
 

Recognizing Sharp Features of 2-D Shapes
Laxmi Gewali and Joseph P. Scanlan

Abstract—We present an efficient algorithm for recognizing
and extracting sharp-features from complex polygonal shapes.
The algorithm executes in O(n2) time, where n is the number of
vertices in the polygon. Sharp-feature extraction algorithms can
be useful as a pre-processing step for measuring shape-similarity
between polygonal shapes.

Keywords—Shape recognition, shape similarity, boundary ap-
proximation, shape decomposition, shape simplification.

I. INTRODUCTION

PROBLEMS dealing with the recognition and simplifica-

tion of two dimensional shapes have been investigated

extensively in robotics, geographic information system, med-

ical imaging, and computational geometry [1], [2], [3], [4],

[5], [8], [6], [10], [11]. In computational geometry [1], [2],

[3], [4], [5], [8], two dimensional shapes are usually mod-

eled by polygons. An important sub-problem used in shape

recognition is the formulation of “shape-similarity” measure.

One of the first geometric algorithms for measuring shape

similarity is based on the concept of “signature function”

[8]. The signature function is essentially a rectilinear step

function derived from the local and global properties of the

polygonal shape. The signature of an edge e of a polygon is

obtained by accumulating the portion of the boundary of the

polygon lying to the left of the line passing through e. The

signature of the whole polygon is obtained by combining the

signatures of all the edges of the polygon. If two shapes are

similar then the area enclosed between their signatures is very

small. For identical shapes the area enclosed between their

signatures is zero. The technique of signature analysis has been

found to be very effective for comparing orthogonal shapes

and in recognizing hand-written characters [8]. Algorithms

for measuring shape similarity based on signature functions

are not easy to implement. Another approach for measuring

shape similarity is based on the notion of “turning function”.

The turning function of a polygonal shape is also a rectilinear

step function. Shape-similarity measures based on the turning

function have been used successfully for developing efficient

recognition algorithms and these algorithms are not difficult

for practical implementation. One drawback of the turning

function method is that it does not produce acceptable results

when the boundary of the input polygon contains noise edges.

In Section 2 we present a review of the existing boundary

simplification algorithms for two dimensional shapes. In Sec-

tion 3, we propose a new technique for shape recognition. Our

technique is based on a partitioning procedure that separates

narrow regions from the core regions. For performing such

partitioning we introduce the notion of ‘sharp-features’ for

L. Gewali and J. P. Scanlan are with the School of Computer Sci-
ence University of Nevada, Las Vegas, USA (e-mail: laxmi@cs.unlv.edu,
scanlanj@unlv.nevada.edu).

2-d shapes. We present efficient algorithms for identifying

such features. The sharp feature recognition algorithm runs in

O(n2) time, where n is the number of vertices in the polygon.

In Section 4, we discuss possible extensions of the proposed

technique.

II. BOUNDARY SIMPLIFICATION

For comparing the similarity between two complex polygo-

nal shapes, it is necessary to approximate their boundaries by

simpler ones. This kind of boundary simplification is needed

in many other problem areas. In image processing systems, it

is necessary to approximate a complex polygonal chain with

a large number of vertices with a simpler one with fewer

vertices. For example, medical and satellite images contain

polygonal contours with exceedingly large number of vertices.

Processing such images require prohibitively large amount

of time [2]. Polygonal chain approximation algorithms are

also useful for geometric compression when image data are

transmitted through the World Wide Web.

The most critical issue in polygonal chain approximation

is the formulation of rules for selecting vertices that are not

contained in the simplified chain. The vertices picked for

elimination should be such that the approximated chain retain

the prominent features in the original polygonal chain. One of

the early works on polygonal chain simplification is the ap-

proximation of piecewise linear functions [5]. Piecewise linear

functions are basically polygonal chains that are monotone

with respect to the x-axis. The approach used in [5] is to

convert the chain approximation problem to the problem of

computing several weak-visibility polygons. To approximate a

monotone chain Ch of n vertices, a monotone polygon P is

constructed by laying down two parallel shifted copies of Ch
by ε each, where ε is the maximum allowed error bound for

the approximation. After obtaining the monotone polygon P , a

set of weak-visibility polygons are constructed. The “window”

edges of the weak visibility polygons are used to determine the

approximated chain. To compute the weak visibility polygons

efficiently, a clever technique based on the convex hull of

shifted chains is introduced in [5]. The execution time of

the resulting algorithm is O(n) which is very efficient. The

number of vertices in the approximated chain depends on the

value of allowed error bound ε. The larger the value of ε the

fewer are the number of vertices in the approximated chain.

