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Abstract 
 

Presented are results of a research on the possibility of using artificial neural networks for forecasting mechanical and technological 

parameters of moulding sands containing water-glass, hardened in the innovative microwave heating process. Trial predictions were 

confronted with experimental results of examining sandmixes prepared on the base of high-silica sand, containing various grades of 

sodium water-glass and additions of a wetting agent. It was found on the grounds of obtained values of tensile strength and permeability 

that, with use of artificial neural networks, it is possible complex forecasting mechanical and technological properties of these materials 

after microwave heating and the obtained data will be used in further research works on application of modern analytic methods for 

designing production technology of high-quality casting cores and moulds. 
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1. Introduction 
 

As demonstrated by previous research works, moulding sands 

containing water-glass can be successfully hardened using 

microwave energy with frequency 2.45 GHz [1, 2, 3]. Microwave 

heating of loose self-hardening moulding sands [4], prepared with 

various kinds of binders, can be an alternative solution for many 

well-known and applied hardening methods, like the CO2 process, 

i.e. blowing-through with carbon dioxide at controlled 

temperature [6], drying with air at elevated temperature or 

hardening by means of liquid esters. Microwave heating of 

moulding sands containing hydrated sodium silicate can be the 

technology complementing the above-mentioned methods of 

bonding bas grains. However, in order that this eco-friendly and 

economical [7] technology could be widely applied in practice, it 

is required more detailed knowledge of microwave heating and 

complete knowledge of the factors and phenomena decisive for 

mechanical and technological parameters of the hardened 

sandmix. 

Knowledge about possibly largest number of the factors 

affecting parameters of a hardened moulding sand can be gained, 

for example, by standard statistical analysis based on empirical 

data acquired for a properly numerous population. 

In the case of the innovative method of microwave hardening 

of moulding sands containing water-glass, typical linear and non-

linear models describing selected relationships between individual 

components of the sandmix and the obtained parameters of such 

mixtures after hardening can deliver only a fragmentary (two- or 

less often three-dimensional) description of the relationships 

related to the hardening process [8, 9]. The output function, 
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describing e.g. mechanical strength, results often from the relation 

between one input constant and one, sometimes two (Fig. 1) [10] 

variables being qualitative components of the sandmix (e.g. 

amount of the binder). This approach requires a very large 

number of experiments. However, so large number of input 

variables creates a difficulty of their complex analysis and thus 

prediction of strength of the moulding sand after its microwave 

hardening is also difficult. Shortage of knowledge on quantity and 

selection of components of sandmixes causes that implementing 

this solution in foundry practice, where technology of moulding 

sands is mainly responsible for quality of manufactured castings, 

is nowadays a very difficult or even unfeasible task. 

 

 
Fig. 1. Effect of fraction of the binder 137 and microwave power 

on tensile strength of hardened moulding sand 

 

The relationships in moulding sands, containing large numbers 

of input variables, both quantitative and qualitative, are described 

in a complex way using artificial neural networks [11-13]. The 

neural networks are currently the most modern, flexible and 

sophisticated element of mathematical analysis used for 

modelling extremely complex functions and relationships. Thanks 

to the generated models, built using the train function of neural 

networks on the grounds of the empirically acquired knowledge, it 

is possible to use them for predicting properties of moulding and 

core sands based on completely new data with identical structure, 

but not being real experimental results. In the further text 

presented are preliminary analyses of applying artificial neural 

networks for building a model that enables forecasting selected 

mechanical and technological properties of moulding sands 

containing water-glass, hardened by microwave heating. 

 

 

2. Purpose of the research 

 

Both strength and permeability of moulding sands are affected 

by numerous factors. The previous statistical analyses and 

microscopic observations [14] made it possible to separate those 

factors, whose influence can be significant from the viewpoint of 

creating linking bridges between the base grains. They include 

kind and amount of water-glass and also grade of high-silica sand 

(main fraction), as well as presence of possible additives. 

Significance of the above-mentioned factors can be of different 

importance for the hardening process and requires additional 

sensitivity analysis. 

