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Periodic adsorption in a perfect mixing tank of a limited volume was considered. It was assumed 
that the adsorption rate is limited by diffusion resistance in a pellet. The approximate model of 
diffusion kinetics based on a continued fraction approximation was compared with the exact 
analytical solution. For the approximate model an algorithm was developed to determine a temporal 
variation of the adsorbate concentration in the pellet. The comparison was made for different values 
of the adsorbent load factor. In the numerical tests different shapes of pellets were considered. Both 
the numerical tests as well as our own experimental results showed that the approximate model 
provides results that are in good agreement with the exact solution. In the experimental part of this 
work adsorption of p-nitrophenol and acetic acid from aqueous solutions on cylindrical pellets of 
activated carbon was conducted. 
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1. INTRODUCTION 

The adsorption rate is limited by the slowest step (steps) of a complex process which includes transport 
of adsorbate from the bulk of the liquid phase to the surface of an adsorbent pellet, diffusion in pellet 
macropores, diffusion in micropores, and the act of adsorption. In physical adsorption the final step is 
not generally dominant, and therefore the rate of adsorption is influenced mainly by the resistance 
caused by the transport of the adsorbate to the adsorption site. Kinetic relations describing the rate of 
adsorption that are based on the chemical reaction rate models such as the first or second order models 
(Haerifar and Azizian, 2013) are also known. A comparison of a kinetic model based on diffusion with 
the model based on a chemical reaction was published recently (Płaziński at al., 2013); the infinite slab-
shaped and spherical adsorbent pellets were considered. 

Partial differential equations with a space-coordinate and time as the independent variables constitute 
the exact model of the adsorption kinetics. Solving such a problem is time-consuming. The problem of 
the time-consuming solution is particularly important when the equations are repeatedly solved using a 
complex procedure. Simplification of the model can be achieved by eliminating the space-coordinate in 
the pellet and applying the so-called approximate kinetic equations, which have the form of ordinary 
differential equations. 

There are many approximate kinetic equations. They are commonly used in modelling and design of 
adsorption processes. The most well-known approximate kinetic equation is the LDF equation 
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(Glueckauf, 1955), which for adsorption in a spherical pellet and for the absence of external resistance 
has the form: 

  mm
sm qq

R

D

dt

qd
 *

2
15  (1) 

This equation provides results which are quite consistent with the exact solution of the equation of 
diffusion and adsorption but only for sufficiently long duration of the process. The LDF equation fails 
for short times, which prevents its use for adsorption-desorption processes with short half-cycles. The 
approximate kinetic model based on a continued fraction approximation was recently presented by Lee 
and Kim (2011). Continued fractions are a useful tool in many approximation problems. This feature 
was used by these authors in their model. The model is based on the use of the Laplace transform for 
the equation of diffusion, bringing the solution to the form of a continued fraction, and cutting the 
resulting expression to the number of terms n that provides the required accuracy. As a result one must 
solve a system of n ordinary differential equations. Approximation of the first order (n = 1) corresponds 
to the LDF equation. 

The Lee and Kim model was modified (Kupiec and Gwadera, 2013) in order to take into account not 
only the diffusion resistance in the pellet but also in the surrounding fluid. The modified approximate 
model of adsorption kinetics was compared with the exact solution for adsorption-desorption cycles 
and various shapes of pellets providing excellent agreement with the exact solution. 

The aim of this study is to verify the approximate model based on continued fractions for adsorption in 
a limited volume tank for different shapes of adsorbent pellets. Numerical verification (comparison 
with the exact solution) and experimental verification were conducted. Systems with linear adsorption 
equilibrium and the absence of external mass transfer resistance were considered. 

2. EXACT MODEL 

It is convenient to introduce the diffusion and adsorption equation in a dimensionless form. 
The dimensionless adsorbate concentration in a pellet is defined as follows: 
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The average concentration is defined analogously: 
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Let us introduce the dimensionless space-coordinate: 

 
L

x
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and dimensionless time: 
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The symbol L is a characteristic linear dimension (half the thickness of a slab, radius of a cylinder and 
sphere). The adsorption and diffusion equation has the form: 
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where ζ is a shape factor equal to 0, 1 or 2 for an infinite slab, infinite cylinder and sphere, respectively. 