An algorithm based on iterative vertex elimination is re-

ported in [10]. In this approach, vertices for elimination are

selected one at a time. If vertex vi is eliminated then it results

εi approximation error. The algorithm eliminates vertices in

the increasing order of the magnitude of the approximation

error. The first vertex selected for elimination is the vertex that

corresponds to the minimum approximation error. For three

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 2, PP. 153-156 
Manuscript received May 4, 2010; revised June, 2010. 10.2478/v10177-010-0020-5



Vs

Vt

Vi

Vj

VmVn

Fig. 1. A Polygonal Shape with Sharp Features.

consecutive vertices vi−1, vi and vi+1, the approximation error
for vi is measured in two ways. In the first way it is given by
the area of the triangle Ti with vertices vi−1, vi and vi+1. The
other way is to take the height of the triangle Ti. To make the
algorithm efficient, a priority queue data structure is used to
maintain vertices with minimum error bound. When a vertex is
eliminated the error bound of other vertices change. It is shown
in [10] that if vi is eliminated then only the error bound of its
neighbors vi−1 and vi+1 are changed. This property is used to
make the execution time of the resulting algorithm efficient.
In fact, the time complexity of the iterative vertex elimination
algorithm is O(n log n). Another notable beneficial property
of the algorithm is that the quality of approximation does not
depend on the choice of the starting vertex.

III. SHARP FEATURE RECOGNITION

Consider a polygonal shape P whose vertices in counter-
clockwise order along the boundary are v0, v1, ..., vn−1. An
example of polygonal shape (the outline of a tea pot) is shown
in Figure 1. The sub-polygon P (m,n) induced by vertices vm
and vn is the portion of the polygon lying to the right of the
diagonal (vm, vn).

Some sub-polygons are round or broad and others are sharp
or skinny. In Figure 2, the sub-polygon to the right of the
diagonal (vm, vn) is broad or round and those to the right of
the diagonals (vs, vt) and (vi, vj) are skinny or sharp. We can
formalize the notion of sharpness of a sub-polygon in terms
of its structural properties. It can be observed that for a given
perimeter, the area enclosed by a round sub-polygon is more
than the area enclosed by a sharp sub-polygon. This leads us
to the following definition.

Definition 1: The sharpness of a sub-polygon P (i, j) de-
noted α(i, j) is defined in terms of the ratio of perimeter
squared over the enclosed area, i. e.

α(i, j) =
R(i, j)

2

A(i, j)

where R(i, j) and A(i, j) represent the perimeter and area of
the of the sub-polygon P (i, j), respectively.

It is noted that the value of sharpness is small for circular
shapes and for skinny ones it can become very large. It can be

TABLE I
SAMPLE SHARPNESS VALUES

12.57

12.81

13.92

16.00

16.76

32.66

67.17

81.23

159.41

288.57

easily verified that for circular shapes the sharpness tends to
4π and for very skinny ones it becomes very high, tending to
infinity, for very very long, narrow hair-like shapes. Sharpness
values for some interesting shapes are listed in Table 1.

For identifying and extracting sharp-features (i.e. sharp sub-
polygons) of a polygonal shape we use additional conditions
of sub-polygons listed below. Our preliminary experiments
suggest that polygons with α values > 19 are perceptually
sharp. This leads us to the following condition.

Condition 1 (Sharpness threshold): A sub-polygon P (i, j)
is sharp if its sharpness value α(i, j) is at least 20.

As we closely examine the boundary of a complex polygon,
we find sharp features starts from a reflex vertex. This leads
us to the next condition:

Condition 2 (Originating from reflex vertex): At least one
end-point of the diagonal separating a sharp feature is incident
on a reflex vertex.

The area of a sharp feature must not be a large fraction of
the area of the whole polygon. Analogous condition applies
for the perimeter.

Condition 3 (Threshold area and threshold perimeter):
The perimeter R(i, j) (respectively area A(i, j)) of the
sub-polygon P (i, j) is no more than δ1 (respectively δ2)
times the perimeter (respectively area) of the whole polygon.
A typical value of δ2 could be 0.1.

For most maximal sharp features the diagonal that separates
it from the whole polygon is of relatively shorter length.

Condition 4 (Short Diagonal): The diagonal d = (vi, vj)
on which the sub-polygon is subtended should be of short
length. We found 0.04 of the total perimeter to work in our
tests.

