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PART II. MODEL FOR THE PROTECTIVE COATING FORMATION DURING HOT DIP GALVANIZING

CZĘŚĆ II. MODEL FORMOWANIA POWŁOKI OCHRONNEJ PODCZAS CYNKOWANIA OGNIOWEGO

A mathematical description for the (Zn) – coating formation with the presence of flux in the zinc bath is presented. This
description includes the progressive vanishing of the products of the flux disintegration. A function which expresses the flux
vanishing is formulated. The solidification of some phase sub-layers in the (Zn) – coating is considered with the use of a
hypothetical pseudo-ternary phase diagram Fe-Zn-flux. Some relationships are formulated to define the varying Zn – solute
redistribution as observed across the sub-layers. The relationships are based on the mass balance analyzed for the coating /
bath / flux system. An amount of the growing phase in a given sub-layers is also defined mathematically.
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Prezentowany jest matematyczny opis formownia powłoki cynkowej w obecności topnika w kąpieli. Opis ten uwzględnia
stopniowy zanik produktów rozpadu topnika. Sformułowana została funkcja, która wyraża ten zanik. Rozważana jest krysta-
lizacja faz w podwarstwach powłoki cynkowej z zastosowaniem hipotetycznego pseudo-potrójnego diagramu fazowego Fe -
Zn - topnik. Sformułowane zostały równania celem zdefiniowania zmienności redystrybucji cynku obserwowanej na grubo-
ści poszczególnych podwarstw. Równania te bazują na bilansie masy analizowanym dla systemu powłoka / kąpiel / topnik.
Zdefiniowana także została matematycznie ilość rosnącej fazy w danej podwarstwie.

1. Introduction

The hot-dip galvanizing requires the constant temperature
to be imposed for the zinc bath. It involves an isothermal so-
lidification of the (Zn) – coating settled on the steel substrate.
Some theoretical descriptions of the (Zn) – coating settlement
are well known, [1-14]. Usually, the Fe-Zn phase diagram for
stable equilibrium is applied to these descriptions. The kinet-
ics law for the coating growth is often the subject of some
investigations, [6], [10] and [14]. Some analyses associated
with the substrate / coating reaction are also delivered, [2],
[5] and [12]. However, there are not detailed mathematical
treatments which could be able to describe a flux role in the
Zn – varying content formation across a given phase sub-layer.

The following inter-metallic phases are formed in the
coating: Γ1, (Fe3Zn), δ, (FeZn7), ζ , (FeZn13) and additionally
η, (Zn), [6], [14]. The growth of the δ, (FeZn7) – phase consists
of two separate sub-phases formation: δC – compact phase and
δP – palisade phase, [7], [14]. The solidification involves Γ1,
(Fe3Zn); δ, (FeZn7), and ζ , (FeZn13) – phases formation. The
η, (Zn) – phase is settled due to the wettability phenomenon
when the substrate is pulling out from the bath, [14].

The current model is associated with the phase diagram

which is calculated by means of the professional program Pan-
dat Software due to the data delivered in Ref. [15].

At the beginning of the (Zn) – coating formation a signifi-
cant role is playing by the ZnCl2/NH4Cl – flux, (Part I). Usual-
ly, the flux is almost immediately disintegrated into its gaseous
form. The chlorine is dominant element in the gas which
evaporates towards the bath surface. Therefore, the Fe-Zn-F
(F = Cl+N +H) pseudo-ternary system is introduced into the
current mathematical description of the sub-layers formation.
The undercooled peritectic reactions are also included into the
model.

2. Role of the flux in the (Zn) — coating formation

The flux application to the hot dip galvanizing technol-
ogy results in: a/ improved adhesion of the (Zn) – coating
to the steel substrate, and b/ appearance of the δC – phase
sub-layer which has different morphology in comparison with
the δP – phase sub-layer, (Fig. 3, [26]). It is postulated that the
morphology of the δC – phase sub-layer is formed due to the
presence of the gaseous form of flux (and also ash) at its solid
/ liquid (s/l) interface. Moreover, the peritectic phase which is
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formed during the (Zn) – coating growth should have a varying
zinc redistribution (increasing or decreasing). Therefore, some
measurements of the Zn – solute redistribution were made to
confirm this hypothesis, Fig. 1.

Fig. 1. The varying Zn – solute redistribution in the (Zn) – coating
obtained: a/ for 100 [s] of a dipping; the S235 steel substrate, b/ for
60 [s] of a dipping; the S355 steel substrate; (EDS technique); (the
chemical concentration of both steels is delivered within the caption
to Fig. 1 in Ref. [26])

Indeed, a moderate Zn – redistribution gradient is visible
across each of the sub-layer and eventually across the whole
(Zn) – coating, Fig. 1. It is postulated that the initial Zn –
solute concentration, NF

0 , is less than the NS
0 – concentration,

NF
0 < NS

0 , since the redistribution gradient is positive, Fig.
1; (the meaning of the NS

0 – parameter has already been ex-
plained, (Part I, [26])).