The initial condition for adsorbate-free pellets has the form: 

 0     0Q  (7) 

The first boundary condition concerns the symmetry of a pellet and takes the form: 

 ;0     0



Q

 (8) 

The form of the second boundary condition for pellet surface depends on the relationship between 
internal and external diffusion resistance. When the diffusion resistance outside pellets may be omitted, 
the condition has the form: 

 ;1    *
11 QQ   (9) 

which means that the dimensionless adsorbate concentration on the surface of a pellet is equal to the 
concentration in equilibrium to adsorbate concentration in the liquid phase. 

A dimensionless concentration of adsorbate in the liquid phase is defined as follows: 

 
0C

C
Y   (10) 

Since the equilibrium equation for linear adsorption has the form: 

 KCqm *  (11) 

and the concentration of adsorbate in a pellet being in equilibrium with the initial concentration in the 
liquid is: 

 00 KCqm   (12) 

so after dividing both sides of the above equations by each other, one obtains: 

 YQ *  (13) 

Therefore, when the equilibrium is linear, then *
1Q = Y in the boundary condition (9). When the 

concentration in the liquid phase Y remains constant in time, then Y = 1 so Q1 = 1. When the 
concentration in the liquid phase changes over time, the concentration at the surface of a pellet is also 
variable and less than unity. Then the model of the process should be supplemented by a balance 
equation for adsorbate in the liquid phase. 

The average, dimensionless concentration of adsorbate in a pellet results from integration of 
a concentration profile. The formula for any pellet shape is as follows: 

  
1

0

1   dQQ  (14) 

3. ADSORPTION IN FINITE VOLUME TANK 

In this work periodic adsorption in a finite-volume perfect-mixing tank is considered. Thus, during 
adsorption the concentration of adsorbate in the pellets increases, and in the liquid – decreases. In the 
case of the adsorbent pellets that initially do not contain adsorbate the mass balance for adsorption in a 
tank takes the form: 
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  CCVqm ms  0  (15) 

After introduction of the dimensionless variables, one obtains: 

  YQ  1  (16) 

where the adsorbent load factor is given by the following formula: 
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If adsorption time is long enough, the system reaches equilibrium and concentrations in both phases are 
not subject to further changes. Since, in accordance with (13), at equilibrium the dimensionless 
concentrations in both phases are the same, from combination of formulas (13) and (16) it follows that: 
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The ratio of mass of adsorbed component at a given moment to the mass of adsorbed component at 
equilibrium amounts to: 
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Analytical solutions for the diffusion in pellets of different shapes in a finite-volume tank are known 
(Crank, 1956). They are presented in Appendix (A.1-A.4). 

Taking into account formulas (16), (19) and (A.4), one can obtain: 
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The shorter the time, the series converge more slowly and more number of series terms should be 
included. However, solutions for short times that do not contain infinite series are known  
(Crank, 1956). They are presented in Appendix (A.5-A.7). 

 

Fig. 1. Relationship between mt /m∞ and dimensionless time τ for slab 
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The consequence of reducing the necessary number of terms in the series with increasing τ is that only 
the first series term may be used for sufficiently long times (according to (A.4)). The appropriate 
relation for long times is presented in Appendix (A.8). 

In Figs. 1, 2 and 3 the graphs of the relationship between mmt and dimensionless time for pellets of 

all the considered shapes were shown. On each of the graphs the results of solving the exact equation 
(A.4), the relationship for short periods of adsorption time ((A.5), (A.6) or (A.7)) and the relationship 
for long times (A.8) were presented. As can be seen, for each shape there are the maximum limit values 
of time above which the relationships for short times should not be used. Similarly, there are the 
minimum limits, below which the relationships for long periods of time lead to wrong results. These 
limit values are different for different shapes of pellets. 
 

