

Given the continuity conditions, in terms of z, 8 equations are obtained.
In general, if the cone is divided into n disk layers, 8 (n − 1) equations are
obtained. Using the 8 equations of boundary condition, 8n equations are
obtained. The solution of these equations yields 8n unknown constants.

5. Results and discussion

The solution described in the preceding section for a homogeneous and
isotropic truncated conical shell with a = 40 mm, b = 30 mm, h = 20 mm and
L = 400 mm will be considered. The Young’s Modulus and Poisson’s ratio,
respectively, have values of E=200 GPa and ν = 0.3. The applied internal
pressure is 80 MPa. The truncated cone has clamped-clamped boundary
conditions.

The effect of the number of disk layers on the radial displacement is
shown in Figure 4. It is observed that if number of disk layers is fewer than
30, it will have a significant effect on the response. However, if the number
of layers is more than 40 disks, there will be no significant effect on radial
displacement. In the problem in question 60 disks are used.
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Fig. 4. Effect of the number of disk layers on the radial displacement

Figure 5 shows the distribution of axial displacement at different layers.
At points away from the boundaries, axial displacement does not show sig-
nificant differences in different layers, while at points near the boundaries,
the reverse holds true.

Fig. 5. Axial displacement distribution in different layers

The distribution of radial displacement at different layers is plotted in
Figure 6. The radial displacement at points away from the boundaries depends
on radius and length.

According to Figures 5 and 6, the change in axial and radial displace-
ments in the lower boundary is greater than that of the upper boundary
and the greatest axial and radial displacement occurs in the internal surface
(z = −h/2). Distribution of circumferential stress in different layers is shown
in Figure 7. The circumferential stress at all points depends on radius and
length. The circumferential stress at layers close to the external surface is
negative, and at other layers positive. The greatest circumferential stress oc-
curs in the internal surface (z = −h/2). Figure 8 shows the distribution of
shear stress at different layers. The shear stress at points away from the
boundaries at different layers is the same and trivial. However, at points near
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the boundaries, the stress is significant, especially in the internal surface,
which is the greatest.

Fig. 6. Radial displacement distribution in different layers

Fig. 7. Circumferential stress distribution in different layers

Fig. 8. Shear stress distribution in different layers
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In Figures 9-13, displacement and stress distributions are obtained using
MLM are compared with the solutions of FEM and are presented in the
form of graphs. Figures 9 to 13 show that the disk layer method based on
FSDT has an acceptable amount of accuracy when one wants to obtain radial
displacement, radial stress and circumferential stress. However, they are not
that useful for axial stress and not useful at all for radial displacement. It is
possible to compensate for this by increasing the order of shear deformation
theory. In Table 1, the values of stresses and displacements resulting from
analysis of thick truncated conical shell r through MLM, MAM and FEM
for clamped-clamped condition under uniform internal pressure in the middle
layer are given.

Fig. 9. Axial displacement distribution in middle layer

Fig. 10. Radial displacement distribution in middle layer
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Fig. 11. Axial stress distribution in middle layer

Fig. 12. Radial stress distribution in middle layer

Fig. 13. Circumferential stress distribution in middle layer

6. Conclusions

Homogenous and isotropic thick-walled conical shells could be solved
using the analytical method. First shear deformation theory and perturbation
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Table 1.
Comparison of values of MLM, FEM and MAM

Method ur , mm ux , mm σr , MPa σx , MPa σθ , MPa

MLM 0.03022 0.00136 -26.31 29.11 135.14

FEM 0.03041 0.00460 -26.83 29.18 135.85

MAM 0.03021 0.00400 -26.31 29.20 135.16

theory result in the analytical solution of the problem with higher accuracy
and within a shorter period of time. However, the above-mentioned solutions
are complicated and time-consuming. The multilayer disc form method could
be a good replacement for the analysis of thick-walled shells. In this method,
shells with different geometries and different loadings and different boundary
conditions, with even variable pressure, could be more easily solved. This in
spite of the fact that the existing analytical methods, due to their complex
mathematical relations governing them, could not easily solve them. The
method presented is very suitable for the purpose of calculation of radial
stress, circumferential stress, shear stress and radial displacement.

Manuscript received by Editorial Board, November 08, 2013;
final version, April 08, 2014.
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Półanalityczne rozwiązanie dla grubościennej powłoki stożka ściętego wykorzystujące
dopasowaną metodę asymptotyczną i podział na warstwy krążkowe

S t r e s z c z e n i e

Grubościenna powłoka stożka ciętego, opisana w artykule, jest dzielona na warstwy w formie
krążków o grubości odpowiadającej grubości powłoki. Ponieważ w stożku ściętym istnieją napręże-
nia ścinające, równania dla warstw krążkowych są otrzymane na bazie teorii odkształceń pier-
wszego rzędu. Równania te mają postać układu ogólnych równań różniczkowych. Zakładając, że
stożek ścięty jest podzielony na n warstw, uzyskuje się układ n równań różniczkowych. Wartości
przemieszczeń i naprężeń otrzymuje się w wyniku rozwiązania tego układu równań, przy uwzględ-
nieniu warunków brzegowych i warunków ciągłości. Uzyskane wyniki porównano z wynikami
rozwiązań analitycznego oraz numerycznego. Dla potrzeb rozwiązania analitycznego wykorzys-
tano dopasowaną metodę asymptotyczną (Matched Asymptotic Method, MAM), a w rozwiązaniu
numerycznym zastosowano metodę elementów skończonych (FEM).
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