3. Model for the (Zn) -– coating formation with the
presence of flux

A mathematical description for the different phases
(sub-layers) formation is referred to the following scheme,
Fig. 2.

Fig. 2. Sub-layers in the (Zn) — coating deposited on the steel sub-
strate

The sub-layers formation is strictly connected to the pres-
ence of the flux and especially to its gaseous form. The chlo-
rine bubbles evaporate systematically beginning from the ini-
tial flux concentration which is assumed to be equal to about
10 [at. %]. It occurs in the bath surrounding the substrate (bath
active in the coating formation). Approximately, the phenom-
enon of the flux decay has a character, which can be described
by the Arrhenius type function, Eq. (1), Fig. 3.

F (t) = F0 exp (−F0 t) (1)

where t – time; t0 – time of the completion of a flux evapora-
tion, F0 – initial amount of the flux in the bath, [dimension-
less], F0 ≈ 0.1, [6].

Fig. 3. Flux vanishing during the hot dip coating formation

According to the coating growth observation, (Table 1
in Ref. [26]) the flux evaporation was completed at time
t0 ≈ 100[s], (Fig. 13 in Ref. [26]), for the first of the in-
vestigated steels used as the substrate, (Fig. 1a in Ref. [26]).

It is assumed that the initial bath concentration is equal to
NF

0 (in the supposed ternary phase diagram Fe-Zn-F; F=flux,
Fig. 4). When the flux is vanishing the NF

0 concentration tends
towards the NS

0 – concentration, NF
0 (x) → NS

0 , Fig. 4. After
the completion of stable solidification at the tS/M – time, (Fig.
4b in Ref. [26]), the NF

0 (x) concentration tends towards theNM
0

solute concentration, Fig. 4.

Fig. 4. Transition from the nominal solute concentration for the stable
solidification NS

0 ≈ 0.91[at.%] Zn to the nominal solute concentra-
tion for meta-stable solidification; NM

0 ≈ 0.925[at.%] Zn shown in
the Fe-Zn phase diagrams for stable and meta-stable solidification
superposed each over other; both diagrams are obtained due to the
Pandat Software simulation with the use of the data from Ref. [15]);
the NF

0 solute concentration referred to the supposed Fe-Zn-F -–
phase diagram is added to show the postulated solidification path,
NF

0 → NS
0 → NM

0 , and simplified solidification path, NF
0 → NM

0 ;
the δS – phase field for stable solidification (field limited by the
blue dotted lines) is extended to the δM – phase field for meta-stable
solidification (field limited by the red lines); NF

0 < NS
0
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FΓ, Fδand Fζ are the values of the function which de-
scribes the flux vanishing, Eq. (1) (flux amount in the sur-
rounding bath) at the birth time of the Γ1 – phase sub-layer,
δ – phases sub-layers and ζ – phase sub-layer, respectively,
Fig. 3.

The flux evaporation during peritectic phases formation
(predicted in Fig. 3) decides on the Zn – solute redistribution
changes observed across the adequate sub-layers. This analysis
is described as follows:
a/ for the stable solidification, (Fig. 4b in Ref. [26]), when the
flux is evaporating,

NS
Γ (t) = k1 NS

0

1 − F (t)
k1 NS

0

k1 NS
0 + k2 N1 + k3 N2

 , tΓB 6 t 6 tS/M

(2a)

NS
δ (t) = k2 N1

1 − F (t)
k2 N1

k1 NS
0 + k2 N1 + k3 N2

 , tδB 6 t 6 tS/M

(2b)

NS
ζ (t) = k3 N2

1 − F (t)
k3 N2

k1 NS
0 + k2 N1 + k3 N2

 , tζB 6 t 6 tS/M

(2c)
b/ for the meta-stable solidification, (Fig. 4b in Ref. [26]),
when the flux is evaporating,

NM
Γ

(t) = k1NS
0 → Γ1, (Γ + δ → Γ1, Fig. 5 in Ref . [26])

t ∈ [
tS/M , t0

] (3a)

NM
δ (t) = k2 NM

0

1 − F (t)
k2 NM

0

k2 NM
0 + k3 NM

2

 t ∈ [
tS/M , t0

]
(3b)

