
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 1, PP. 71–76

Manuscript received December 31, 2011; revised March 2012. DOI: 10.2478/v10177-012-0010-x

Features Reduction Using Logic Minimization

Techniques
Grzegorz Borowik, Tadeusz Łuba, and Dawid Zydek

Abstract—This paper is dedicated to two seemingly different
problems. The first one concerns information theory and the
second one is connected to logic synthesis methods. The reason
why these issues are considered together is the important task of
the efficient representation of data in information systems and
as well as in logic systems. An efficient algorithm to solve the
task of attributes/arguments reduction is presented.

Keywords—Machine learning, knowledge representation, dis-
cernibility function, logic minimization, attribute reduction, com-
plement.

I. INTRODUCTION

IN the areas of machine learning, artificial intelligence, as

well as logic synthesis we often deal with some functional

dependencies (for example, in the form of decision tables) in

which not all attributes are necessary, i.e. some of them could

be removed without loss of any information.

This problem has been investigated from a number of points

of view. One of them is whether the whole set of attributes

is always necessary to define a given partition of the universe

and the other concerns the simplification of decision tables,

namely the reduction of condition attributes in a decision table.

The reduced set of attributes is then used to compute the

set of decision rules. Removing unnecessary attributes can

save memory space or computational time and have other

benefits over working on non-reduced information systems.

However, especially with big tables, the problem of finding

which attributes can be removed is nontrivial [1]–[15].

A similar problem arises in logic synthesis where circuits

performance can be presented as truth tables. These tables

are in fact decision tables with two valued attributes, where

condition attributes for decision table are input variables for

truth table and similarly decision attributes for decision table

are output variables for truth table of the circuit. In the

practical application of Boolean algebra the key problem is to

represent Boolean functions by formulas which are as simple

as possible. One approach to this simplification is to minimize

the number of variables appearing in truth table. Then the

reduced set of input variables is used in other optimization

algorithms, e.g. logic minimization and logic decomposition.

Argument reduction combined with other design techniques

allows the designer to reduce the size of implemented circuits

[16]–[19].

Grzegorz Borowik and Tadeusz Łuba are with the Institute of Telecom-
munications, Warsaw University of Technology, Warsaw, Poland (e-mail:
gborowik@tele.pw.edu.pl; luba@tele.pw.edu.pl).

Dawid Zydek is with the Department of Electrical Engineering, Idaho State
University, USA (e-mail: zydedawi@isu.edu).

Interestingly, these two independently researched issues,

have resulted in a series of computational methods, algorithms

and their computer implementations. These implementations

possess so many similarities that it is worthwhile investigating

and applying their common realizations [20].

The paper begins with an overview of basic notions of infor-

mation systems, functional dependencies, decision tables and

reducts. In section II we discuss relations between multiple-

valued logic and decision table systems with respect to clas-

sification of data with missing values. It is particularly shown

that elimination of attributes can be easily obtained using

standard procedures used in logic synthesis. New contribution

is presented in section III, where we describe how to apply

complementation algorithm and provide the new variant of

the attribute reduction process. Finally, experimental results

are presented.

II. PRELIMINARY NOTIONS

The information system contains data about objects char-

acterized by certain attributes. More formally, an information

system is a pair S = (U,A), where U is a nonempty set of

objects (in logic synthesis they are usually called minterms)

called the universe, and A is a nonempty set of attributes (vari-

ables). If we distinguish in an information system two disjoint

sets of attributes A = C∪D, called respectively condition and

decision attributes (input and output variables), then the system

will be called a decision table (in logic synthesis it is called

a truth table). The decision table describes conditions that must

be satisfied in order to carry out the decisions specified for

them. Any decision table defines a function f that maps the

direct product of U and A into the set of all values.

The values of the attribute c, i.e. e1 = f(u1, ai) and e2 =
f(u2, ai) are said to be compatible (e1 ∼ e2), if and only if

e1 = e2 or e1 = − or e2 = −, where ‘−’ represents the case

when attribute value is unknown.

On the other hand, if e1 and e2 are defined and are

‘different’ it is said that e1 is not compatible with e2 and

is denoted as e1 ≁ e2. The consequence of this definition is

a COM relation defined as follows:

Let B ⊆ C and p, q ∈ U . The objects p, q ∈ COM(B) if

and only if f(p, c) ∼ f(q, c) for every c ⊆ B.

