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HEAT TRANSFER AND INVERSE PROBLEMS; SELECTED CASES IN 1D AND 3D GEOMETRIES

TRANSPORT CIEPŁA I ZAGADNIENIA ODWROTNE; WYBRANE PRZYKŁADY W GEOMETRII JEDNO- I TRÓJWYMIAROWEJ

Heat transport phenomena in the framework of continuum media mechanics is presented. Equations for conservation
laws and finite volume numerical method based on these equations are discussed. This method is the foundation of the
FLUENT computational fluid dynamics (CFD) package which was used for calculations of the temperature distribution in
several examples: steady and evolutional states for single and multiphase systems. Comparison with analytical solutions was
carried out. This allows verification of the FLUENT results for various boundary conditions. Independent procedure based on
the method of lines was applied for 1D cases and compared with FLUENT and/or analytical results. Formulation of a special
type inverse problem for heat equation was given. Analytical solution of the steady-state inverse problem in 1D geometry was
developed. Analogues case for 3D geometry was tested using FLUENT. This led to the optimization problem with clear and
well defined optimum. This result suggests that in similar but more general inverse problems global optimum may exist which
justifies the inverse problem methodology.

Zaprezentowano zjawiska transportu ciepła w kontekście mechaniki ośrodków ciągłych. Omówiono równania wyrażające
prawa zachowania oraz metodę numeryczną objętości skończonych bazującą na tych prawach. Metoda ta będąca podstawą
pakietu FLUENT, który służy do obliczeń w dynamice płynów (CFD, compuational fluid dynamics) została użyta do symulacji
rozkładu temperatury w kilku przykładach ilustrujących stany ewolucyjne i stacjonarne dla jedno- i wielo-fazowych układów.
Przeprowadzono porównanie z wybranymi rozwiązaniami analitycznymi. Pozwoliło to na weryfikację wyników z FLUENT-a
dla różnych warunków brzegowych. Niezależna procedura oparta o metodę linii dla przypadku jednowymiarowego została
wykorzystana do porównania z wynikami z FLUENT-a oraz wynikami analitycznymi. Sformułowano pewien specjalny przy-
padek zagadnienia odwrotnego dla równania ciepła i przedstawiono jego analityczne rozwiązanie. Analogiczny przypadek w
geometrii trójwymiarowej przetestowano numerycznie z użyciem FLUENT-a. Prowadzi to do problemu optymalizacji z dobrze
określonym minimum globalnym. Wynik ten sugeruje, że w podobnych, ale bardziej ogólnych zagadnieniach odwrotnych może
istnieć optimum, co usprawiedliwia metodologię zagadnienia odwrotnego w takich sytuacjach.

1. Introduction

Today, the design of innovative, multifunction materials
guaranteeing their optimal use in engineering applications, is
impossible without computer modeling [6]. The impressive
development of computational power of modern computers
have made it possible to carry out huge and time-consuming
scientific computations on standard PCs by virtually any user.

Material science is one of the most active areas of current
research in computational heat transfer [1], [2], [3], [4]. For
example, heat transfer and fluid flow are important in materi-
als processing methods such as casting, chemical deposition,
spray coating, welding, and blast furnace design and durability.
Thus it is vital to understand these phenomena and develop
procedures to control such effects. As a consequence of im-
portance of heat and mass transfer and fluid flow, extensive
work has been done directed at numerical modeling. An obvi-
ous advantage of computer modeling is that the behavior and

properties of a system may be analyzed without actually cre-
ating a prototype. Thus the total cost of product development
can be significantly reduced.

The basic equations describing fluid flow and heat trans-
fer were already known at the beginning of XIX century [5].
However, the numerical methods to solve them for real-world
engineering applications became feasible in the second half of
the XX century due to the appearance of computers.

The main goal of the paper is to present wide-range sim-
ulations and possible use of inverse problems involving heat
transfer phenomena by using specialized commercial CFD
software (FLUENT) and authors’ own programs for compar-
ing results. Also we advocate the use of special cases where
analytical solutions can be obtained for testing purposes.

The most popular numerical method used in the CFD is
the finite volume method. It requires the equations to be writ-
ten in the form of conservation laws so we start with short
introduction to the basic models of CFD.
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2. Conservation laws for continuum media

The governing equations of heat and mass transport rep-
resent mathematical statements of the conservation laws of
physics. Basically in all situations we can resort to the follow-
ing conservation laws: the mass conservation law, the rate of
change of momentum law (equal to the sum of all forces on
the fluid element (Newton’s second law)), the rate of change
of energy law (equal to the rate of heat input and the rate of
work done on the fluid element – the energy conservation law
or the first law of thermodynamics) [6], [7].