The constant parameters of the microwave heating process, 

determined in the previous examinations, like minimum 

hardening time (Fig. 2) [9], microwave power (Fig. 3) [8] and 

constant filling of the working chamber, guaranteed full 

repeatability of parameters of the hardened sandmix. These data 

served as a basis for further trials of determining, which of the 

moulding sand components play so much important role that they 

can be used for developing a model of the microwave hardening 

process that would ensure complete control of its parameters and 

results. 

 

 
Fig. 2. Effect of microwave heating time and grade of water-

glass on tensile strength of hardened moulding sand 

 

 
Fig. 3. Effect of microwave power and grade of water-glass  

on tensile strength of hardened moulding sand 
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3. Methodology of the research 
 

It was found in the preliminary research on building a complex 

model of microwave hardening that tensile strength Rm
U of a 

hardened sandmix and its permeability PU will belong to the 

group of main output factors serving as selection criteria of the 

sandmix composition for the given manufacturing process. An 

attempt was made to build a model using one of the most popular 

artificial neural networks type MLP (multilayer perceptron). The 

choice was motivated by nature of the phenomenon and the 

possibility of training the network in the supervised mode, i.e. 

with a teacher, in that known are required values of some output 

data in the built model. Structure of a multilayer perceptron 

consisting of the input layer, hidden layers and the output layer is 

shown in Fig. 4. Each neuron of the network calculates weighted 

average of the supplied inputs, i.e. the so-called weights; the 

result is converted by means of the transfer function f and fed to 

the output [15]. Such a network with proper number of layers and 

neurons in these layers can model the relationship with almost any 

complexity. Selection of proper numbers of hidden layers and 

neutrons in them was performed in the program Statistica 10. 

 

 
Fig. 4. Example of artificial neural network type MLP 

 

In the research used were 28 combinations of input data 3 

tests each, which made in total 84 single measurements of tensile 

strength and 84 single measurements of permeability taken 

according to PN-83/H-11073 and PN-83/H-11072. 

It was established that the quantitative input in the 

mathematical model will be: 

U1 = amount of binder added to the sand in % by weight. 

Due to the given physico-chemical data ranges (Table 1) 

specified by the manufacturer of the unmodified commercial 

kinds of water-glass, in the mathematical model it is proposed to 

averaging these values which will have further function as a 

qualitative input variables: 

U11 = kind of the binder acc. to average molar module, or 

U12 = kind of the binder acc. to content of oxides, or 

U13 = kind of the binder acc. to average density. 

These variables served as a basis for further trials of determining, 

which of the water-glass details play so much important role that 

they can be used for developing a model of the microwave 

hardening process. 

Moreover, the qualitative input will be: 

U23 = kind of the high-silica moulding sand (Table 2). 

Constant values in this model will be: 

C1 = hardening time of 240 s [9], 

C2 = microwave power of 810 W [8], 

C3 = filling of the microwave furnace chamber with the sandmix 

of 450 g ±50 g, 

C4 = content of water as a special wetting additive added to 0.5% 

at the beginning of the stirring process, 

C5 = systematic error of measuring devices, 

C6 = ambient temperature of 25 °C ±3 °C 

C7 = ambient humidity of 35% ±5%, 

C8 = compacting method acc. to PN-83/H-11070. 

Dependent outputs in the model, and at the same time indices 

used for selection of the sandmix components for the given 

manufacturing technology, will be: 

Y1 = tensile strength after microwave hardening Rm
U [MPa], 

Y2 = permeability after microwave hardening PU [10-8m2/Pa*s]. 

 

Table 1.  