NM
ζ (t) = k3 NM

2

1 − F (t)
k3 NM

2

k2 NM
0 + k3 NM

2

 t ∈ [
tS/M , t0

]
(3c)

c/ for the meta-stable solidification when the flux evaporation
is completed,

NM
Γ

(t) = NΓ1
(
NΓ1 is determined in Fig. 6, [26]

)
t0 < t

(4a)
NM
δ (t) = k2NM

0 t0 < t
(4b)

NM
ζ (t) = k3NM

2 t0 < t
(4c)

The changes of the NF
0 (x) – parameter along the NF

0 →
NM

0 – solidification path are postulated to be defined as fol-
lows:
A/ for the period of stable solidification, (Fig. 4b in Ref. [26]),
when the flux is evaporating; NF

0 (t) ≡ NF
0 (x)→ NS

0 , Fig. 4,

NF
0 (t) =

NS
Γ

(t) λ̇Γ (t) + NS
δ

(t) λ̇δ (t)

λ̇Γ (t) + λ̇δ (t)
, 0 < t 6 tζB (5a)

NF
0 (t) =

NS
Γ

(t) λ̇Γ (t) + NS
δ

(t) λ̇δ (t) + NS
ζ

(t) λ̇ζ (t)

λ̇Γ (t) + λ̇δ (t) + λ̇ζ (t)
, tζB < t 6 tS/M

(5b)
The λ̇ (t) – parameter is connected with the growth kinetics of
both δC and δP phases (shown in Fig. 13, [26]). The changes
of the NF

0 (t) – concentration are associated with the flux evap-
oration. The λ – parameter is determined from the adequate
experiment. So,

a/ for the Γ1 – phase sub-layer formation, (Fig. 4b in Ref. [26]),
an elliptical relationship can be used, (it contains a power
function in itself)

∆Γ1 (t) = λΓ (t) =
λΓ

(
tS/M

)
t0

[
2 t0 t − t2

]g
, t ∈ [0, tK ] (6a)

where g = 0.505 on the basis of the experimental results,
(Table 1 in Ref. [26]).
b/ for the δC – phase sub-layer formation, (Fig. 11 in Ref.
[26]), a power function can be applied,

∆δC (t) = λδC (t) = C
(
t − tδB

)c
, t ∈

[
tδB, t0

]
(6b)

where C = 0.6, c = 0.606 on the basis of the experimental
results, (Table 1 in Ref. [26]).
c/ for the δP – phase sub-layer formation, (Fig. 12 in Ref.
[26]), a power function is:

∆δP (t) = λδP (t) = P
(
t − tδB

)p
, t ∈

[
tδB, tK

]
(6c)

where P = 0.80, p = 0.53 on the basis of the experimental
results, (Table 1 in Ref. [26]).
d/ for the δ = δC + δP – phase sub-layers formation, (Fig. 13
in Ref. [26]), a power function can be applied to describe the
general tendency of the δ – phase sub-layer thickening

∆ [δC + δP] (t) = λδ (t) = L
(
t − tδB

)l
, t ∈

[
tδB, t0

]
(6d′)

L = 1.35, l = 0.58 on the basis of the experimental results,
(Table 1 in Ref. [26]).

∆ [δC + δP] (t) = λδ (t) = ∆ [δC + δP] (t0)+R (t − t0)r , t0 < t 6 tK
(6d′′)

R = 0.15, r = 0.65 on the basis of the experimental results,
(Table 1 in Ref. [26]), with, t0 = 100 [s], and tK = 300 [s],
tδB = 3 [s].
e/ for the ζ – phase sub-layer formation, (Fig. 14 in Ref. [26]),
a power function is:

∆ζ (t) = λζ (t) = Z (t)z , t ∈
[
tζB, tK

]
(6e)

Z = 0.67, z = 0.55 on the basis of the experimental results
gathered in Table 1, [26], with tζB = 14 [s].
f/ for the ζZ – sub-layer formation, (Fig. 15 in Ref. [26]), a
function is:

∆ζZ (t) = λζZ (t) = J
(
2 tζB

(
t − tζB

)
−

(
t − tζB

)2) j
, t ∈

[
tζB, tS/M

]

(6f′)
∆ζZ (t) = λζZ (t) =

(
t − tζB

)−1.44
+ ∆ζZ

(
tS/M

)
, tS/M < t 6 tK

(6f′′)
J = 0.3243, j = 0.505 on the basis of the experimental results,
(Table 1 in Ref. [26]).
g/ for the [Γ1 + δC + δP + ζ] – sub-layers formation, (Fig. 17
in Ref. [26]), a function is:

∆
[
Γ1 + δC + δP + ζ

]
(t) = λΓ1+δC+δP+ζ (t) = Y (t)y t ∈ [0, t0]

(6g′)
Y = 2, y = 0.58 on the basis of the experimental results,
(Table 1 in Ref. [26]).