We consider a system of r species (components) occu-
pying a region Ω in space R3 with ρi(x, t) being the mass
density of the i-th species. We assume that all species move
according to a velocity vector field v(x, t) in Ω which describes
the velocity at position x ∈ R3 and time instant t > 0.
Mass conservation of i-th species can be stated in words as


rate of change
of mass in an element

 =


net rate of flow
of mass into an element

 +


rate of production/consumption
of mass in an element



and the formal expression for this law is

∂ρi

∂t
+ div(ρiv + Jd

i ) = Ri (i = 1, . . . , r), (1)

where: Jd
i − the diffusion flux of ith species (kg ·m−2 · s−1),Ri−

the rate of production/destruction of ith species per unit vol-
ume. From eq. (1) we see that the movement of mass is split
into two terms: convective (ρiv), caused by the general flow
and diffusion transport (Jd

i ), normally caused by the gradient
of mass distribution.

If the diffusion flux Jd
i is expressed by the use of Fick’s law

of diffusion, Jd
i = −θi∇ρi, where θiis the diffusion coefficient,

then eq. (1) can be written as

∂ρi

∂t
+ div(ρiv) = div(θi∇ρi) + Ri (i = 1, . . . , r). (2)

Momentum equation
This fundamental equation is based on the Newton’s sec-

ond law – a cornerstone of classical mechanics. In words it
states that
[

rate of change of
momentum of an element

]
=

[
sum of all forces acting
on the element

]

The rates of change of momentum components (per unit vol-

ume) is given by ρ
Dvα
Dt

, where α ∈ {x, y, z} and
D
Dt

=
∂

∂t
+v·∇

denotes a substantive (material)derivative associated with the

vector field v : Ω × [0, ∞) → R3. The expression ρ
Dvα
Dt

for
the rate of momentum change is as basic as the general as-
sumptions of continuum media mechanics, but the form of
expression of forces acting on the fluid element require further
assumptions. The standard approach is that for any continuum,
forces acting on a piece of material are of two types: (i) forces
of stress where piece of material is acted on by forces across
its surface by the rest of a body; (ii) external (body) forces
such as gravity, electromagnetic, or centrifugal force.

It is a common practice to highlight the contribution due
to the surface forces as separate terms in the momentum equa-
tion and to include the effects of body forces as source terms.

The surface part of forces (stress) can be described by the
pressure (scalar) and nine viscous stress components (tensor):
p and τ = [ταβ], where α, β ∈ {x, y, z}. The meaning of stress
components is as follows: ταβ = the stress component acting
in the α− direction on a surface normal to the β− direction.
Now we can write the momentum equations as

ρ
Dvα
Dt

= −∂p
∂α

+
∂τxα

∂x
+
∂τyα

∂y
+
∂τzα

∂z
+Bα for α = x, y, z. (3)

In the above equation the effects of surface stresses are shown
explicitly while the body forces are contained in the source
terms Bx, By, Bz. As an example we can write for the gravita-
tional force near the earth surface (where homogeneous gravity
can be assumed) Bx = Bz = 0 and Bz = −ρg.

Energy equation
Basically this fundamental law is embodied in the first

law of thermodynamics which states that the rate of change
of energy of a fluid element is equal to the rate of heat input
plus the rate of work done on that element:


rate of change
of energy of an element

 =


net rate of heat
input to the element

 +


net rate of work done
on the element



The rate of work done on the media element by surface forces
equals to the product of force and velocity component in the
force direction. Taking into consideration the pressure field
and stress tensor introduce earlier we can arrive at the follow-
ing equation for the work rate by forces in the x-direction

−∂(pvx)
∂x

+
∂(vxτxx)
∂x

+
∂(vxτyx)
∂y

+
∂(vxτzx)
∂z

. (4)

Analogous expressions hold for components y and z.
The next contribution to energy balance is connected with

the heat flux Jq. The net heat transfer per unit volume into
the element due to heat flow is given by −div Jq. If Fourier’s
law of heat conduction is applicable, then Jq = −κ∇T so we
get −div(κ∇T ). Here κ > 0 denotes the thermal conductivity.
Taking into account all these contributions and the source of
energy SE leads to the following energy balance equation

ρ
DE
Dt

= −div(pv) +

(
∂(vxτxx)
∂x

+
∂(vxτyx)
∂y

+
∂(vxτzx)
∂z

+
∂(vyτxy)
∂x

+
∂(vyτyy)
∂y

+
∂(vyτzy)
∂z

+
∂(vzτxz)
∂x

+
∂(vzτyz)
∂y

+
∂(vzτzz)
∂z

)
+ div(κ∇T ) + SE ,

(5)
where energy density E = u+ 1

2 (v
2
x +v2

y +v2
y) with u the internal

energy density.
Although equation (5) is proper energy balance it is usu-

ally not used in this form. Rather we rewrite it in such way
that kinetic and internal energies are separated. This requires

to develop the expression for the term
D

(
1
2 (v

2
x + v2

y + v2
z )
)

Dt
.