Physico-chemical properties of water-glass contained in the 

moulding sands with coding of combinations of qualitative 

variables U11, U12 and U13 

Kind  

of water-glass: 
137 140 145 149 150 

Molar module 

SiO2/Na2O 
3.2÷3.4 2.9÷3.1 2.4÷2.6 2.8÷3.0 1.9÷2.1 

Average molar 

module (U11) 
3.3 3.0 2.5 2.9 2.0 

Coding of 

qualitative 

variable (U11) 

1 2 4 3 5 

Content of 

oxides 

(SiO2+Na2O) % 

(U12) 

35.0 36.0 39.0 42.5 40.0 

Coding of 

qualitative 

variable (U12) 

1 2 3 5 4 

Density at 20 

°C [g/cm3] 

1.37 

÷1.40 

1.40 

÷1.43 

1.45 

÷1.48 

1.49 

÷1.51 

1.50 

÷1.53 

Average 

density (U13) 
1.385 1.415 1.465 1.500 1.515 

Coding of 

qualitative 

variable (U13) 

1 2 3 4 5 

Dynamic 

viscosity, min. 

(P) 

1 1 1 7 1 

 

In the built model were used the data acquired for the 

sandmixes prepared with high-silica sand, the most popular 

material for bases of sandmixes containing water-glass. Table 2 

includes typical main fractions of high-silica bases acc. to PN-

85/H-11001 [16]. 
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Table 2.  

Classification of high-silica base acc. to total mesh fractions 

calculated from three neighbouring sieves with coding of 

qualitative variable U23 

Kind of sand: 
Coding of qualitative 

variable (U23): 
Main fraction [mm]: 

Coarse 4 0.40/0.32/0.20 

Medium 3 0.32/0.20/0.16 

Fine 2 0.20/0.16/0.10 

Very fine 1 0.16/0.10/0.071 

 

For the above-described set of data performed was a series of 

experiments aimed at building toe most favourable model for 

forecasting mechanical and technological properties of moulding 

sands containing water-glass, hardened with microwaves. 

The starting point, apart from a review of the input and output 

parameters of the hardening process, were analyses of linear 

regression models. To build these models were used quantitative 

data from Table 1, represented by the average value of the 

compartments of physico-chemical parameters of water glass 

kinds. It can be found on the grounds of the results of matching to 

linear models describing influence of such a binder detail (Table 

3) that they are random and, in addition not fully matching 

(Pearson's correlation coefficients) so that they could play the role 

of valuable models for forecasting mechanical parameters, like 

tensile strength. 

 

Table 3.  

Exemplary results of statistical analysis for linear model 

developed for various types of water-glass and selected coarse-

grained base 

Parameter 

Rm
U  

acc. to: 

The determined correlation coefficients are 

consistent with the condition p < 0.05. 

Standard 

deviation 
r(X,Y) r2 t p 

U11 0.4115 
-

0.8475 
0.7183 

-

2.7656 
0.0698 

U12 0.4115 0.8426 0.7099 2.7096 0.0732 

U13 0.4115 0.9484 0.8995 5.1830 0.0139 

 

Like the linear regression models, multidimensional analyses 

are characterised by relatively small accuracy of matching (Table 

4) and scatter of residuals does not meet one of the assumptions 

about their random distribution, i.e. about the so-called point 

cloud. The possibility of describing the relationship by a 

polynomial function is shown in Fig. 5 together with the diagram 

of scatter of residuals with respect to the predicted values. 

 

 

 

 

 

 

 

Table 4.  

Matching of multiple analyses for qualitative variables U11, U12 

and U13 

Paramete

r Rm
U  

acc. to: 

The determined correlation coefficients are consistent 

with the condition p < 0.05. 

Standard 

deviation 
r(X,Y) r2 t p 

U11 0.32687 0.93803 0.87991 0.51858 0.6055 

U12 0.35437 0.92675 0.85887 2.02262 0.0465 

U13 0.34127 0.93225 0.86910 1.83100 0.0708 

 

The performed analyses of linear and multidimensional 

models clearly directed searching the forecasting model on 

artificial neural networks. Before starting examinations on these 

networks, the input data and their corresponding dependent 

outputs were divided to three sets: training, testing and validation 

one. 