The objects p and q, which belong to the relation COM(B),

are said to be compatible in the set B. Compatible objects in

the set B = C are simply called compatible.

The compatibility relation of objects is a tolerance relation

(reflexive and symmetric) and hence it generates compatible

classes on the set of objects U .

72 G. BOROWIK, T. ŁUBA, D. ZYDEK

Compatibility relation allows us to classify objects but the

classification classes do not form partitions on the set U , as it

is in the case of indiscernibility relation (IND) [13]. COM(B)

classifies objects grouping them in compatibility classes, i.e.

U/COM(C′), where C′ ⊆ C.

For the sake of simplicity, collection of subsets U/COM(C′)

will be called r-partition on U and will be denoted as

COM(C′).

R-partition can be used as a tool to classify objects of a data

table description. It can be shown that the r-partition concept

is a generalization of the ideas of partition algebra [21]. Thus,

all the symbols and operations of partition algebra are applyied

to r-partitions.

The justification of generalization of the r-partition concept

is demonstrated in the following example:

Example 1. For the function expressed in the form of

Table I, the symbol ‘−’ in an object may assume the value

0 or 1. It results in an object representing multiple rows.

Hence, the classification by indiscernibility relation is no more

valid. This is clearly explained by the fact that the object u1

for the attributes c1, c3, c4, i.e. (0−−) is not the same as the

objects u2 (001) and u5 (01−). The object u1 represents in

fact a set of objects 000, 001, 010, 011.

TABLE I
SAMPLE DECISION TABLE

c1 c2 c3 c4 d

u1 0 0 − − 0
u2 0 1 0 1 0
u3 1 0 0 1 1
u4 1 1 0 1 −

u5 0 1 1 − 1
u6 1 0 1 0 −

u7 1 1 1 0 0
u8 1 0 1 1 1
u9 1 1 1 1 1

It is also not precise to say that object u1 is compatible with

either object u2 or object u5. According to definition of COM

relation, objects of the set U = {u1, . . . , u9} for the attributes

c1, c3, c4 can be classified as: 1, 2; 1, 5; 3, 4; 6, 7; 8, 9. This

is evidently not correct because the object 0−− contains the

object 000 as well, and this is different from both u2 and u5.

Therefore, the object u1 also has to belong to an another class.

These classes ought to be as follows:

1; 1, 2; 1, 5; 3, 4; 6, 7; 8, 9.

Any set of objects specifying a data function can be divided

into various classes for different attributes. Such a family

of classes (i.e. r-partition) is denoted by Π(B), where B is

a selected subset of the set C = {c1, . . . , cm}. The r-partition

of a single element set B = {ci} is denoted as Π(ci) or

simply Πi.

The r-partition generated by a set B is nothing but the

product of r-partitions generated by the attributes ci ∈ B:

Π(B) =
⋂

i:ci∈B

Π(ci).

If B = {ci1 , . . . , cik}, the product can be expressed as:

Π(B) = Πi1 · . . . ·Πik .

Example 2. For the Table 1

Π1 = {1, 2, 5; 3, 4, 6, 7, 8, 9},

Π2 = {1, 3, 6, 8; 2, 4, 5, 7, 9},

Π3 = {1, 2, 3, 4; 1, 5, 6, 7, 8, 9},

Π4 = {1, 5, 6, 7; 1, 2, 3, 4, 5, 8, 9}.

Therefore, for the set B = {c1, c3, c4},

Π(B) = Π1 · Π3 ·Π4 = {1; 1, 2; 1, 5; 3, 4; 6, 7; 8, 9}.

The above result of Π(B) can also be calculated directly from

the definition of COM relation.

For the first row of the Table I, i.e. u = (00 − −) and for

the set B = {c1, c3, c4}, the objects belonging to Π(B) are

calculated as a set difference

U ′ = (0−−)\{l1, l2},

where l1 is the product of the objects u1 and u2, l2 is the

product of u1 and u5, i.e.

l1 = (0−−) · (001) = 001,

l2 = (0−−) · (01−) = 01− .

Therefore U ′ = {(000)}, and a single element set {1} has to

be added to the COM(B), i.e.

Π(B) = COM(B) ∪ {1}.

