
 

A R C H I V E S  
o f  

F O U N D R Y  E N G I N E E R I N G  
DOI: 10.2478/v10266-012-0042-9 

 

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences 

 
 
 

ISSN (2299-2944) 
Volume 12 

Issue 2/2012 
 

85 – 88 
 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 2 ,  I s s u e  2 / 2 0 1 2 ,  8 5 - 8 8  85 

 
The Criterion of Minimum Entropy 

Production in Eutectic Growth  
 

M. Trepczyńska – Łent* 
Faculty of Mechanical Engineering, University of Technology and Life Sciences, s. Kaliskiego 7, 85-796 Bydgoszcz, Poland 

*Corresponding author. E-mail address: malgorzata.trepczynska-lent@utp.edu.pl 
 

Received 14-05-2012; accepted in revised form 31-05-2012 
 
 

Abstract 
 

The paper presents adaptation problem of lamellar/rod growth of eutectic. The transformation of eutectic microstructure was 
investigated systematically. A interpretation of the eutectic growth with theory minimum entropy production was presented.  
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1. Introduction 
 

The majority of industrial casting alloys are eutectic or near 
eutectic in composition. Eutectic microstructures form in alloys 
when two or more phases grow simultaneously in a co-operative 
manner. Many eutectic systems exhibit either a lamellar or rod 
like structure depending on solidification conditions). 
Especially, growth rate plays a crucial role in the lamella / rod 
transformation. 

In classical physics, the entropy of a physical system is 
proportional to the quantity of energy no longer available to do 
physical work. Entropy is central to the second law of 
thermodynamics, which states that in an isolated system any 
activity increases the entropy [1]: 

In thermodynamics, a physical system is a collection of 
objects (bodies) whose state is parameterized by several 
characteristics such as the distribution of density, pressure, 
temperature, velocity, chemical potential, etc. The change of 
entropy of a physical system when it passes from one state to 
another equals:  

 
∆𝑆 = ∫ 𝑑𝑄

𝑇
, (1) 

 
where dQ denotes an element of heat being absorbed (or 
emitted; then it has negative sign) by a body, T is the absolute 

temperature of that body at that moment, and the integration is 
over all elements of heat active in the passage. The above 
formula allows one to compare the entropies of different states 
of a system, or to compute the entropy of each state up to  
a constant (which is satisfactory in most cases). The absolute 
value of entropy is established by the third law of 
thermodynamics.  

Notice that when an element dQ of heat is transmitted from 
a warmer body at temperature T1 to a cooler one at temperature  
T2 , then the entropy of the first body changes by – dQ/T1 , while 
that of the other rises by dQ/T2. Since T2<T1 , the absolute value 
of the latter fraction is larger and jointly the entropy of the two-
body system increases (while the global energy remains the 
same) [1].  

A system is isolated if it does not interact with its 
surroundings (i.e., is not influenced in any way). In particular, 
an isolated system does not exchange energy or matter (or even 
information) with its surroundings. In virtue of the first law of 
thermodynamics (the conservation of energy principle), an 
isolated system can pass only between states of the same global 
energy. The second law of thermodynamics introduces 
irreversibility of the evolution: an isolated system cannot pass 
from a state of higher entropy to a state of lower entropy. 
Equivalently, the second law says that it is impossible to 
perform a process whose only final effect is the transmission of 
heat from a cooler medium to a warmer one. Any such 
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transmission must involve outside work; the elements 
participating in the work will also change their states and the 
overall entropy will rise.  

The first and second laws of thermodynamics together imply 
that an isolated system will tend to the state of maximal entropy 
among all states of the same energy. This state is called the 
equilibrium state and reaching it is interpreted as the 
thermodynamical death of the system. The energy distributed in 
this state is incapable of any further activity [1]. 

 
 

2. The minimum entropy production 
 

In 1945 Prigogine proposed a “Theorem of Minimum 
Entropy Production” which applies only to the linear regime 
near a stationary thermodynamically non-equilibrium state. The 
proof offered by Prigogine is open to serious criticism.  
A critical and unsupportive discussion of Prigogine's proposal is 
offered by Bertola (2007) [2], Grandy (2008).  