 

Fig. 2. Relationship between mt /m∞ and dimensionless time τ for cylinder 

 
Fig. 3. Relationship between mt /m∞ and dimensionless time τ for sphere 
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4. APPROXIMATE KINETIC MODEL 

In the approximate Lee and Kim model the average dimensionless concentration of an adsorbate in an 
adsorbent pellet after time τ is defined by the following equation (Lee and Kim, 2011): 

 qxQ  (21) 

where: 

  nqqq 21q  (22) 

In order to determine the elements of the vector x, the following system of ordinary differential 
equations should be solved: 

 1Qbaxx   (23) 

where the vectors x , x and b are defined as follows: 

  Tnxxx  21x  (24) 

  Tnxxx 21x  (25) 

  T111   b  (26) 

and the elements of the matrix a are equal to: 

 ijqpa jiij  for  (27a) 

 ijqpa jjij  for  (27b) 

 ijqpa iiij  for  (27c) 

where the values of pi and qi are defined as follows: 

 iiipi  22  (28) 

 14  iqi  (29) 

In the above formulas i = 1, 2, …, n. 

The number of equations of system (23) is the order of approximation n; the higher the order, the 
higher the accuracy of approximation. The system of equations (23) should be solved with the initial 
condition which for a pellet that initially does not contain the adsorbate has the form: 

 τ = 0;  x = 0 (30) 

Substituting Q1 = Y into (23) and considering Equation (16), one gets: 
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After transformations it was obtained that: 

 bcxx   (32) 

where: 

 bqac

1

  (33) 

For an infinite volume of the tank it is α → ∞ so c = a. 
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The algorithm was as follows. Elements of the vectors b, p, q, matrix a and matrix c were determined 
for given values of α, ζ and n. Then the system of equations (32) was solved.  Finally the function  

Q (τ) was obtained from formula (21). 

5. NUMERICAL VERIFICATION OF APPROXIMATE KINETIC MODEL 

In order to verify the approximate kinetic model numerically, calculations based on this model and the 
exact one have been conducted. Calculations were performed for different shapes of pellets and for 
different values of the adsorbent load factor. The calculation results are shown in Figs. 4-7. 
Dimensionless concentrations in both phases of the system are on the axis of ordinates. The decreasing 
curves define temporal variations of concentration in the liquid phase, and the increasing curves relate 
to the solid phase. In accordance with Equation (18), the curves converge for long times, which means 
that the system has reached the equilibrium. The values of the equilibrium concentrations depend on the 
parameter α, for example for α = 1 equilibrium concentrations are (in accordance with (18)):  


lim Y = 


lim Q = 0.5. 

In Figs. 4, 5 and 6 adsorbate concentrations for a slab, cylinder and sphere were presented. Solid lines 
refer to the order of approximation n = 10, and dashed lines − to n = 3.  It can be seen from the figures 
that for n = 10 the agreement between values calculated on the basis of the approximate and exact 
models is very good. Some deviations occur only for short times and small values of α; the differences 
are visible only for the liquid phase. In Fig. 7 temporal variations of concentrations for individual 
shapes of pellets and α = 1 and n = 10 were shown. It should be remarked that in many cases much 
lower orders of approximation can be used e.g. for α > 1 and τ > 0.01 the third order approximation 
gives satisfactory results. 

 

 

Fig. 4. Comparison of the graphs obtained for the approximate and exact models for the infinite slab 
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Fig. 5. Comparison of the graphs obtained for the approximate and exact models for the infinite cylinder 

 

Fig. 6. Comparison of the graphs obtained for the approximate and exact models for the sphere 

 

Fig. 7. Comparison of the graphs obtained on the basis of the approximate and exact models for different  

shapes of pellets 
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6. EXPERIMENTAL 

Experimental studies of the kinetics of adsorption in a tank were conducted. Active carbon type 
Organosorb 10-CO (manufacturer Desotec) was used as an adsorbent. p-nitrophenol and acetic acid 
were adsorbed from aqueous solutions. The temperature was maintained at 23°C. 