 

 
Fig. 5. Scatter of residuals versus predicted values  

for multidimensional analysis 

 

 

4. Results 
 

The model was built using neural networks type MLP with one 

hidden layer. Training simulations of the automatically generated 

networks were repeated three times, reaching the number of 1200 

models in each of the considered cases. In these models used were 

various combinations of the neuron activation functions, like 

hyperbolic tangent and exponential function for the hidden and 

output layers. 

The hyperbolic tangent as an activation function often acts 

better than a logistic function, also possible to be applied in the 

simulation program. This is a S-shaped symmetrical curve with its 

output values located within -1 to +1. The exponential activation 

function is a combination of a radial aggregation function and an 

exponential function with a negative exponent. It defines the 

neurons modelling the Gauss function centred with respect to the 

weight vector [15]. 
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Training of the network was performed with the quasi-Newton 

method type BFGS (Broyden-Fletcher-Goldfarb-Shanno), 

considered the most effective one among those available in the 

simulation program [15]. The optimum (final) set of weights of 

the network was obtained at the moment of minimum root-mean-

square error for the validation set. Thus, used was the sum of 

squares (SOS) method for the deviations between the set value 

and the network output. 

Size of the input layer was determined by the quantitative 

variable (U1) and the way of coding the qualitative variables (U11 

or U12 or U13 and U23) using One-of-N encoding method. This 

is the basic encoding method, commonly used in the preliminary 

tests [15], characterized by a large number of neurons in the input 

layer. During training, one neuron for each possible quantitative 

value is on while the others are off. Size of the hidden layer was 

accepted experimentally following the data available in literature 

[17, 18] and those from own experiments, trying to eliminate the 

risk of unfavourable effect of overtraining the model, i.e. the 

phenomenon of excessive matching the network to the training 

data. Overtraining of the network is most often caused by too 

large number of neurons in the hidden layer. Adding qualitative 

variables (U11 to U13 and U23) to the model resulted in the 

necessity to use additional input neurons. However, it should be 

noted that the examined models are not the final ones, but are 

only starting points for further analyses consisting in combining 

subsequent elements composing the innovative microwaves 

heating process of core and moulding sands in order to forecast 

possibly largest number of effects in form of their mechanical and 

technological parameters after hardening. 

On the grounds of the simulations for the variables U1, U11 

and U23, determined was structure of the network MLP1: 10-6-2 

with 106 cycles of training, with activation of hidden neurons of 

hyperbolic tangent type and activation in the output layer of 

exponential type. 

On the grounds of the simulations for the variables U1, U12 

and U23, determined was structure of the network MLP2: 10-5-2 

with 167 cycles of training, with activation of hyperbolic tangent 

type in the hidden and output layers. 

On the grounds of the simulations for the variables U1, U13 

and U23, determined was size of the hidden layer in the network 

MLP3: 10-6-2 with 174 cycles of training, with activation of 

hyperbolic tangent type in the hidden and output layers. 

For the generated artificial neural networks with minimum 

root-mean-square errors for the validation set, Table 5 includes 

Pearson's correlation coefficients for the training, testing and 

validation sets, being measures of their matching to the set of 

input and output data. 

 

Table 5.  

Pearson's correlation coefficients for the generated artificial 

neural networks MLP 

Net-

work: 

Output variable Rm
U Output variable PU 

Train-

ing 
Test 

Vali-

dation 

Train-

ing 
Test 

Vali-

dation 

MLP1 0.9966 0.9954 0.9939 0.9933 0.9875 0.9864 

MLP2 0.9967 0.9953 0.9940 0.9968 0.9946 0.9888 

MLP3 0.9944 0.9938 0.9908 0.9964 0.9950 0.9902 

 

Table 6 includes analyses related to sensitivity of the models to 

individual quantitative and qualitative input variables suggested in 

Tables 1 and 2. 

 

Table 6.  