Among others, the so-called principle of minimum entropy 
production rate is certainly the most debated among scientists. 
The general statement of the minimum entropy production 
principle reads: ,,A steady state has the minimum rate of entropy 
production with respect to other possible states with the same 
boundary conditions”. In other words, the theorem of minimum 
entropy production asserts that, under certain assumptions, the 
global entropy production rate of a given system attains a 
minimum value when the processes in the system become 
stationary. As a special case, one finds the equilibrium states, 
where entropy is maximum and its rate of production becomes 
zero [2]. 

 To begin consider a system which exchanges mass and 
energy with its environment. Let dSi be the entropy production 
in the system due to irreversible processes and dSe be the 
entropy flux due to exchanges between the system and 
environment. The total entropy change in the system is given 
by: 

 
dS = dSe + dSi (2) 

 
The second law states that dSi ≥ 0. However if sufficient low 
entropy flux enters the system then dSe ≤ 0 and it is possible that 
|dSe| > |dSi| which implies that dS < 0. If this is the case then the 
system will be driven away from equilibrium. It is also possible 
for the system to eventually reach a steady state (dS = 0). It is 
the process which leads to this steady state and the 
accompanying coherent behaviour which Prigogine, for special 
cases, has developed a theory for. Central to this theory is the 
Minimum Entropy Production rule. Let P - entropy production 
due to irreversible processes in the system and σ - local entropy 
production, then: 
 
 𝑃 =  𝑑𝑆𝑖

𝑑𝑡
=  ∫𝛿 𝑑𝑉  ≥ 0 (3) 

 
where the integral is over the spatial volume of the system [3]. 
    Using Onsager’s Reciprocity Relations it is possible to write: 
 
𝜎 = 𝐿𝑘𝑙 𝑋𝑘 𝑋𝑙  (4) 

where 𝑋𝑘 is the thermodynamic force acting on the system and 
the summation convention over repeated indices is in effect. 
Substituting for σ, making several assumptions about the forces, 
and differentiating with respect to time, leads to: 
 
𝑑𝑃
𝑑𝑡

=  2
𝑇 ∫

 𝜕𝜇𝑖
𝜕𝜌𝑗

  
𝜕𝜌𝑖 

𝜕𝑡
  
𝜕𝜌𝑗 

𝜕𝑡
 𝑑𝑉   (5) 

 
The quadratic form in the integral can be shown to be positive 
semi-definite. It is zero at a steady state, hence: 

dP/dt < 0    away from steady-state 
                       dP/dt = 0    at a steady-state. 

This is the famous minimum entropy production rule which 
governs the behaviour of dissipative structures in the steady-
state. It can be easily shown that this rule guarantees the 
stability of steady non-equilibrium states [3]. 

However the derivation of this rule depends on seven 
assumptions: 
1) Local Equilibrium Thermodynamics (LET) applies. The 

system must be well enough behaved that locally 
(spatially) equilibrium thermodynamics apply. 

2) The fluxes can be expressed as a linear combination of the 
flows using Onsager's Reciprocity Relationship. 

3) The Lij used in the expansion of the fluxes are time 
independent. 

4) The medium is isotropic. 
5) The boundary conditions imposed on the system are time 

independent. 
6) The system is isothermal. 
7) The system is in mechanical and thermal equilibrium with 

its environment. Only mass flow occurs across the 
boundary. 

This set of constraints means that the minimum entropy 
production rule and most of Prigogine's results apply to a very 
restrictive set of systems. A general far from equilibrium 
thermodynamics and theory of self-organization does not exist 
[3]. 

 An important theorem applicable to steady-state solutions 
in dissipative systems was stated by Ilya Prigogine: the principle 
of minimum entropy production, which can be represented 
using the variational principle: 
 
𝛿 ∫𝑄𝑑3 𝑟 = 0,  (6) 

 
where Ѳ is the entropy production [4]. 

 
 
 

3. Entropy production, dissipation, 
energy flux and heat transfer  

 
The relationship between entropy production, dissipation 

and energy flux or heat transfer is often assumed and not clearly 
established or stated for the situation under investigation. They 
are not necessarily the same thing. Often in the literature, 
erroneously, entropy production, dissipation and heat transfer by 
a system are treated as the same quantity. This because of the 
relationship dS = dQ/T. (S - entropy and Q - heat). Many people 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 2 ,  I s s u e  2 / 2 0 1 2 ,  8 5 - 8 8  87 

misuse this relationship to say ΔS = ΔQ/T and thus conclude 
that ΔS ∝ Δ Q. 