It can be achieved by multiplying the momentum equation
(3) by the velocity component vα and adding the results for
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α = x, y, z. After some algebra we arrive at the equation for
the internal energy u :

ρ
Du
Dt

= −pdiv v + div(κ∇T ) +
∑

α,β

ταβ
∂vβ
∂α

+ Si, (6)

where the source term is now defined as Si = SE − v · B with
body forces introduced earlier (the momentum equation (3)).

In a special but important case of an incompressible fluid
we have u = cpT and div v = 0, where cp is the specific heat.
Now the equation (6) can be written for temperature as follows

ρcp
DT
Dt

= div(κ∇T ) +
∑

α,β

ταβ
∂vβ
∂α

+ Si. (7)

On the other hand, for compressible flows the equation (6)
is usually written in the form for the enthalpy. The specific
enthalpy h and the specific total enthalpy h0 are defined as

h = u +
ρ

p
, h0 = h +

1
2
(v2

x + v2
y + v2

z ),

what combined with the definition of specific energy E =

u + 1
2 (v

2
x + v2

y + v2
z ) gives the total enthalpy equation

∂(ρh0)
∂t

+div(ρh0v) = div(κ∇T )+
∂p
∂t

+
∑

α,β

∂(vβταβ)
∂α

+Si. (8)

Let Ω be a region in R3 and T (x, t) temperature at point x ∈ Ω

and time t > 0. The special case of (7) – the conservation of
thermal energy – leads to the equation

cpρ
∂T
∂t

= div(κ∇T ), (9)

where cp− the specific heat (thermal capacity), ρ− the density
(mass per unit volume), κ− the thermal conductivity. If all
these coefficients are constant, then equation takes the form

∂T
∂t

= θ∆T, (10)

where θ = κ/cpρ is the so called thermal diffusivity.
In the case of the axial symmetry the equation (10) can be
written as

∂T
∂t

= θ

(
∂2T
∂r2 +

1
r
∂T
∂r

+
1
r2

∂2T
∂2φ

)
, (11)

where the temperature field is expressed in the cylindrical
coordinates T = T (r, φ, t).

The equation must be supplemented by appropriate side
conditions such as the initial temperature T0 : Ω→ R, i.e.

T (x, 0) = T0(x) x ∈ Ω, (12)

and boundary condition: Dirichlet if the temperature is con-
trolled on the boundary ∂Ω, Neumann if the heat flow across
∂Ω is controlled, or Robin type if the flow obeys Newton’s
law of cooling. In the case of temperature control over the
boundary we have formal statement as

T (x, t) = g(x, t) for x ∈ ∂Ω, t > 0, (13)

where the function g : ∂Ω × [0, ∞) → R (temperature dis-
tribution on the boundary) is given. In the case of heat flow
according to Newton’s law the boundary condition (called also
the Robin boundary condition) reads

−κ ∂T
∂n

(x, t) = h(T (x, t) − Ta(t)) for x ∈ ∂Ω, t > 0, (14)

where h > 0− the heat transfer (exchange) coefficient, Ta(t)−
the ambient temperature. Here the symbol ∂T

∂n means the deriv-
ative in the normal direction at the boundary points. This
may also be expressed as following: ∂T

∂n = (∇T ) · n, where
n : ∂Ω → R3 is the normal vector field on the boundary, i.e.
(a) unit length, |n(x)| = 1, (b) n(x) is perpendicular to the
boundary at x ∈ ∂Ω, (c) n(x) points in the outward direction.

3. Numerical method

There are three main categories of numerical techniques
in the heat transport problems: finite difference, finite ele-
ment, and spectral methods [7]. We will use the FLUENT
environment which is based on the finite volume method – a
special type of the finite difference method [7]. The numeri-
cal treatment consists of the following steps: (1) integration of
the equations over all the control volumes of the domain, (2)
discretization or conversion of the resulting integral equations
into system of algebraic equations, (3) solution of the algebraic
equations (usually by some iterative method).