Now we describe the development of an algorithm for
identifying sharp features of a polygon. The algorithm uses the
visibility graph of the polygon to identify candidate diagonals
on which sharp features can be subtended. Note that the
visibility graph of a polygon is the graph V G(V,E), where
V is the set of vertices of the polygon and E is the set of
its internal diagonals. The algorithm examines each diagonal

L. GEWALI, J. P. SCANLAN154



from the visibility graph to determine the sharpness of the
subtended sub-polygon P (i, j). Only those sub-polygons are
considered for sharpness computation that satisfy the above
listed four conditions. The area of the polygon or sub-polygon
is computed by using the following expression.

A(P ) =
1

2

n−1∑
i=1

(xi + xi+1)(xi+1 − yi)

The perimeter of a sub-polygon is determined in a straight-
forward manner by adding the lengths of the edges bounding
the sub-polygon. The values of the area and perimeter are used
to determine the sharpness value α.

Definition 2: A diagonal whose sub-polygon satisfies
sharpness condition is called a feasible diagonal.

Definition 3: A feasible diagonal inside a sharp feature is
called a dominated diagonal.

Definition 4: A prime diagonal is a feasible diagonal that
is not inside any sharp feature.

To recognize and extract all sharp features of a polygon we
need to have areas A(i, j)’s and perimeters R(i, j)’s for all
sub-polygons. A brute force approach would be to compute
these quantities separately for all diagonals. Time needed to
compute area A(i, j) for one pair is O(n). There can be O(n2)
diagonals and consequently the total time for computing all
sub-areas in this way is O(n3).

Vi

Vi
k

Vi
k­1

Fig. 2. Relating A(i, ik−1) and A(i, ik).

We can develop a faster algorithm by making use of one
sub-area to compute another related sub-area. Our approach is
based on angularly sweeping the sub-areas corresponding to
diagonals originating from a vertex. Let the list of diagonals in
the counterclockwise angular order originating from vertex vi
be di1 , di2 , . . . , dim . Suppose A(i, ik−1) has been computed.
Then A(i, ik) can be expressed as

A(i, ik) = A(i, ik−1) +A(vi, vik , vik+1, . . . , vik+1
) (1)

This is illustrated in Figure 2.
It is thus not necessary to recompute the area A(i, ik) when

computing A(i, ik+1). We can process the sub-areas of the
diagonals in the angular order di, di2 , . . . , dik , to obtain
corresponding sub-areas and also sub-perimeters in O(n) time.
Consequently, all sub-areas and all sub-perimeters can be

computed in O(n2) time. A formal listing of the algorithm
is given as Algorithm AngularSweep.

Algorithm 1. Angular Sweep

1: Compute visibility graph V G of polygon P ;
2: foreach vertex vi of P do
3: Let di1 , di2 , . . . , dik be the counterclockwise ordered

list of diagonals emanating from vertex vi;
4: A(i, j0) = 0;
5: R(i, j0) = 0;
6: for j = 1 to k do
7: A(i, ij) =

A(i, ij−1) +Ar(vi, vik−1, vik−1+1, . . . , vik)
R(i, ij) =
R(i, ij−1) + Pr(vi, vik−1, vik−1+1, . . . , vik)

8: end for
9: end foreach

Lemma 1: Angular Sweep algorithm can be executed in
O(n2) time.

Proof: The time for computing the visibility graph of a
polygon (line 1) can be done in O(n2) time [9]. It is noted
that the angularly ordered diagonals originating from a vertex
can be extracted from the visibility graph in O(n) time and
hence the time needed for one execution of line 3 is O(n).
The for-loop in line 6 executes in O(n) time. Hence the total
time for all steps adds-up to O(n2).

Fig. 3. Illustrating Feasible Diagonals.

The set of feasible diagonals that separate a sharp feature
are illustrated in Figure 3. By examining the indices of of the
vertices of a feasible diagonal dk we can determine whether
or not dk is dominated. Let Ik1 and Ik2 be the indices of the
end vertices of a feasible diagonal dk. Let Jr1 and Jr2 be
the indices of the end vertices of another feasible diagonal
dr. Then dk is dominated by dr if Ik1

and Ik2
are within the

range of Jr1 and Jr2 . When checking range it is necessary
to take index addition modulo n. In this way all dominated
diagonals are marked. The set of unmarked feasible diagonals
are the prime diagonals. The sub-polygons subtended by prime
diagonals give the sharp features. A formal sketch of the
algorithm is listed as Algorithm Sharp Feature Recognition.