According to the adsorbent’s manufacturer the physical properties of the adsorbent are as follows: 
apparent density of pellets 1058 kg/m3, total pore volume 0.489 cm3/g, average pore diameter 1.86 nm, 
volume fraction of micropores 74%. The adsorbent pellets were cylindrical. The radius of a pellet was 
0.7 mm. 

6.1. Adsorption of p-nitrophenol (PNP) 

The concentration of PNP in an aqueous solution was determined using a spectrophotometer UV-VIS 
S2000 Miniature Fiber Optics (Ocean Optics) at a wavelength of 317 nm. PNP concentration range for 
which the measurements were conducted was 0.0123−0.0280 kg/m3 (12.3−28.0 mg/dm3). Calibration 
showed that the relationship between absorbance and concentration of the solution is linear in this 
range. 

According to the literature (Chern and Chien, 2002) the adsorption equilibrium of PNP on activated 
carbon is linear if the PNP content is less than about 0.2 mol/m3 (at 25°C). Therefore, one point on the 
equilibrium line is sufficient to determine the equilibrium relationship. The necessary measurements 
were conducted by contacting the PNP solution with activated carbon and determining concentration of 
PNP in both phases at equilibrium. The biphasic system was kept for 14 days at 23 °C and periodically 
mixed. Then, concentration of PNP in the solution was determined providing the result  
C = 0.0280 kg/m3 ≈ 0.2 mol/m3. Concentration of PNP in pellets was determined from the mass 
balance; the obtained values are sufficient to determine the adsorption equilibrium constant: 

 316
02800
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q
K m   (34) 

The kinetic measurements were conducted in a cylindrical glass tank with a magnetic stirrer. Pure p-
nitrophenol class WSK (manufacturer POCh) was used to prepare the PNP solution. A sample weight 
of the substance was dissolved in distilled water. The resulting stock solution was used for preparation 
of dilute solutions. Before the current measurement, the sample weight of activated carbon was 
immersed in water to deaerate the adsorbent. The current measurement started by pouring the carbon to 
the PNP solution and starting the stirrer. The absorbance of the solution was determined at specified 
time intervals. During the measurements the temperature was maintained at 23°C. The measurements 
were performed for the volume of solution V = 0.510-3 m3 and the adsorbent mass ms = 0.510-3 kg. 
The adsorbent load factor was: 
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6.2. Adsorption of acetic acid 

Concentration of acetic acid in aqueous solutions was determined by titration with 0.1 n NaOH solution 
in the presence of phenolphthalein. Automatic burette Titrette (manufacturer Brand, class A precision) 
was used. 
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The study of adsorption equilibrium was conducted in a similar manner as for the p-nitrophenol. The 
solutions of different concentrations were contacted with activated carbon for sufficiently long time at a 
constant temperature of 23°C. The content was mixed from time to time. After equilibrium had been 
reached, acid concentration in the solution was determined. The results led to the conclusion that for the 
acid content C0 = 0.3 kg/m3 the equilibrium concentration in the solid phase is qm0 = 0.046 kg/kg, and 
the equilibrium for C < 0.3 kg/m3 is approximately linear. The equilibrium constant in this case is: 

 1530
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To prepare solutions of acetic acid, glacial acetic acid was used (manufacturer POCh). It was diluted 
with distilled water. The current measurement of the adsorption kinetics was initiated by pouring the 
previously weighed and deaerated carbon into the tank containing a solution of acid that had the initial 
concentration of C0 = 0.3 kg/m3. At specific time intervals 5 cm3 of the solution was pipetted from the 
tank for acid-base analysis which was performed almost on-line. After concentration of the solution had 
been measured, the acid solution of the same amount and concentration as the previously analysed 
solution was poured into the tank. During the measurements the temperature was maintained at 23°C. 
The measurements were performed for the volume of solution V = 110-3 m3 and the adsorbent mass  
ms = 710-3 kg. The adsorbent load factor was: 
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7. DETERMINATION OF DIFFUSION COEFFICIENT IN ADSORBENT PELLETS 