The basic steps of finite volume discretization
As can be seen from the previous section – esp. equations

(2), (3), and (7) – the conservative (divergence) form of the
equations which govern the time-dependent fluid flow and heat
transfer can be written in the following generic way

∂(ρϕ)
∂t

+ div(ρϕu) = div(θ∇ϕ) + S(ϕ), (15)

where ϕ is the any conserved quantity (mass fraction of a
chemical species, component of velocity (momentum equa-
tion), the enthalpy or temperature (energy) etc.), u =

(ux, uy, uz) is the vector field of velocities, θ > 0 is diffusion
coefficient, and S(ϕ) is the source term. The quantities are θ
and S are specific to a particular meaning of ϕ.

Step1: Equation (15) is the starting point of numerical
procedure based on the finite volume method. The key step of
this approach is the integration of (15) over a control volume
C ⊂ R3 :
∫

C

∂(ρϕ)
∂t

dx +

∫

C

div(ρϕu)dx =

∫

C

div(θ∇ϕ)dx +

∫

C

S(ϕ)dx,

(16)
where dx denotes integration with respect to the volume mea-
sure in space. Applying now the Gauss’s divergence theorem,∫
C div(v)dx =

∫
∂C n · vda, the above equality takes the form

∂

∂t

∫

C

ρϕdx +

∫

∂C

n · (ρϕu)da =

∫

∂C

n · (θ∇ϕ)da +

∫

C

S(ϕ)dx.

(17)
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In a steady state case there is no time dependence and eq. (17)
is ∫

∂C

n · (ρϕu)da =

∫

∂C

n · (θ∇ϕ)da +

∫

C

S(ϕ)dx, (18)

what has a clear interpretation as flux balance in the control
volume C : the left side gives the total flux across the bound-
ary ∂C and the right side contains the diffusive flux and the
source (production or consumption) of the property ϕ in the
volume C.

In time-dependent problems it is necessary to integrate
over small time interval [t, ∆t] what gives the following most
general integrated form of the transport equation in finite vol-
ume method:


∫
C
ρϕdx


∣∣∣∣∣∣
t+∆t

t

+
t+∆t∫
t

∫
∂C

n · (ρϕu)da =

t+∆t∫
t

∫
∂C

n · (θ∇ϕ)da +
t+∆t∫
t

∫
C

S(ϕ)dx.
(19)

Step 2: Divide the domain into small control volumes cen-
tered around nodal points. Usually control volume near the
boundary of the domain are set up in such a manner that the
physical boundary coincide with the part of control volume
boundary.

Step 3: Apply some form of approximation to integrals
in equations (18) or (19) which will expressed them by the
values of unknown conserved quantity ϕ at nodal points (for
volume integrals,

∫
C (. . .)dx), and values of fluxes of ϕ at the

faces (for surface integrals
∫
∂C (. . .)da).

Step 4: Solution of the resulting system of linear alge-
braic equations which gives the distribution of ϕ at nodal
points. In practical situations (2D or 3D geometry) we obtain
large systems so direct methods (such as Gauss elimination,
LU decomposition etc.) are not suitable. Generally iterative
methods for solving such systems are utilized (Gauss-Seidel
or multi-grid techniques) [7], [8].

4. Numerical solutions for 3D geometry

Computer simulations of temperature distributions were
carried out using FLUENT package. Results for several
geometries, different initial and boundary conditions, and ther-
mal properties at selected times are shown – see Figure 1 -
Figure 3.

In Figure 1 steady-state temperature distribution in four
phase system is presented. Different views are displayed (3D
and cross-sections). Calculations have been performed for the
following data: 1) thermal diffusivities of materials: θM1 =

4.03 · 10-6 m2 · s−1,θM3 = 1.19 · 10-4 m2 · s−1, θM4 =

2.82 · 10-6 m2 · s−1, 2) initial temperature in the whole vol-
ume T (x, 0) = 300 K, 3) boundary conditions: adibatic at the
side surface of the cylinder M1, Dirichlet boundary condi-
tion (13) – uniform temperature 350 K at the bottom and-
Neumann boundary conditions J = 1000W · m−2 on the
top wall. Calculations for two different thermal conductivities
of the M2 rod: κM2 = 202.4 W · m−1 · K−1 − left column,
κM2 = 20.24 W · m−1 · K−1 − right columnare presented in
Figure 1.