III. ELIMINATION OF INPUT VARIABLES

In this section the process of detection and elimination

of redundant attributes using concepts of logic systems is

described. However, appropriate simplifications caused by

functional dependency features as well as the generalization

to the case of rough partition will be efficiently applied.

An argument x ∈ X is called dispensable in a logic

specification of function F iff P (X − {x}) ≤ PF , otherwise,

i.e. P (X − {x}) � PF , an argument is called indispensable

(i.e. an essential variable).

The meaning of an indispensable variable is similar to

that of a core attribute, i.e. these are the most important

variables. In other words, no indispensable variable can be

removed without destroying the consistency of the function

specification. Thus, the set of all indispensable arguments will

be called a core of X and will be denoted as CORE(X).
We have to eliminate an input variable in order to find the

core and then to verify whether the corresponding partition

inequality holds. To make this procedure more efficient a key

theorem is formulated (we reformulate this problem to apply

more useful tools which are efficiently used in switching

theory [16], [22]):

A set B = {b1, . . . , bk} ⊆ X is called a minimal

dependences set, i.e. reduct, of a Boolean function F iff

P (B) ≤ PF , and there is no proper subset B′ of B, such

that P (B′) ≤ PF .

It is evident that an indispensable input variable of func-

tion F is an argument of every minimal dependence set of F .

FEATURES REDUCTION USING LOGIC MINIMIZATION TECHNIQUES 73

Now we introduce two basic notions, namely discernibility

set and discernibility function, which will help us to construct

an efficient algorithm for attribute reduction process.

Let S = (U,C ∪ D) be an information system. Let p, q
(p 6= q) are objects of U , such that d ∈ D is a decision

attribute and f(p, d) ≁ f(q, d). By Cpq , we denote a set of

attributes called a discernibility set which is defined as follows:

Cpq = {ci ∈ C : f(p, ci) ≁ f(q, ci)}. (1)

A discernibility function fS for an information system S is

a boolean function of m attributes c1, . . . , cm, defined by the

conjunction of all expressions ∨(Cpq), where ∨(Cpq) is the

disjunction of all attributes c ∈ Cpq , 1≤ p < q ≤ n.

A strong connection between the notions of a reduct

RED(S) in an information system S and prime implicant of

the monotonic boolean function fS was investigated among

others by Skowron, Kryszkiewicz and Słowiński [9], [13]:

{ci1 , . . . , cik} ∈ RED(S) (2)

iff ci1 ∧ . . . ∧ cik is a prime implicant of fS.

Note that minimization of the discernibility function is

equivalent to transforming it from the conjunctive normal form

(CNF) (in which it is originally constructed) to the disjunctive

normal form (DNF) and finding a minimum implicant. Such

a transformation is usually time-consuming and therefore it is

important to find more efficient algorithms.

Thus, we will describe the collection {Cpq}, of all Cpq sets

in the form of the binary matrix M for which an element bij
(i = 1, . . . , t = CARD({Cpq}), j = 1, . . . ,m = CARD(C))
is defined as follows:

bij =

{

1, if cj ∈ Cpqi ,
0, otherwise.

(3)

Thus, the M matrix is a 0 − 1 matrix determined by Cpq

sets. Our goal is to select an optimal set L of arguments

corresponding to columns of M . Here a ‘column covering’ L
means that every row of M contains a ‘1’ in some column

which appears in L. More precisely, a column cover of binary

matrix is defined as a set L of columns such that for every i
∑

j∈M

bij ≥ 1. (4)

Covers L of M are in one-to-one correspondence with the

reduced subsets of arguments, i.e. reducts.

An interesting approach is based on the fact that the

unate complementation is intimately related to the concept of

a column cover of the binary matrix [23].

Theorem l [23]. Each row i of M , the binary matrix

complement of M , corresponds to a column cover L of M ,

where j ∈ M if and only if M ij = 1.

The rows of M include the set of all minimal column covers

of M . If M was minimal with respect to containment, then

M would precisely represent the set of all minimal column

covers of M .

Let each column of M corresponds to conjunction factor

of FM , which is defined by the disjunction of all Mi where

Mi is the conjunction of negative literals xj corresponding to

bij = 1.

To obtain discernibility function in the minimal DNF we

apply the fast complementation algorithm of unate Boolean

functions adopted from ESPRESSO [23].