∆
[
Γ1 + δC + δP + ζ

]
(t) = λΓ1+δC+δP+ζ (t) =

∆
[
Γ1 + δC + δP + ζ

]
(t0) + U (t − t0)u , t0 < t 6 tK

(6g′′)
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U = 0.3, u = 0.6 on the basis of the experimental results,
(Table 1 in Ref. [26]).
B/ for the period of meta-stable solidification, (Fig. 4b in Ref.
[26]), when the flux is evaporating; NS

0 < NF
0 (t) ≡ NF

0 (x) →
NM

0 , Fig. 4,

NF
0 (t) =

NM
δ (t) λ̇δ (t) + NM

ζ (t) λ̇ζ (t)

λ̇δ (t) + λ̇ζ (t)
, tS/M < t 6 t0 (7)

C/ for the period of meta-stable solidification, (Fig. 4b in
Ref. [26]), when the flux evaporation is completed; NF

0 (t) ≡
NF

0 (x) = NM
0 , Fig. 4,

NF
0 (t) = NM

0 =
k2 NM

0 λδ + k3 NM
2 λζ

λδ + λζ
, t0 < t (8)

The theoretical description of the (Zn) – coating formation
is based on the following equation which expresses the mass
balance in the solid / liquid system:
a/ when the flux is present in the liquid; F (x) , 0, Fig. 3,

[1 − x ± F (x)] NF
0 (x;α)+x N̄S (x;α) = [1 ± F (x)] NM

0 , t < t0
(9)

b/ when the flux decayed, F (x) = 0, Fig. 3; NF
0 (x;α, F (x))→

NL (x;α),

[1 − x] NL (x;α) + x N̄S (x;α) = 1 NM
0 t0 < t, (10)

Eq. (9) is developed due to the mass balance described in
Fig. 5. It is possible to consider two versions of the mass
balance Fig. 5a, or Fig. 5b.

Fig. 5. Mass balance for the Fe – Zn system in which flux is evaporat-
ing during initial period of coating formation; the arrow shows the di-
rection of the flux decaying a/ [1 − F (x)]⇒ 1 or b/ [1 + F (x)]⇒ 1;
NBF – solute current redistribution after back-diffusion into the solid
when the flux is present in the zinc bath; the NBF

(
x; X0, α

)
redis-

tribution is substituted by the N̄S

(
X0, α

)
– current average solute

concentration. NF
0

(
X0

)
is the Zn – solute concentration in the liquid,

when the solidification is arrested; α– back diffusion parameter, as
defined in Ref. [19]

Thus, the differentiation of Eq. (9) yields:
a/ according to Fig. 5a,

d
{
[1 + F (x)] NM

0

}
= NM

0 F
′
(x) dx (11a)

d
[
x N̄S (x;α)

]
= N̄S (x;α) dx + x dN̄S (x;α) (11b)

d
[
x N̄S (x;α)

]
= NS (x;α) dx + α x dNS (x;α) (11c)

where NS (x;α) is the solute concentration just at the inter-
face between a given sub-layer and the liquid from which the
sub-layer’s phase is growing (solidus line); next,

d
{[

1 − x + F (x) NF
0 (x;α)

]}
=

=
[
−1 + F

′
(x)

]
NF

0 (x;α) + [1 − x + F (x)] dNF
0 (x;α)

(11d)
d
{
[1 − x + F (x)] NF

0 (x;α)
}

=

=
[
F
′
(x) − 1

]
NF

0 (x;α) dx + [1 − x + F (x)] dNF
0 (x;α)

(11e)
b/ according to Fig. 5b,

d
{
[1 − F (x)] NM

0

}
= −NM

0 F
′
(x) dx (12a)

d
[
x N̄S (x;α)

]
= N̄S (x;α) dx + x dN̄S (x;α) (12b)

d
[
x N̄S (x;α)

]
= NS (x;α) dx + α x dNS (x;α) (12c)

d
{[

1 − x − F (x) NF
0 (x;α)

]}
=

=
[
−1 − F

′
(x)

]
NF

0 (x;α) + [1 − x − F (x)] dNF
0 (x;α)

(12d)
d
{
[1 − x − F (x)] NF

0 (x;α)
}

=

= −
[
F
′
(x) + 1

]
NF

0 (x;α) dx + [1 − x − F (x)] dNF
0 (x;α)

(12e)
When F (x) is equal to zero then Eq. (9) reduces to Eq. (10).
F (x) is the amount of flux in the liquid. The amount of flux
decays in time, Fig. 3. It is assumed, in the first approxi-
mation, that F (x) ≡ F (t). Thus, F (x) is introduced in Eq.
(9) instead of the F (t) – function shown in Fig. 3. It means
that flux evaporation observed in time is comparable with the
flux evaporation observed along with an increasing amount of
the growing coating. The x – parameter denotes the current
amount of the coating. NF

0 (x) is the Zn – solute concentra-
tion observed along with the solidification path (liquidus line),
NF

0 → NM
0 , (when t < t0), Fig. 4, Fig. 6.