Fig. 1. Steady-state temperature distribution. Rods made of materials
denoted by M2, M3 and M4 are plunged in the cylinder M1. Ther-
mal diffusivities of materials are as follows: θM1 = 4.03 · 10-6 m2 ·
s−1,θM3 = 1.19 · 10-4 m2 · s−1, θM4 = 2.82 · 10-6 m2 · s−1. Initial
temperature in the whole volume T (x, 0) = 300 K . Boundary condi-
tions adibatic at the side surface of cylinder M1, Dirichlet boundary
condition 350 Kat the bottom and Neumann boundary conditionJ =

1000 W · m−2 on the top wall.Calculations for two different thermal
conductivities of the M2 rod: κM2 = 202.4 W ·m−1 ·K−1 −left column,
κM2 = 20.24 W · m−1 · K−1 −right column

Fig. 2. Geometry of 3D object case 2. Cylinders made of materials
denoted as M2 are plunged in the cylinder M1. Thermal proper-
ties of materials are as follows: θM1 = 8.43 · 10-7 m2 · s−1, θM2 =

4.03 ·10-6 m2s−1. Initial temperature in the whole volume T (x, 0) =

300 K.Adiabatic boundary conditions at the side surface of the cylin-
der M1, Dirichlet boundary condition at the bottom350 Kand Robin
boundary conditions h = 1000 W · m−2 · K−1, Ta = 400Kon the top
wall
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Fig. 3. Temperature distribution for cross-sections 1 and 2 from Figure 2 at selected times
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In Figure 2 and Figure 3 temperature distributions for
selected times: 1h, 4h, and t → ∞ are shown. Calculations
have been performed for the following data: 1) thermal dif-
fusivities of materials: θM1 = 4.03 · 10-6 m2 · s−1,θM2 =

8.55 ·10-5 m2 · s−1, 2) initial temperature in the whole volume
T (x, 0) = 300 K, 3) boundary conditions: adibatic at the side
surface of the cylinder M1, Dirichlet boundary condition (13)
– uniform temperature 350 K at the bottom and Robin bound-
ary conditions (14) on the top wall (h = 1000 W · m−2 · K−1,
Ta(t) = 400 K). 3D views for selected times are displayed in
Figure 2 and the corresponding cross-sections in Figure 3.

5. Analytical solutions

Example 1 (one phase analytical solution)
Let us consider the following set of equations



∂T
∂t = θ ∂

2T
∂x2 for 0 < x < d, t > 0,

T (0, t) = TL, −κ ∂T
∂x (d, t) = JR,

T (x, 0) = T0,

(20)

which describes the heat conduction of a one-dimensional rod
with the boundary conditions: constant temperature TL kept at
left side, x = 0,and constant feed of heat JR at the right side,
x = d.

By simple change of variable, T̃ (x, t) := T (x, t) −[
TL − JR

κ
x
]
, this set is easily converted into the following ho-

mogeneous problem


∂T̃
∂t = θ ∂

2T̃
∂x2 for 0 < x < d, t > 0,

T̃ (0, t) = 0, ∂T̃
∂x (d, t) = 0,

T̃ (x, 0) = T0 − TL + JR
κ

x.
(21)

The solution may be obtained by the separation of variables
method in which we seek the building blocks of the solu-
tion in the form of the functions Tk(t)Xk(x). This leads to the
following expression

T (x, t) = TL − JR
κ

x +
∞∑

k=0
Ake−λ

2
k t sin

(
(k + 1

2 )π
x
d

)
, (22)

where λk = (k + 1
2 )

π
√
θ

2d , k = 0, 1, 2, . . . The coefficients Ak

In the formula (22) are calculated as the sine Fourier series
coefficients

Ak =
2
d

d∫

0

sin
(
(k + 1

2 )
πx
d

)
T̃ (x, 0)dx for k = 0, 1, 2, . . . (23)

In the particular application of (23) to initial conditions of the
problem (21) we arrive after some algebra at

Ak =
2(T0 − TL)
(k + 1

2 )π
+

2JRd
κπ2

(−1)k

(k + 1
2 )

2
, k = 0, 1, 2, . . . (24)

The example calculations – solution of heat transport at select-
ed times are presented in Figure 4. Next Figure 5 compares
different methods (tools): analytical solution, method of lines
– MATLAB implementation, and finite volume method – AN-
SYS FLUENT. All three methods give the same results with
the relative error less than 1%.