The fast complementation algorithm for monotonously de-

creasing function FM is based on the Shannon expansion of

FM , for simplicity denoted by F :

F = xjFxj
+ xjFxj

(5)

where Fxj
, Fxj

are cofactors of F with respect to splitting

variable xj , i.e. the results of substituting ‘1’ and ‘0’ for xj

in F .

Thus by complementing (5)

xjFxj
+ xjFxj

= (xj + F xj
)(xj + F xj

) =

= xjF xj
+ xjF xj

+ F xj
F xj

(xj + xj) = xjF xj
+ xjF xj

we obtain a formula:

F = xjF xj
+ xjF xj

(6)

which is the key to a fast recursive complementation process.

Hence applying the property of unateness the equation (6)

can be expressed as simplified formulas, i.e.:

when Fxj
≤ Fxj

F = Fxj
+ xjFxj

= Fxj
(Fxj

+ xj)

and by complementing we obtain a simplified formula:

F = xjF xj
+ F xj

, (7)

and when Fxj
≥ Fxj

F = xjF xj
+ F xj

. (8)

In order to find an efficient algorithm to complement a unate

function we will again represent F as a binary matrix M(F).
Let there be a one-to-one correspondence between columns

of M and variables of F . Let each row of M(F) correspond

to a product term of M . Then

Mij(F) =

{

1, in i-term there is variable of column j,
0, otherwise.

(9)

The matrix M(F) will be directly used in complementation

algorithm.

We illustrate the unate complementation algorithm with

a following example.

Example. For the discernibility matrix M(F) the appropri-

ate function fM is as follows:

fM = (x2 + x3 + x4)(x1 + x2)(x3 + x4)(x2 + x3 + x5).

Performing the multiplication and applying absorption law we

obtain:

fM = x2x3 + x2x4 + x1x3 + x1x4x5.

The same result can be obtained performing double com-

plementation of the function fM (Fig. 1).

74 G. BOROWIK, T. ŁUBA, D. ZYDEK

1
x

2
x

3
x

4
x

5
x

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

10110

01100

00011

01110

1
x

2
x

4
x

1
x

2
x

3
x

4
x

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

10100

01100

00001

01100

[]01100

ú
ú
ú

û

ù

ê
ê
ê

ë

é

10100

00000

01100

ú
û

ù
ê
ë

é

10100

01100

ú
û

ù
ê
ë

é

10000

01000

ú
û

ù
ê
ë

é

10000

00000
[]10000

Æ

[]10000

[]00000

ú
û

ù
ê
ë

é

01000

00100

[]11000

Æ

ú
û

ù
ê
ë

é

11000

00100
Æ

ú
û

ù
ê
ë

é

11001

00101

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

11001

00101

01010

00110

2
x

2
x

1
x1

x

3
x

4
x

4
x

3
x

3
x

Fig. 1. Complement shcme of F = x2x3x4 + x1x2 + x3x4 + x2x3x5.

Let F = fM = x2x3x4 + x1x2 + x3x4 + x2x3x5. Hence:

M(F) =









0 1 1 1 0
1 1 0 0 0
0 0 1 1 0
0 1 1 0 1









In order to identify the splitting variables we choose them

among the shortest terms in F . Here we select the second term,

yielding variables x1 and x2. Since the variable that appears

most often in the other terms of F is x2, we decide to choose

this one.

Now we compute the cofactors of F with respect to the

variable x2:

Fx2
= x3x4+x1+x3x5, M(Fx2

) =





0 0 1 1 0
1 0 0 0 0
0 0 1 0 1





Fx2
= x3x4, M(Fx2

) =
[

0 0 1 1 0
]

The cofactor with respect to xj is obtained by setting up

the j-th column to ‘0’, and the cofactor with respect to xj is

obtained by excluding all the rows for which the j-th element

is equal to ‘1’.

In each branch of the recursion we examine the possibilities

for complementation using easily computable special cases,

i.e.:

a) There is a row of all 0’s in M(F) (empty conjunction

is equal 1) – the complementation is equal to 0 (empty

set),

b) M(F) is empty (empty disjunction is equal 0) – the

complementation is equal to 1 (the row of all 0’s),

c) M(F) has only one row – the complementation is

calculated by applying De Morgan Law to the unique

term.