Fig. 6. Hypothetical localization of the nominal solute concentra-
tion in the supposed ternary system (Fe-Zn-F(flux)); a/ NF+

0 , when
NF

0 > NM
0 and b/ NF−

0 , when NF
0 < NM

0 as it is reproduced in Fig. 5.

N̄S is the average solute concentration in the solid (aver-
age solute redistribution after back-diffusion, in fact), Fig. 5. It
is assumed, that the solute redistribution in the coating cannot
be changed directly by the flux presence in the bath. Thus,
the term x N̄S (x) in Eq. (9) is identical to the analogous term
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in Eq. (10). However, the flux influences on the behavior of
the liquid and consequentially its presence in the bath inter-
plays on the nominal solute concentration, NM

0 , by the term,
1 ± F (x), Eq. (9).

The current amount of the flux F (t) ≡ F (x) in the liquid,
Fig. 3, is introduced into the relationship which expresses the
mass balance in the system (shown in Fig. 5):

{nS
Fe (x)+nS

Zn (x)}+{nL
Fe (x)+nL

Zn (x)±F (x)} = {1±F (x)} (13)

nS
Fe – current amount of Fe in the coating, nS

Zn – current
amount of Zn in the coating, nL

Fe – current amount of Fe
in the liquid, nL

Zn – current amount of Zn in the liquid.
It is obvious that nS

Fe (x) + nS
Zn (x) = x, and nL

Fe (x) +

nL
Zn (x) = 1 + F (x)− x. It is in the agreement with the scheme

shown in Fig. 5a.
After some rearrangements, Eq. (9) becomes as follows:

a/ for the mass balance, Fig. 5a
[
F
′
(x) − 1

]
NF

0 (x;α) dx + [1 − x + F (x)] dNF
0 (x;α) +

NS (x;α) dx + α x dNS (x;α) = NM
0 F

′
(x) dx

(14a)
b/ for the mass balance, Fig. 5b

−
[
F
′
(x) + 1

]
NF

0 (x;α) dx + [1 − x − F (x)] dNF
0 (x;α) +

NS (x;α) dx + α x dNS (x;α) = −NM
0 F

′
(x) dx

(14b)
The solution to Eq. (14) can be obtained for the constant par-
titioning of the Zn solute:

k0 =
NS (x;α)
NF

0 (x;α)
=

NS (x;α)
NL (x;α)

(15)

After some rearrangements Eq. (14) can be rewritten as:
a/ for the mass balance, Fig. 5a

[(
F
′
(x) − 1

)
NF

0 (x;α) + k0 NF
0 (x;α) − NM

0 F
′
(x)

]
dx+[

1 − x + F (x) + α k0 x
]

dNF
0 (x;α) = 0

(16a)
b/ for the mass balance, Fig. 5b

[
−

(
1 + F

′
(x)

)
NF

0 (x;α) + k0 NF
0 (x;α) + NM

0 F
′
(x)

]
dx+[

1 − x − F (x) + α k0 x
]

dNF
0 (x;α) = 0

(16b)
When x > x0, then F (x) = 0, F

′
(x) = 0, Fig. 3, and Eq. (16)

reduces to the following form:

dNL (x;α)
dx

= −
(
k0 − 1

)
NL (x;α)

1 − x + α k0 x
with NF

0 (x;α)→ NLNL ∈
[
NM

0 ,N
F
]

(17)
Eq. (17) is the differential equation for the solute segregation
without the presence of flux in the liquid, [16]. So, the model
for segregation, [16] and the current model for the Zn – coating
formation with the flux evaporation are coherent.