Fig. 4. Evolutional solution of heat transport for a single phase 1D
geometry for mixed boundary conditions – problem (20). Dashed
lines represent initial temperature 400 K – thin line and steady state
solution t → ∞ – thick line

Fig. 5. Solution of heat transport for a single phase 1D geometry for
mixed boundary conditions – problem (20). Comparison of different
methods, tools: 1) analytical solution, 2) method of lines – MATLAB,
finite volume method – ANSYS FLUENT

Example 2 (two phase analytical solution)
One dimensional rod has non-constant conductivity coeffi-
cient. Specifically we assume that the first half has conductivi-
ty θ1 and for the second it is θ2. Both ends are kept at constant
temperature (Dirichlet boundary condition). This system may
be described by the following equations



∂T1
∂t = θ1

∂2T
∂x2 (0 < x < 1

2d), ∂T2
∂t = θ2

∂2T2
∂x2 ( 1

2d < x < d),
T1( 1

2d, t) = T2( 1
2d, t), κ1

∂T1
∂x ( 1

2d, t) = κ2
∂T2
∂x ( 1

2d, t),
T1(0, t) = TL, T2(d, t) = TR,

T (x, 0) = T0,
(25)

The analytical solution to this problem can be written as

T (x, t) =



TL +
2(ξ(t)−TL)

d x +
∞∑

k=1
Ake−(2kπ/d)2θ1t sin 2kπx

d for 0 6 x 6 1
2d,

ξ(t) +
2(TR−ξ(t))

d (x − d
2 ) +

∞∑
k=1

Ake−(2kπ/d)2θ2t sin
2kπ(x− 1

2d)
d for 1

2d 6 x 6 d,
(26)
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where the time-dependent function ξ(t) is defined as

ξ(t) =
TLκ1 + TRκ2
κ1 + κ2

+
π

κ1 + κ2

∞∑

k=1

k Ak

(
κ2e(2kπ/d)2θ2t − (−1)kκ1e(2kπ/d)2θ1t

)
for t > 0, (27)

and coefficients Ak are given by the formula similar to (23).
The example calculations – temperature distributions in

the two phase system for the problem (25) at several times are
presented below – Figure 6. Solution of the heat tran-

Fig. 6. Solution of the heat transport for two phase 1D geometry –
problem(25) – the following data were used:
θ = 8.55·10-5 m2s−1, (κ= 202.4W ·m−1·K−1),θ = 1.13·10-4 m2s−1,
(κ= 387.6W · m−1 · K−1),TL = 450K,TR = 350 K

Fig. 7. Evolutional solution of heat transport for 1D geometry for two
phase system – problem (25) and mixed (Dirichlet –right boundary
and Neumann –left boundary conditions) the following data were
used: θ = 8.55 · 10-5 m2 · s−1, (κ= 202.4W · m−1 · K−1),θ =

1.13 ·10-4 m2 · s−1, (κ= 387.6W ·m−1 ·K−1)JL = 1000 W ·m−2,TR =

350 K.Dashed lines represent initial temperature 400 K – thin line
and steady state solution t → ∞-thick line

sport problem but for mixed boundary conditions (Dirichlet
and Neumann) are demonstrated in Figure 7.

In Figure 8 the heat transport solutions for one- and
two-phase systems are compared. Clearly one can see on the
plot a discontinuity of the temperature gradient (temperature
profile is not smooth at one point) due to the continuity of the
heat flux (cf. (28)) in the case of two phase system.

Fig. 8. Evolutional solution of heat transport for 1D geometry for
mixed (Dirichlet at left boundary and Neumann at right boundary
conditions). Comparison of solutions for one phase – problem (20)
and for two phase – problem (25) systems. Clearly we can see on the
plot a discontinuity of the temperature gradient (temperature profile
is not smooth at one point) due to the continuity of the heat flux (cf.
(28))

6. Inverse problems

Example 3 (1D inverse problem)
In this two-phase one dimensional heat problem the thick-
ness of one phase is not known. In other words the position
� ∈ (0, d), where two phases meet, is unknown. Formally the
problem can be described by the following set of equations



∂T1
∂t = θ1

∂2T1
∂x2 (0 < x < �), ∂T2

∂t = θ2
∂2T2
∂x2 (� < x < d),

T1(�, t) = T2(�, t), κ1
∂T1
∂x (�, t) = κ2

∂T2
∂x (�, t),

T1(0, t) = TL, T2(d, t) = TR,

T (x, 0) = T0.
(28)

The analytical solution of the problem (28) is given by

T (x, t;�) =



TL +
ξ(�,t)−TL

� x +
∞∑

k=1
Ake−(kπ/�)2θ1t sin kπx

� for 0 6 x 6 �,

ξ(�, t) +
TR−ξ(�,t)

(d−�) (x − �) +
∞∑

k=1
Ake−(kπ/(d−�))2θ2t sin kπ(x−�)

d−� for � 6 x 6 d,
(29)

where
ξ(�, t) =

κ1TL(d−�)+κ2TR�
κ1(d−�)+κ2� +

π�(d−�)
κ1(d−�)+κ2�

∞∑
k=1

k
(
κ2A2,ke(2kπ/(d−�))2θ2t − (−1)kκ1A1,ke(2kπ/�)2θ1t

)
t > 0,

A1,k =
2T0
�

�∫
0

sin
(
(k + 1

2 )
πx
�

)
dx, A2,k =

2T0
d−�

d∫
�

sin
(
(k + 1

2 )
πx
d−�

)
dx for k = 0, 1, 2, . . .