In our example the complement of Fx2
is:

F x2
= x3 + x4, M(F x2

) =

[

0 0 1 0 0
0 0 0 1 0

]

Fx2
must be processed further and yields:

Fx2x1
= 1, M(Fx2x1

) =





0 0 1 1 0
0 0 0 0 0
0 0 1 0 1





Fx2x1
= x3x4+x3x5, M(Fx2x1

) =

[

0 0 1 1 0
0 0 1 0 1

]

and hence F x2x1
= 0.

For Fx2x1
we have:

Fx2x1x3
= x4 + x5, M(Fx2x1x3

) =

[

0 0 0 1 0
0 0 0 0 1

]

Fx2x1x3
= 0, M(Fx2x1x3

) = ∅

The complement of Fx2x1x3
is:

F x2x1x3
= x4x5, M(F x2x1x3

) =
[

0 0 0 1 1
]

and the complement of Fx2x1x3
is:

F x2x1x3
= 1, M(F x2x1x3

) =
[

0 0 0 0 0
]

By merging these results we obtain

F x2x1
= x3F x2x1x3

+ F x2x1x3
= x3 · 1+ x4x5 = x3 + x4x5

M(F x2x1
) =

[

0 0 1 0 0
0 0 0 1 1

]

then

F x2
= x1Fx2x1

+Fx2x1
= x1(x3+x4x5)+0 = x1x3+x1x4x5

FEATURES REDUCTION USING LOGIC MINIMIZATION TECHNIQUES 75

TABLE II
RESULTS OF ANALYSIS THE PROPOSED METHOD IN COMPARISON TO RSES AND ROSE2 DATA MINING SYSTEMS

database attributes instances ROSE2 RSES/ROSETTA compl. method reducts

house 17 232 1s 1s 187ms 4
breast-cancer-wisconsin 10 699 discerns missing 2s 823ms 27

kaz 22 31 out of memory (33min) 70min 234ms 5574
trains 33 10 discerns missing out of memory (5h 38min) 6ms 689

agaricus-lepiota-mushroom 23 8124 discerns missing 29min 4min 47s 507
urology 36 500 out of memory (3h 27min) out of memory (12h) 42s 741ms 23437

audiology 71 200 discerns missing out of memory (1h 17min) 14s 508ms 37367
dermatology 35 366 discerns missing out of memory (3h 27min) 3min 32s 143093
lung-cancer 57 32 discerns missing out of memory (5h 20min) 111h 57min 3604887

M(F x2
) =

[

1 0 1 0 0
1 0 0 1 1

]

and finally

F = x2F x2
+ F x2

= x2(x3 + x4) + x1x3 + x1x4x5 =

= x2x3 + x2x4 + x1x3 + x1x4x5

M(F) =









0 1 1 0 0
0 1 0 1 0
1 0 1 0 0
1 0 0 1 1









We interpret the final expression as the set of reducts:

{x2, x3}, {x2, x4}, {x1, x3}, {x1, x4, x5}. Note that perform-

ing the multiplication and applying the absorption law we

obtained the same set of reducts.

IV. EXPERIMENTAL RESULTS

Many computer data mining systems were developed. In

particular, the well-known Rough Set Exploration System

elaborated at the University of Warsaw. The system imple-

ments many advanced procedures. Some algorithms of RSES

have also been embedded in the even more famous ROSETTA

system located in the Biomedical Center in Sweden [24], [25].

ROSE2 (Rough Sets Data Explorer) is a software imple-

menting basic elements of the rough set theory and rule

discovery techniques. It has been developed at the Laboratory

of Intelligent Decision Support Systems of the Institute of

Computing Science in Poznań, basing on fourteen-year expe-

rience in rough set based knowledge discovery and decision

analysis. All computations are based on rough set funda-

mentals introduced by Z. Pawlak with some modifications

proposed by Słowinski and Ziarko [26].

These tools were used to compare them with the presented

synthesis method (Table II). Experiments performed show that

despite many efforts directed to the designing of an effective

tools for attribute reduction, existing tools are not efficient.

The confirmation of this supposition are experiments with

the system RSES. Our research has shown that this system can

not process data tables with large number of indeterminacy.

An important example from the literature is trains database.