When x 6 x0, then F (x) , 0, moreover, F
′
(x) , 0,

Fig. 3, and Eq. (16) can be rewritten as follows:
a/ for the mass balance, Fig. 5a

dNF
0 (x;α)
dx

= −
[
F
′
(x) − 1

]
NF

0 (x;α) + k0 NF
0 (x;α) − NM

0 F
′
(x)

1 − x + F (x) + α k0 x
(18a)

b/ for the mass balance, Fig. 5b

dNF
0 (x;α)
dx

= −
−

[
F
′
(x)+ 1

]
NF

0 (x;α)+ k0NF
0 (x;α)+ NM

0 F
′
(x)

1 − x − F (x) + αk0x
(18b)

The Eq. (18) is the linear equation of the first order. Therefore,
it can be presented as:

dNF
0 (x;α)
dx

= −P (x) NF
0 (x;α) + Q (x) (19)

where
a/ for the mass balance, Fig. 5a

P (x) =
F
′
(x) − 1 + k0

1 − x + F (x) + α k0 x
, Q (x) =

−NM
0 F

′
(x)

1 − x + F (x) + α k0 x
(19a)

b/ for the mass balance, Fig. 5b

P (x) =
−F

′
(x) − 1 + k0

1 − x − F (x) + α k0 x
, Q (x) =

NM
0 F

′
(x)

1 − x − F (x) + α k0 x
(19b)

The solution to Eq. (19) is:

NF
0 (x;α, F (x)) =

= exp
(
−
∫
P (x) dx

) [
C±+

∫
Q (x) exp

(∫
P (x) dx

)
dx

] (20)

where C± is the integral constant. This constant can be de-
termined for the initial condition which are as follows x = 0,
F (x) ≡ F (0) = F0 and NF

0 (0) = NF±
0 . Additionally, F

′
(0) ≡

F
′
0, and F

′
(x0) � 0.

Two versions of the following parameters are to be intro-
duced in order to determine the integral constant:
a/ for the mass balance, Fig. 5a

P̃+ (x) =

∫
P (x) dx =

∫
F
′
(x) − 1 + k0

1 − x + F (x) + α k0 x
dx (21a)

Q̃+ (x) =

∫ −NM
0 F

′
(x)

1 − x + F (x) + α k0 x
exp

(
P̃+ (x)

)
dx (22a)

b/ for the mass balance, Fig. 5b

P̃− (x) =

∫
P (x) dx =

∫ −F
′
(x) − 1 + k0

1 − x − F (x) + α k0 x
dx (21b)

Q̃− (x) =

∫ NM
0 F

′
(x)

1 − x − F (x) + α k0 x
exp

(
P̃− (x)

)
dx (22b)

Thus,
a/ for the mass balance, Fig. 5a

NF+
0 = exp

(
−P̃+ (0)

) [
C+ + Q̃+ (0)

]
(23a)

b/ for the mass balance, Fig. 5b

NF−
0 = exp

(
−P̃− (0)

) [
C− + Q̃− (0)

]
(23b)

Finally,
a/ for the mass balance, Fig. 5a

C+ =
NF+

0 − exp
(
−P̃+ (0)

)
Q̃+ (0)

exp
(
−P̃+ (0)

) (24a)
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b/ for the mass balance, Fig. 5b

C− =
NF−

0 − exp
(
−P̃− (0)

)
Q̃− (0)

exp
(
−P̃− (0)

) (24b)

Eq. (1) and Eq. (6) yield the F (x)- function:

F (x) = F0 exp
[
−F0 (kλ)−1/m x1/m

]
(25)

where the sum λ (t) = ∆Γ1 (t) + ∆δC (t) + ∆δP (t) + ∆ζ (t) (with
∆Γ1 (t) delivered by Eq. (6a), ∆δC (t) by Eq. (6b), ∆δP (t) by
Eq. (6c) and ∆ζ (t) by Eq. (6e)) is introduced into Eq. (25).
However, it is assumed that λ (t) ≡ x (t) for the 1D mode of
the coating formation. Thus,

x (t) = kλ tm, 0.5 6 m 6 1 (25a)

A combination of Eq. (25a) and Eq. (1) yields Eq. (25).
Consequentially,

F
′
(x) = − (F0)2 (kλ)−1/m (1/m) x(1−m)/m exp

[
−F0 (kλ)−1/m x1/m

]

(25b)
The peritectic phase sub-layer which is formed with the pres-
ence of flux has a varying solute redistribution (t < t0), Eq.
(2), Eq. (3). The varying solute redistribution within the ζ –
peritectic phase sub-layer is shown schematically in Fig. 7,
and confirmed by the measurement, Fig. 1, Fig. 8.