Sensitivity analysis for quantitative and qualitative variables in 

the MLP networks 

MLP1: 10-6-2: U1 U11 U12 U13 U23 

Training Error  14.28 8.20 - - 572.87 

Training Rank 2 3 - - 1 

Error Valid. 8.05 5.12 - - 313.77 

Rank Valid. 2 3 - - 1 

MLP2: 10-5-2: 

     

Training Error  35.11 - 224.14 - 3291.86 

Training Rank 3 - 2 - 1 

Error Valid. 14.47 - 41.78 - 1351.68 

Rank Valid. 3 - 2 - 1 

MLP3: 10-6-2: 
     

Training Error  29.24 - - 64.35 148.85 

Training Rank 3 - - 2 1 

Error Valid. 15.03 - - 45.73 466.77 

Rank Valid. 3 - - 2 1 

 

It can be seen on the grounds of the data in Table 5 that in all 

the MLP networks obtained were high values of Pearson's 

coefficients for both output variables Rm
U and PU at each stage of 

training the network: training, testing and validation. The chosen 

networks are characterised by high level of matching the 

generated models to the input and output data with relatively short 

training cycles. 

It can be seen on the grounds of the data in Table 6 that, in 

each of the analysed cases, the process of training the neural 

networks is most intensively affected by the qualitative variable 

U23 being a combination of coding a grade of high-silica sand, 

see Table 2. Therefore, it can be assumed that, in the subsequent 

trials consisting in enlarging the models with additional input and 

output variables, grade of high-silica sand (main fraction) will be 

one of the inputs most intensively acting on the forecast 

mechanical and technological parameters of moulding sands 

hardened with microwaves. This thesis can be confirmed by 

weight fraction of this component in loose self-hardening 

moulding sands. Input data of the model were based on the 

examined sandmixes with weight fraction of the base from 94% to 

even 98%. Similarly, the main fraction of sands is of a great 

importance for permeability of the prepared sandmixes. 

The next ones, with regard to their importance to the training 

process for the case of MLP1 10-6-2, were successively: the 

quantitative variable U1 responsible for the amount of water-glass 

added to the sand and the qualitative variable U11 coding by 

means of average module of the binder. In this model, effect of a 

binder content in the sandmix was stronger than effect of its 

average molar module. The suggested MLP1 network, in spite of 

high matching (Table 5), changes in some way the traditional 

criteria of selection sequence of individual components of a 

sandmix. 

In the cases of MLP2 10-5-2 and MLP3 10-6-2, more important 

for the training process were the qualitative variables U12 (coding 
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acc. to percentage of oxides) and U13 (coding acc. to average 

density of the binder) that the quantitative variable U1 responsible 

for the amount of water-glass added to the moulding sand. In the 

MLP2 and MLP3 networks, sequence of selecting components of 

sandmixes in order to predict their properties referred to the 

traditional approach in that grade of the binder is decided first, 

and than its content in the sandmix. 

 

 

5. Conclusions 
 

The following conclusions can be drawn on the grounds of 

analyses of preliminary research on the possibility to predict 

mechanical and technological properties of microwave-hardened 

moulding sands containing water-glass: 

 In comparison to linear and non-linear models describing 

effects of heating with electromagnetic waves, artificial 

neural MLP networks enable better matching of 

mathematical models and complex forecasting properties of 

moulding sands, like tensile strength and permeability. 

 The MLP models demonstrate the expected, repeatable 

sensitivity to individual input variables in the training and 

validation sets, which proves their correctness. 

 In all the analysed MLP networks, kind of high-silica sand 

(main fraction) most intensively affects training process of 

the mathematical model, which is confirmed by real 

observations of the manufacturing process of high-silica 

moulding sands. 

 Depending on the way of coding individual properties of 

binders, it is possible a change of sensitivity of the network 

to the parameter of binder content in moulding sands. 

 At the present stage of creating a mathematical way of 

forecasting parameters of sandmixes, the most desirable, 

with respect to the criterion of simplicity, protecting the 

network from overtraining, is the artificial neural network 

MLP 10-5-2 with the smallest hidden layer with activation of 

neurons in the layers by a hyperbolic tangent function. 

 The generated and analysed artificial neural MLP networks 

make a basis for further searching of the models enabling the 

best complex forecasting of the basic parameters of 

sandmixes. 
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