Thus, incorrectly, they conclude that the entropy change in 
the system is proportional to the heat transfer, which (both the 
entropy change and heat transfer) is often referred to as 
dissipation. It is fair to say this, if and only if, there is only one 
mode of energy transfer from the system, heat transfer to  
a single environment (reservoir) which is at a fixed temperature. 
Entropy production and energy dissipation (i.e. the energy 
coming out the back end) are only equivalent when you have  
a single thermal dissipation route. Otherwise they are not 
equivalent (but obviously related) [3]. 

 
 

4. Thermodynamics of the whole 
solidification process 

 
The thermodynamics of the whole solidification process 

involves a calculation of entropy production for the regular 
structure growth. The regular structure formation at steady-state 
should be described by the criterion of minimum entropy 
production. For that reason the entropy production, PD was 
calculated assuming an isothermal solid/liquid interface: 
 
𝑃𝐷 =  ∫𝜎𝐷 𝑑𝑉   (7) 
 
where the entropy production per unit time and unit volume 
formulated for constant temperature is as follows: 
 
𝜎𝐷 = 𝐷𝑅∗ 𝜀�𝑁𝑖 (1 − 𝑁𝑖 )�

−1 |𝑔𝑟𝑎𝑑.𝑁𝑖|2  (8) 
 
The entropy production, Eq. (9) was calculated for the mass 
transport associated with thermo-diffusion only, Glansdorff and 
Prigogine (1971) [7], since the heat transfer was neglected. 
Also, it was necessary to introduce the solution to diffusion 
equation for steady state into the integral given by Eq. (7). 
Therefore, the solution to diffusion equation developed by 
Jackson and Hunt (1966) was used in the calculation of total 
entropy production for the considered structures formation. 
Finally, an average entropy production associated with the mass 
transport was calculated: 
a/ for lamellar structure formation (regular lamellae within 
generally irregular morphology): 
 
𝑃�𝐷𝐿 =
 𝑊1𝑣 �𝑆𝛼 + 𝑆𝛽�

−1 + 𝑊2𝑣 �𝑆𝛼 + 𝑆𝛽�
−2 + 𝑊3𝑣2+𝑊4𝑣 2�𝑆𝛼 +

𝑆𝛽�  + 𝑊5𝑣3 �𝑆𝛼 + 𝑆𝛽�
2   (9) 

 
b/ for rod-like structure formation (regular rods within generally 
irregular morphology): 
 
𝑃�𝐷𝑅 =  𝑉1𝑣 �𝑟𝛼 + 𝑟𝛽�

−1 + 𝑉2𝑣 �𝑟𝛼 + 𝑟𝛽�
−2 + 𝑉3𝑣2+𝑉4𝑣 2�𝑟𝛼 +

𝑟𝛽�  + 𝑉5𝑣3 �𝑟 + 𝑟𝛽�
2   (10) 

 

Wi and Vi , i= 1, … ,5 - coefficients contain some material 
parameters that define both lamellar and rod-like structures 
formation, respectively, Wołczyński and Billia, (1996). 
     A minimization of Eqs. (9)-(10) involves: 
a/ for the formation of lamellar eutectic structure: 
 

𝜕𝑃����𝐷𝐿

𝜕�𝑆𝛼+𝑆𝛽�
=  −𝑊1𝑣 �𝑆𝛼 + 𝑆𝛽�

−2 − 2𝑊2𝑣 �𝑆𝛼 + 𝑆𝛽�
−3  +

2𝑊5𝑣3 �𝑆𝛼 + 𝑆𝛽� = 0   (11) 
 
 
b/ for the formation of rod-like eutectic structure: 
 

𝜕𝑃�𝐷𝑅

𝜕�𝑟𝛼+𝑟𝛽�
=  −𝑉1𝑣 �𝑟𝛼 + 𝑟𝛽�

−2 − 2𝑉2𝑣 �𝑟𝛼 + 𝑟𝛽�
−3  +

2𝑉5𝑣3 �𝑟𝛼 + 𝑟𝛽�
2
=0 (12) 

 
A model of the evolution of the solid / liquid interface curvature 
versus the varying growth rate v, with the resultant equilibrium 
at the triple point was used in the calculation of the minimum 
entropy production, Eq. (11,12). The above evolution results in 
crystallographic orientations evolution and confirms the specific 
surface free energies anisotropy [5 ,6]. 
 