Fig. 7. Mass balance for the ζ – peritectic phase formation with the
presence of flux as drawn due to the phase diagram for meta-stable
equilibrium (analogously, the mass balance for the ζ – peritectic
phase formation with the presence of flux as drawn due to the phase
diagram for stable equilibrium can also be shown)

Fig. 8. Zn and Fe redistributions within the morphology of the (Zn) –
coating; the increasing / decreasing tendencies (dashed yellow lines)
are juxtaposed; the measurement performed for the (Zn) – coating
deposited on the S355 steel substrate; solidification arrested at time
t = 60 [s], when NF

0 (x) = NM
0 , exactly; EDS

The peritectic reaction is defined as follows:
a/ for meta-stable conditions

δM

(
k2NM

2

)
+liquid

(
NF

0 (x;α)→ NM
2

)
→ζ

(
k3

(
NF

0 (x;α)
)
→k3NM

2

)

b/ for stable conditions

δS (k2 N2)+liquid
(
NF

0 (x;α)→ N2

)
→ ζ

(
k3

(
NF

0 (x;α)
)
→ k3 N2

)
,

The NM
ζ (t) ≡ NM

ζ (x) – function describes the varying Zn –
solute redistribution across the ζ – peritectic phase sub-layer
formed with the presence of flux in the zinc bath (tS/M < t <
t0), Fig. 7.

Some changes of the Zn – solute redistribution observed
across the δP – phase sub-layer and ζ – phase sub-layer (ana-
lyzed theoretically in Fig. 7) were measured (EDS technique),
Fig. 8. The measurement confirms that the Zn – solute re-
distribution varies as predicted. It is also confirmed by the
varying Fe – redistribution, Fig. 8.

The mass balance which should be satisfied during the
peritectic reaction (for tS/M < t < t0) can be written (according
to the scheme shown in Fig. 7):

FA (x; x1, α) + FB (x; x1, α) = FC (x; x1, α) (26)

FA (x; x1, α) =


∫ xmin

1

0
NDF (x; x1, α) dx −

∫ x1

0
NBF (x; x1, α) dx


(26a)

FB (x; x1, α) =


∫ x1

xmin
1

NM
ζ (x; x1, α) dx − k2 NM

2

(
x1 − xmin

1

)
(26b)

FC (x; x1, α)=

[
NF

0 (x; x1, α)
(
xmax
1 − x1

)
−
∫ xmax

1

x1

NM
ζ (x; x1, α) dx

]

(26c)
Thus, the iζ – amount of the Zn – solute in the ζ – phase,
Fig. 7, which results from the peritectic reaction visible in Fig.
4, is:

iζ (x; x1, α) =

∫ xmax
1

xmin
1

NM
ζ (x; x1, α) dx (27)

The NBF , NDF – functions (plotted in Fig. 7) are required by
Eq. (26).
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First of all, however, the solidification path Eq. (20) is to
be defined in a general way. Eq. (20) should be generalized to
show the formation of coating for many solidification ranges
(as for stable solidification when two peritectic reactions occur,
Fig. 9). The solidification ranges visible on the liquidus line
are as follows: NF

0 (x)→ NS
0 ; NS

0 → N1; N1 → N2; N2 → NF .

Fig. 9. The Fe-Zn phase diagram for stable equilibrium calculated
on the basis of the data delivered in Ref. [15] with the hypothetical
localization of the NF−

0 – nominal concentration of the Zn – solute
in the liquid and with the NS

0 – nominal concentration of the Zn –
solute (as required by the stable solidification and formed in the d –
dissolution zone)

In this case, instead of the NF
0 (x;α, F (x)) – function

(for one solidification range associated with a one peritectic
reaction) the NF

0i(x, α
D
i , l

0
i ,Ni−1, ki, F (x)); i = 1,...n, is to be

determined for the coating formation with the presence of
flux in the liquid, (where n – number of solidification ranges).

It can be done during development of the simulation pro-
gram for the calculation of the coating formation. The general
definition NF

0i(x, α
D
i , l

0
i ,Ni−1, ki, F (x)) should be reducible to

the solution to Eq. (17) (with n = 1), developed for the so-
lidification which is not accompanied by the presence of the
flux in the liquid, F (x) = 0. At first, the general definition
NF

0i(x, α
D
i , l

0
i ,Ni−1, ki, F (x)) should be reducible to the general

definition for the solidification path determined for the bi-
nary system (with no flux) but for n - solidification ranges:
NF

0i(x, α
D
i , l

0
i ,Ni−1, ki, F (x))⇒ NL

i (x, αD
i , l

0
i ,Ni−1, ki), where

NL
i

(
x, αD

i , l
0
i ,Ni−1, ki

)
=

=
Ni−1

1 − k0
i

(
k0
i l0i (1 − k0

i − kL
i ) (x0

i − x)

(l0i + k0
i x0

i − x0
i ) (k

0
i l0i + kL

i l0i − kL
i x)

) i = 1,...n

(28)
The constant partition ratio can be introduced into above

definition of solidification path, Eq. (28). It means that only
the k0

i = k0– term from the partition ratio definition, Eq. (29),
(with kL

i = 0) would be applied to Eq. (20) or to its gener-
al form, NF

0i(x, α
D
i , l

0
i ,Ni−1, ki, F (x)) (with n = 1). It occurs

when one solidification range is accompanied by one peritec-
tic reaction. Additionally, the peritectic reaction precipitates
inter-metallic phase (not compound).