RECOGNIZING SHARP FEATURES OF 2-D. . . 155



Algorithm 2. Sharp Feature Recognition

Input: A simple polygon P with vertices
v0, v1, . . . , vn−1

Output: Set of prime diagonals
1: Compute area A(P ) of polygon P ;
2: Perform AngularSweep;

// Determine feasible diagonals
3: Mark all diagonals unfeasible;
4: foreach diagonal dij of P do
5: if dij satisfies all conditions then mark dij feasible
6: end foreach

// Determine prime diagonals
7: Let dyk be the starting prime diagonal;
8: while all vertices are not processed do
9: foreach feasible diagonal d within indexRange(y, k)

do
10: mark d dominated;
11: end foreach
12: dyk = next prime diagonal;
13: end while

Theorem 1: All sharp features of a polygon can be recog-
nized in O(n2) time.

Proof: Area of a polygon can be computed in O(n) time
by using the well known formula and hence line 1 takes
O(n) time. By Lemma 1, line 2 can be done in O(n2) time.
There can be O(n2) diagonals in the worst case and hence
the marking task in line 4 can take O(n2) time. Since all sub-
areas and sub-polygons have been pre-computed, each of the
four conditions for sharpness satisfaction can be verified in
O(n) time. Thus the first for-loop can be done in O(n2) time.
The starting prime diagonal can be obtained in O(n2) time by
scanning the diagonals along the boundary and by using the
pre-computed sub-areas and sub-perimeters. Whether or not
an index i lies within the onther two indices y and k can be
done in constant time and hence the while loop can be done in
O(n2) time. The the total time complexity adds up to O(n2).

IV. DISCUSSION

We presented a formulation of the notion of sharp-feature in
polygonal shapes. We also presented an O(n2) time algorithm

for extracting all sharp-features of a polygon. Sharp-features
can have a variety of structured complexities. If sharp-features
are required to have monotone property or spiral property then
they can be recognized much more efficiently. We conjecture
that all monotone and spiral sharp-features can be recognized
in one scan of the boundary of a polygon and consequently the
time complexity of the recognition algorithm could be linear in
the number of vertices n and we are currently working in that
direction. The notion of sharp-feature can be used as a pre-
processing step for comparing similarity between polygonal
shapes. A promising approach would be to first decompose
the shapes into sharp and broad features and apply the exiting
similarly measuring algorithms on each component separately.
This will allow shape-similarity algorithms to tune-up and
adjust according to the sharpness of the corresponding com-
ponents. Many kinds of polygonal decomposition/partitioning
tools are available [9]. We believe that the decomposition
based on sharp-features would be useful for mesh generation
and robotics.

REFERENCES

[1] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B.
Mitchell, “An efficiently computable metric for comparing polygonal
shapes,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 13, no. 1, pp. 209–215, 1991.

[2] O. Daescu and N. Mi, “Polygonal chain approximation: a query based
approach,” Computational Geometry: Theory and Applications, vol. 30,
pp. 41–58, 2005.

[3] E. Gulbert and H. Lin, “B-spline curve smoothing under position
constraints for line generalisation,” in Proceedings of ACM International
Symposium on Advances in Geographic Information Systems, 2006, pp.
3–10.

[4] M. Held and J. Eibl, “Biarc approximations of polygons within asym-
metric tolerance bands,” Computer-Aided Design, vol. 37, pp. 357–371,
2005.

[5] H. Imai and M. Iri, “Polygonal approximation of a curve,” in Compu-
tational Morphology, G. T. Toussaint, Ed. Elsevier, 1988.

[6] D. T. Lee, “Similarity measurement using polygon curve representation
and fourier descriptors for shape-based vertribral retrieval,” in Proceed-
ings of SPIE, vol. 5032, 2003, pp. 1283–1291.

[7] J. O’Rourke, http://cs.smith.edu/˜orourke.
[8] ——, “The signature of a plane curve,” Siam Journal on Computing,

vol. 15, no. 1, pp. 34–51, 1986.
[9] ——, Computational Geometry in C (Second Edition). Cambridge

University Press, 1998.
[10] A. Pikaz and I. Distein, “An algorithm for polygonal approxima-

tion based on iterative point elimination,” Pattern Recognition Letters,
vol. 16, pp. 557–563, 1995.

[11] R. M. Rangayyan, D. Guliato, J. Carvalho, and S. Santiago, “Feature
extractiom from the turning angle function for the classification of
contours of breast tumors,” Journal of Digital Imaging, 2007.

L. GEWALI, J. P. SCANLAN156