(30)
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At steady state, i.e. for t → ∞, we have

T (x;�) = lim
t→∞

T (x, t;�) =


TL +

ξ(�)−TL
� x for 0 6 x 6 �,

ξ(�) +
TR−ξ(�)
(d−�) (x − �) for � 6 x 6 d,

(31)
where

ξ(�) =
κ1TL(d − �) + κ2TR�
κ1(d − �) + κ2�

,

and putting both expressions together we obtain

T (x;�) =



TL +
κ2(TR − TL)

κ1(d − �) + κ2�
x for 0 6 x 6 �,

κ1TL(d − �) + κ2TR�
κ1(d − �) + κ2�

+
κ1TR − κ2TL

κ1(d − �) + κ2�
(x − �) for� 6 x 6 d.

(32)
If we now know the stationary value of temperature T ∗ at
some point x∗ ∈ (�, d), than we can easily find the parameter
� by solving the equation T (x∗;�) = T ∗ which according to
(32) takes the form

κ1TL(d − �) + κ2TR�
κ1(d − �) + κ2�

+
κ1TR − κ2TL

κ1(d − �) + κ2�
(x∗ − �) = T ∗. (33)

As the equation has a unique solution for any T ∗ ∈ (TL, TR) so
the inverse problem in this simple case leads to a well-posed
problem.

Example 4 (the inverse problem – 3D case)
This example presents the formulation of the problem of

estimating the refractory lining inner profile of a blast furnace
crucible based on the measurement of temperatures at selected
locations [9]. The measured values are used to assessed the
shape of the lining curve by means of the inverse problem
founded on the heat transfer equations and boundary condi-
tions. However, this problem is somewhat atypical as parame-
ters that we look for is the shape of a part of the boundary.
In other words the region Ω ⊂ R3 is unknown and must be
determined. Thus we have Ω(P1,...,Pm) where P1, . . . ,Pm ∈ R2

are unknown points on the plane which describe part of the
boundary ∂Ω. Now the formulation is as follows. Let us define
the error function

err(t; P1, . . . ,Pm) =

N∑

i=1

(T (t, xi; P1, . . . ,Pm) − T ∗i,t)
2 (34)

where {xi}Ni=1 ⊂ Ω(P1,...,Pm) are points where the temperatures
measured,T ∗i,t are values of the measured temperatures at time
t > 0. The standard procedure is now to require the error func-
tion (34) to take minimum value. Thus, we look for P∗1, . . . ,P

∗
m

such that

err(t; P∗m, . . . ,P
∗
m) = min

P1
, . . . ,Pmerr(t; P1, . . . ,Pm) =

min
P1
, . . . ,Pm

N∑
i=1

(T (t, xi; P1, . . . ,Pm) − T ∗i,t)
2,

(35)

where T (t, x; P1, . . . ,Pm) is the solution of the following prob-
lem


∂T
∂t (x, t) = θ∆xT (x, t), x ∈ Ω(P1 ,...,Pm), t > 0,
T (x, 0) = T0(x), x ∈ Ω(P1 ,...,Pm), T (x, t) = g(x), x ∈ ∂Ω(P1 ,...,Pm).

(36)

The boundary conditions in the problem (36) do not have to be
of pure Dirichlet type. In fact we used mixed conditions in the
exemplary calculations for the case shown in Figure 9. The
geometry of the inner part of the pot may change but only
in such way that the thickness of the inner layer is chang-
ing. Thus the shape is basically the same and Ωd depends
only on one parameter d ∈ [10 cm, 30 cm]. The number of
temperature measurement was N = 6 at steady state (in the
above formulation (35), (36) it means that t → ∞). Thus the
error function (35) in the consider case is one dimensional,
err(d) ∈ R+. Its plot is in the first row, second column of
Figure 9 and we see that there is a clear global minimum.
In other words had we tried to assess the thickness of the pot
by taking measurements as indicated in Figure 9 at N = 6
points and employed any valid optimization procedure for the
inverse problem we would have recovered this thickness form
temperature measurements.