The results of kinetic measurements were used in order to determine values of diffusion coefficient in 
pellets of activated carbon. These coefficients were determined on the basis of the approximate kinetic 
model (based on continued fractions approximation) and with the exact model. It was assumed that  
Ds = const. during the series of measurements. The following algorithm was applied, in which 

sD DRt 2 was used as a conversion factor that allowed one to calculate dimensionless time on the 

basis of its dimensional value (formula (5)). The procedure of tD determination was as follows: 
 A trial value of tD was assumed, 
 Concentrations of adsorbate in the solution Ck,calc were calculated for the value of time for which 

experimental values Ck,exp were known for the given series of measurements. An appropriate 
model of the process (approximate or exact) was used. 

 The sum of squared deviations between the calculation (calc) and experimental values (exp) was 
calculated in accordance to the formula: 

  



l

k
calc,kexp,k CCSS

1

2  (38) 

where k = 1, 2,…, l; l − number of measurements. 

The value of diffusion time constant tD for which SS was the smallest, was considered to be the 
estimated value of tD for the considered series of measurements. The diffusion coefficient was 
determined according to the formula Ds = R2/tD (for the known value of the radius of the pellet  
R = 0.0007 m). 

The results of measurement for adsorption of acetic acid were shown in Fig.9 as shaded symbols. Fig. 8 
illustrates the search for the solid diffusion coefficient of acetic acid in the pellets. The sum of squared 
deviations defined by formula (38) is located on the vertical axis of the graph; the calculated values 
Ck,calc were determined on the basis of the approximate model. After several iterations conducted for 
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different values of Ds, the diffusion coefficient Ds = 2.6210-12 m2/s (corresponding to the minimum 
value SS) was found. The procedure was repeated but Ck,calc was calculated in accordance to the exact 
model. The same value of Ds as for the approximate model was obtained. 

 
 

Fig. 8. Determination of the solid diffusion coefficient for acetic acid 

 

Fig. 9. Experimental and calculated courses of concentrations for adsorption of acetic acid on activated carbon in 

a tank with limited volume 

For the value α = 0.934 numerical courses of the relationship between Y and τ and Q and τ, i.e. 

between the dimensionless concentrations and dimensionless time τ, were determined; for this purpose 
the approximate model was used. Then, as the value of Ds was known, the dimensionless time was 
recalculated into dimensional one in accordance with the relationship: 

 
sD

R
t

2

  (39) 

The above calculations allowed construction of the graph plotted in Fig. 9, wherein the dimensional 
time is located on the horizontal axis. The figure shows that the dimensionless concentration in the 
liquid phase and in the pellets are close to each other and reach a state of equilibrium corresponding to, 
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in lines with (18)), a value of 0.483. The experimental points are in good agreement with the solid line, 
which means that the estimated diffusion coefficient is well characterising the kinetics of the process. 

The calculation procedure is repeated to determine the time courses of Y and Q based on the exact 

model. The appropriate courses are also shown in Fig. 9 as not-shaded symbols. As can be seen, the 
courses corresponding to the approximate and exact models are identical. 

Similar calculations were made with the use of the results obtained for the adsorption of PNP 
(α = 0.0615). The results were shown as shaded symbols in Fig. 11. Fig. 10 presents the search for the 
solid diffusion coefficient: the value of Ds equal to 0.16710-12 m2/s is obtained with the approximate 
model. 