 
5. A parabola of the entropy  

production  
 

It is postulated that the maximum destabilization of the 
solid/liquid interface of the non-faceted phase is observed just 
when the branching begins. The branches decrease the inter-
lamellar spacing (this is required by the diffusion). The 
diminishing of spacing occurs until minimal distance between 
lamellae is reached. The minimal distance corresponds to 
regular structure formation in steady-state according to the 
criterion of minimum entropy production. The wave of 
perturbation is created at this destabilized s/l interface. It is 
assumed that the wavelength of maximum destabilization can be 
referred to as marginal stability. When a perturbation develops 
then the local growth rate of the non-faceted phase decreases. 
Thus, the lamellae appear locally at the same time when rods are 
formed [5,6]. 

When a perturbation vanishes then the local growth rate 
increases and reaches the growth rate proper for regular 
structure formation, locally. In this area a rod-like structure is 
the stable form within the operating range. As a consequence of 
branching, the oscillation of the inter-phase spacing also occurs, 
Figure 1. 

The paraboloid of the entropy production is drawn 
schematically in the “thermodynamic” coordinate system, that 
is, in function of two thermodynamic forces. Next, it is assumed 
(for the simplicity) that the paraboloid does not change its shape 
when entropy production, P , is calculated for the crystal growth 
in function of v , λ or v , R. Two trajectories are superposed onto 
the paraboloid, A - trajectory of local minima of the paraboloid 
for the regular structure formation, B - trajectory of the marginal 
stability referred to the maximal destabilization of the s/l 
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interface. Both trajectories intersect each other (at K - point) for 
the critical thermal gradient, GK, at which an oscillation 
disappears and irregular structure is completely transformed into 
regular eutectic structure. 

 

 
Fig. 1. A paraboloid of the entropy production drawn in function 
of two thermodynamic forces ( XC , Xr ), with the added so-called 

“technological” coordinate system ( v, λ) [5, 6] 
 

The discussed oscillation can be illustrated on the parabola 
of entropy production. Such a parabola is to be created by an 
intersection of the paraboloid (fig. 1), by the plane given for the 
imposed thermal gradient, G, v= const, (Prigogine, 1980), as 
shown in Figure 2.  

The oscillation of the inter-phase spacing can be generalized 
to the oscillation of the whole eutectic system between local 
minimum of entropy production (an attractor denoted as A) and 
an adequate state of marginal stability (bifurcation point for 
branching denoted as B), for a given condition of growth 
v,G=const 
 

 
Fig. 2. A parabola of the entropy production for the eutectic rod-

like structure formation [5, 6] 
 

It results from the current model (Fig. 2) that, the regular part of 
the generally irregular eutectic structure is formed at the 
minimum entropy production localized at the A - parabola 
minimum which performs the role of attractor for the eutectic 
system [6]. 

 

6. Conclusions 
 

The theorem of minimum entropy production is applied to 
steady and stationary periodic eutectic growth with an 
oscillating freezing rate. Unsteady eutectic solidification is of 
practical importance, because solidification rarely occurs at 
steady state. 

The principle of minimum entropy production, which is 
commonly used to characterise the stationary states of linear 
dissipative systems obeying Onsager’s reciprocity relations, has 
been reviewed critically. The rigorous analysis of two examples 
(the heat conduction in a fluid at rest and the combined shear 
flow and heat conduction in an incompressible fluid) based on 
the comparison of the theorem’s results with those of the field 
equations of continuum mechanics shows that this theorem 
cannot be considered as a general variational principle, but at 
best an approximation method, which converges to the exact 
solution as the system converges to equilibrium [2].  

The theorem proof, as formulated by Prigogine, leads to an 
erroneous conclusion because the condition of stationary state is 
not taken into account correctly in the expression of entropy 
production. When the additional relationship among generalised 
thermodynamic forces is introduced into the expression of the 
entropy production, the theorem shows that for systems in  
a stationary state the entropy production must be zero.  

A critical analysis of the theorem proof shows that the 
minimum entropy production of system in a stationary state 
cannot be different from zero [2]. 
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