Applying the new method we generate 689 reducts, however

RSES 333 only (not selecting the option ‘Do not discern

with missing values’). While running the system with the

option ‘Do not discern with missing values’ selected it ends

up after several hours of computation yielding ‘Not enough

memory’ message. Note, that not selecting the option it takes

into account missing values when calculating the discernibility

matrix. Finally, we obtain a result that is different from the

set of all minimal sets of attributes.

Another example confirming the absolute superiority of the

proposed method is kaz function. It is the binary function of 21

arguments, used when testing advanced logic synthesis tools.

RSES calculates all the 5574 reducts within 70 minutes. In

comparison, the new procedure developed and implemented

by the authors calculates the set of all reducts in 234ms.

Presented method was additionally proved on the typical

databases of medicine, i.e. audiology database, dermatology

database, urology database, breast cancer database and lung

cancer database. Table II shows the computation time for all

the minimum sets of attributes.

The experiments performed confirm that logic synthesis

algorithms developed for the design of digital systems are

much more effective than currently used algorithms in data

mining systems.

Undoubtedly, in logic synthesis systems and hardware re-

alizations we are almost always looking for these sets of

arguments (reducts) which are both: minimal and least. How-

ever, the decision systems depend on all the minimal sets of

attributes. For example, when considering a reduct of the least

cardinality, it can include an attribute that its implementation

is actually expensive. In particular, when we consider calcu-

lations for a medical diagnosis, it may be a parameter which

express complicated or expensive examination, or a test which

may have a negative impact on the health of the patient and it

is not possible to carry out. Therefore, the reducts of higher

cardinality could be sometimes easier to be applied/used in

practice.

V. CONCLUSIONS

The argument reduction problem is of a great importance

in logic synthesis. It is the basis of some functional transfor-

mations, such as parallel decomposition [18]. Combined with

some other design techniques it allows us to reduce the size

of implemented circuits.

In this paper we have described an important problem of

attribute reduction. This concept, originating from artificial in-

telligence (namely the theory of rough sets), helps to deal with

functional dependencies having redundant input attributes. We

have presented a new exact algorithm for attribute reduction

which is based on the unate complementation task. Experi-

mental results which have been obtained using this approach

proved that it is a valuable method of processing the databases.

76 G. BOROWIK, T. ŁUBA, D. ZYDEK

REFERENCES

[1] S. Abdullah, L. Golafshan, and Mohd Zakree Ahmad Nazri, “Re-
heat simulated annealing algorithm for rough set attribute reduction,”
International Journal of the Physical Sciences, vol. 6, no. 8, pp. 2083–
2089, 2011.

[2] J. Bazan, H. S. Nguyen, S. H. Nguyen, P. Synak, and J. Wróblewski,
“Rough set algorithms in classification problem,” in Rough Set Meth-

ods and Applications: New Developments in Knowledge Discovery in

Information Systems. Heidelberg: Physica-Verlag, 2000, vol. 56, pp.
49–88.

[3] R. Dash, R. Dash, and D. Mishra, “A hybridized rough-PCA approach
of attribute reduction for high dimensional data set,” European Journal

of Scientific Research, vol. 44, no. 1, pp. 29–38, 2010.
[4] Z. Feixiang, Z. Yingjun, and Z. Li, “An efficient attribute reduction in

decision information systems,” in International Conference on Computer

Science and Software Engineering, Wuhan, Hubei, 2008, pp. 466–469,
DOI: 10.1109/CSSE.2008.1090.

[5] A.-R. Hedar, J. Wang, and M. Fukushima, “Tabu search for attribute
reduction in rough set theory,” Journal of Soft Computing – A Fusion of

Foundations, Methodologies and Applications, vol. 12, no. 9, pp. 909–
918, Apr. 2008, DOI: 10.1007/s00500-007-0260-1.

[6] S. Jing and K. She, “Heterogeneous attribute reduction in noisy system
based on a generalized neighborhood rough sets model,” World Academy

of Science, Engineering and Technology, vol. 75, pp. 1067–1072, 2011.
[7] P. Kalyani and M. Karnan, “A new implementation of attribute reduction

using quick relative reduct algorithm,” International Journal of Internet

Computing, vol. 1, no. 1, pp. 99–102, 2011.
[8] M. Kryszkiewicz and K. Cichoń, “Towards scalable algorithms for

discovering rough set reducts,” in Transactions on Rough Sets I,
ser. Lecture Notes in Computer Science, J. Peters, A. Skowron,
J. Grzymała-Busse, B. Kostek, R. Świniarski, and M. Szczuka, Eds.
Berlin: Springer Berlin / Heidelberg, 2004, vol. 3100, pp. 120–143,
DOI: 10.1007/978-3-540-27794-1 5.