 

 
Fig. 10. Determination of solid diffusion coefficient for PNP 

 

Fig. 11. Experimental and calculated courses of concentrations for adsorption of PNP on activated carbon in a 

tank with limited volume 

In Fig.11, in addition to the experimental course of PNP concentration in the liquid phase, the 
calculated courses of concentrations in both phases were shown. The calculated approximate and exact 
courses match, but for the low concentrations slight variations were observed. This results in small 
differences of the estimated diffusion coefficients. The value of Ds obtained from the exact model was 
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equal to 0.17110-12 m2/s. As stated in the numerical verification of the approximate model, a 
discrepancy in the courses occurs for short times and small α values. Precisely in this area the initial 
measurement points for the PNP adsorption are located. Due to the relatively high value of the 
equilibrium constant for PNP adsorption, the coefficient α is small resulting in a small increase of the 
adsorbate content in pellets and a significant decrease in the concentration of adsorbate in the liquid 
(Fig. 11). The dimensionless equilibrium concentration (Eq. (18)) is much lower (0.058) than that for 
the series of measurements with acetic acid (0.483). 

8. CONCLUSIONS 

 The model of adsorption kinetics based on the continued fractions approximation provides results 
consistent with the exact solution for periodic adsorption in a perfect mixing tank with a limited 
volume. 

 The model has been successfully verified numerically for different pellet shapes and different 
values of the adsorbent load factor. 

 The model was also verified experimentally for two different adsorption systems and various 
process conditions. Good agreement of the diffusion coefficient values determined from the 
approximate and the exact models was obtained. 

 The approximate model is of crucial importance for investigating adsorption when analytical 
solution is not available. 

 The use of the approximate kinetic equations significantly reduces the computation time in relation 
to the numerical calculations conducted when solving the exact model. In the approximate models 
ordinary differential equations (or systems of such equations) instead of equations with partial 
derivatives are solved. This is important when solving kinetic equations needs to be performed 
repeatedly in complex calculation procedures. 

The project was funded by The National Science Centre on the basis of the decision  
DEC-2011/03/N/ST8/04634. 

SYMBOLS 

C adsorbate concentration in solution, kg/m3 
Ds solid diffusion coefficient, m2/s 
J0(a) Bessel function of the first kind of order 0 
J1(a) Bessel function of the first kind of order 1 
K adsorption equilibrium constant, m3/kg 
ms mass of adsorbent, kg 
qm concentration of adsorbate in the solid, kg adsorbate/kg solid 
qm0 concentration in equilibrium to the initial concentration of adsorbate in liquid phase,  

kg adsorbate/kg solid 

mq  concentration of adsorbate averaged over pellet volume, kg adsorbate/kg solid 

Q dimensionless adsorbate concentration in solid 
L characteristic geometric dimension of pellet, m 
R radius of pellet, m 
t time, s 
V volume of liquid solution, m3 
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x spatial coordinate, m 
Y dimensionless adsorbate concentration in liquid phase 
α adsorbent load factor 
βi roots of algebraic equation 
 dimensionless spatial coordinate 
 dimensionless time 
ζ geometric factor 

Indexes 
calc calculation value 

exp experimental value 

k k-th measurement 

0 initial value 

1 pellet surface 

   average value 
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 APPENDIX  

Analytical solutions for the diffusion in pellets of different shapes in a finite-volume tank for full range 
of time are as follows. The solution for infinite slab-shaped pellets takes the form (Crank, 1956): 
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 (A.1) 

where βi are consecutive roots of the algebraic equation: 

 0tan  (A.1a) 
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The solution for infinite cylinder-shaped pellets is as follows (Crank, 1956): 
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 (A.2) 

where βi are consecutive roots of the algebraic equation: 

     02 10   JJ  (A.2a) 

A solution for spherical pellets is also known. It has the form (Crank, 1956; Do,1998; Petrus at al., 
1998; Suzuki, 1990): 
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where βi are consecutive roots of the  algebraic equation: 
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The solutions for all the considered shapes can be written in the generalised form: 
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The solutions for short times have the following form (Crank, 1956). For an infinite slab: 
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For an infinite cylinder: 
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For a sphere: 
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 112    (A.7b) 
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The following relation is valid for long times and all the considered shapes: 
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where β1 is the first root of equations (A.1a), (A.2a) or (A.3a) depending on the pellet shape. 
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