Fig. 9. 3D inverse problem calculations. Layers of materials denoted
as outside M1, inner M2 and inside steel M3. Thermal properties
of materials are as follows: κM1 = 19.00W · m−1 · K−1, κM2 =

2.25W · m−1 · K−1, κM3 = 16.27W · m−1 · K−1.Initial temperature in
the whole volume T (x, 0) = 400 K. Adiabatic boundary conditions
at the top.Dirichlet boundary condition at the inner wall and Robin
boundary conditions h = 1000 W ·m−2 ·K−1, Ta = 300K on the outer
wall

7. Summary

One- and two-dimensional problems involving heat trans-
fer phenomena can be relatively easy handled using self-made
non-commercial programs. But real world – industrial prob-
lems usually require full 3D modeling. This cannot be
achieved easily in all generality without resorting to power-
ful, flexible and versatile commercial computational software.
There are many such products like: ABQCUS, COMSOL, AL-
GOR, COMET, STAR CD and FLUENT, etc. We have chosen
ANSYS FLUENT CFD package to perform simulations and
tests which is available in the Academic Computer Centre
CYFRONET AGH [10].
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The main goal of the paper was to present various sim-
ulations of heat transfer phenomena and possible use of the
inverse problems in this area. We have also advocated the use
of special cases where analytical solutions could be obtained
as a tool for testing.

We have carried out calculations of the temperature distri-
bution for several examples: steady and evolutional states, both
for single and multiphase systems for 1D and 3D geometries.
The results obtained from FLUENT and by using independent
numerical procedure based on the method of lines led to very
good agreement with the analytical solutions for 1D geometry.
Formulation of special inverse problems for heat equation in
1D and 3D geometries was given. Analytical solution of the
steady-state inverse problem in 1D geometry was presented.
In the case of 3D geometry the error function was calculated
using FLUENT exhibiting one global minimum. This idea will
be developed in future research by incorporating more compli-
cated shape optimization via the inverse method for industrial
applications.
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Appendix

Method of lines for 1D non-steady case

The method of lines [11] will be employed to solve
numerically the PDE system describing non-stationary heat
transport in 1D geometry with mixed Dirichlet and Neumann
boundary conditions(13), (14). An uniform grid is used. The
temperature is defined at points yk while the heat fluxes at
pointsxk (Figure 10). Each point yk is placed in the middle of
the interval [xk+1, xk] hence yk = 1

2 (xk+1 + xk).

Fig. 10. Space grid for heat transport problem

The finite difference approximation of non-stationary heat
transport equation which corresponds to the above grid for
internal nodes reads

dT k

dt (t) := ∂T
∂t (yk , t) = − ∂Jq

∂x (yk , t) ≈ − Jq(xk+1,t)−Jq(xk ,t)
h =

Jk+1
q (t)−Jk

q (t)
h ,

Jk
q(t) = Jq(xk , t) = −λ ∂T

∂x (xk , t) ≈ −λT k−T k−1
h

for k = 1, . . . ,N − 1.
(37)

and for boundary nodes the one-sided non-uniform finite dif-
ferences (Appendix 1) are used

dT0

dt = 0 (Dirichlet b.c.),

dTN+1

dt =
JN−1
q (t)−4JN

q (t)+3JN+1
q (t)

h =
JN−1
q (t)−4JN

q (t)+3JR

h (Neumann b.c.),
(38)

where jN+1
q (t) = JR (Neumann boundary condition).

Equations (37) and (38) together with initial conditions
lead to initial ODEs problem (Cauchy problem):



dT 1

dt = −λT2−2T1+TL
h2 ,

...
dT k

dt = −λT k+1−2T k+T k−1
h2 for k = 2, . . . ,N,

...
dTN+1

dt = −λTN−1−3TN +4TN+1

h2 ,

T k(0) = T0 for k = 1, . . . ,N + 1

(39)

Steady state case

Steady state solution can be find two different ways:
1) as an asymptotic solution of non-steady state solution and
2) directly as a solution of steady state formulation. Steady
state formulation for a heat transport in the example one – eq.
(20) – takes a form:


∂2T
∂x2 = 0 for 0 < x < d,
T (d, t) = TR, − ∂T∂x (0, t) = JL

κ
.

(40)

The finite difference approximation of the problem (40) based
on above grid reads:



T 0 − 3T 1 + 4T 2 = − JL
κ
,

...

T k−1 − 2T k + T k+1 = 0 for k = 2, . . . ,N − 1,
...

−TN−1 + 2TN = TR

(41)

Problem (40) has an analytical solution which is a linear func-
tion:

T (x) = − JL

κ
x + TR (42)

In Figure 4 calculated temperature distributions for selected
times are presented. For calculations of problem (20) the fol-
lowing data were used: θ = 8.55·10-5m2 ·s−1, (κ= 202.4 W ·
m−1 · K−1),JL = 1000 W · m−2,TR = 350 K.
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