[9] M. Kryszkiewicz and P. Lasek, “FUN: Fast discovery of minimal sets of
attributes functionally determining a decision attribute,” in Transactions

on Rough Sets IX, ser. Lecture Notes in Computer Science, J. Peters,
A. Skowron, and H. Rybiński, Eds. Springer Berlin / Heidelberg, 2008,
vol. 5390, pp. 76–95, DOI: 10.1007/978-3-540-89876-4 5.

[10] D. Nguyen and X. Nguyen, “A new method to attribute reduction
of decision systems with covering rough sets,” Georgian Electronic

Scientific Journal: Computer Science and Telecommunications, vol. 1,
no. 24, pp. 24–31, 2010.

[11] Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, 1991.

[12] X. Pei and Y. Wang, “An approximate approach to attribute reduction,”
International Journal of Information Technology, vol. 12, no. 4, pp.
128–135, 2006.

[13] A. Skowron and C. Rauszer, “The discernibility matrices and functions
in information systems,” in Intelligent Decision Support – Handbook of

Application and Advances of the Rough Sets Theory, R. Słowiński, Ed.
Kluwer Academic Publishers, 1992.

[14] C. Wang and F. Ou, “An attribute reduction algorithm based on condi-
tional entropy and frequency of attributes,” in Proceedings of the 2008

International Conference on Intelligent Computation Technology and

Automation, ser. ICICTA ’08, vol. 1. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 752–756, DOI: 10.1109/ICICTA.2008.95.

[15] Y. Yao and Y. Zhao, “Attribute reduction in decision-theoretic rough set
models,” Information Sciences, vol. 178, no. 17, pp. 3356–3373, 2008,
DOI: 10.1016/j.ins.2008.05.010.

[16] T. Łuba, R. Lasocki, and J. Rybnik, “An implementation of decompo-
sition algorithm and its application in information systems analysis and
logic synthesis,” in Rough Sets, Fuzzy Sets and Knowledge Discovery,
W. Ziarko, Ed. Springer Verlag, 1994, pp. 458–465, Workshops in
Computing Series.

[17] T. Łuba and R. Lasocki, “On unknown attribute values in functional
dependencies,” in Proceedings of The Third International Workshop on

Rough Sets and Soft Computing, San Jose, 1994, pp. 490–497.
[18] M. Rawski, G. Borowik, T. Łuba, P. Tomaszewicz, and B. J. Falkowski,

“Logic synthesis strategy for FPGAs with embedded memory blocks,”
Electrical Review, vol. 86, no. 11a, pp. 94–101, 2010.

[19] H. Selvaraj, P. Sapiecha, M. Rawski, and T. Łuba, “Functional de-
composition – the value and implication for both neural networks
and digital designing,” International Journal of Computational Intel-

ligence and Applications, vol. 6, no. 1, pp. 123–138, March 2006,
DOI: 10.1142/S1469026806001782.

[20] G. Borowik, T. Łuba, and D. Zydek, “Reduction of knowledge repre-
sentation using logic minimization techniques,” in ICSEng, 2011, pp.
482–485, DOI: 10.1109/ICSEng.2011.98.

[21] J. A. Brzozowski and T. Łuba, “Decomposition of boolean functions
specified by cubes,” Journal of Multi-Valued Logic & Soft Computing,
vol. 9, pp. 377–417, 2003.

[22] T. Łuba and J. Rybnik, “Rough sets and some aspects in logic synthesis,”
in Intelligent Decision Support – Handbook of Application and Advances

of the Rough Sets Theory, R. Słowiński, Ed. Kluwer Academic
Publishers, 1992.

[23] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

[24] “ROSETTA – A Rough Set Toolkit for Analysis of Data.” [Online].
Available: http://www.lcb.uu.se/tools/rosetta/

[25] “RSES – Rough Set Exploration System.” [Online]. Available:
http://logic.mimuw.edu.pl/ rses/

[26] “ROSE2 – Rough Sets Data Explorer.” [Online]. Available:
http://idss.cs.put.poznan.pl/site/rose.html