The full definition of partition ratio is as follows:

ki(x) = k0i + kL
i

Ni−1
NL

i (x)
i = 1,...n (29)

Eq. (29) is the universal definition of partition ratio for the
phase diagrams in which n – ranges of solidification exist.

In the consequence, the s/l interface path (solidus line) is
given as:
a/ for t 6 t0,

NSF
i (x, αD

i , l
0
i ,Ni−1, ki, F (x)) = k0i NF

0i

(
x, αD

i , l
0
i ,Ni−1, ki, F (x)

)

(30a)
b/ for t0 < t,

NS
i (x, αD

i , l
0
i ,Ni−1, ki) = k0i NL

i

(
x, αD

i , l
0
i ,Ni−1, ki

)
(30b)

αD
i – back-diffusion parameter associated with the partition-

ing within the i − th – solidification range, i = 1,...n; so, the
back-diffusion parameter α, Eq. (17) is now substituted by the
αD

i – back-diffusion parameter; Ni – solute concentration in the
liquid (liquidus line) at the beginning of a given solidification
range; l0i – amount of the liquid at the beginning of a given
solidification range.

Finally, the redistribution path after back diffusion can be
described as:
a/ for t 6 t0,

NBF
i

(
x, x0i , α

D
i , l

0
i ,Ni−1, k

0
i , F (x)

)
=

[
1 + βex

i

(
x, x0i , l

0
i , k

0
i

)
βin

i

(
x0i , α

D
i , l

0
i , k

0
i

)]
NSF

i(
x, αD

i , l
0
i ,Ni−1, k

0
i , F (x)

)
(31a)

b/ for t0 < t,

NB
i

(
x, x0i , α

D
i , l

0
i ,Ni−1, k

0
i

)
=

[
1+βex

i

(
x, x0i , l

0
i , k

0
i

)
βin

i

(
x0i , α

D
i , l

0
i , k

0
i

)]
NS

i

(
x, αD

i , l
0
i ,Ni−1, k

0
i

)

(31b)
The NBF – redistribution after back-diffusion is shown in Fig.
7 for the ζ – peritectic phase, only. The βex

i – coefficient of the
redistribution extent can be defined from the so-called Lever
Rule written for the equilibrium solidification ( αD

i = 1), [17],
where βin

i

(
x0
i , 1

)
= 1, additionally. The βin

i – coefficient of the
redistribution intensity is defined by means of the mass bal-
ance consideration which is shown in Fig. 5 (with F (x) = 0).

βex
i (x, x0

i , l
0
i , ki) =

k0
i l0i (1 − k0

i − kL
i ) (x0

i − x)

(l0i + k0
i x0

i − x0
i ) (k

0
i l0i + kL

i l0i − kL
i x)

(32a)
βin

i (x0
i , α

D
i , l

0
i , ki) =

[ a3 kL
i (1 − k0

i ) (a4 − l0i Ni−1 + x0
i ) (l0i + k0

i x0
i − x0

i ) (α
D
i − 1) ]×

[a2a3l0i k
0
i Ni−1 (a2l0i + kL

i x0
i (α

D
i −1)+a5(k0

i l
0
i +kL

i l0i −kL
i x0

i )(α
D
i −1))+

a1a2
2Ni−1(a6 f2− a3l0i k

0
i ) (l

0
i +αD

i k0
i x

0
i − x0

i )−a2
2a6 f1l0i Ni−1 ]−1

(32b)
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with, ah; h = 1, ..., 6 and f1, f2 defined as follows,

2F1(a, b, c, x) = 1 +
a b x
1! c

+
a (a + 1) b (b + 1) x2

2! c (c + 1)
+ · · · =

=
∞∑

k=0

(a)k (b)k xk

(c)k k!
(33)

Thus

f1 = 2F1


αD

i k0
i − k0

i

αD
i k0

i − 1
, 1;

2αD
i k0

i − k0
i − 1

αD
i k0

i − 1
;

kL
i

k0
i (α

D
i k0

i + αD
i kL

i − 1)


(33a)

f2 = 2F1


αD

i k0
i − k0

i

αD
i k0

i − 1
, 1;

2αD
i k0

i − k0
i − 1

αD
i k0

i − 1
;

kL
i (l0i + αD

i k0
i x

0
i − x0

i )

k0
i l

0
i (α

D
i k0

i + αD
i kL

i − 1)


(33b)

and

a1 =
[
(l0i + αD

i k0
i x

0
i − x0

i )
/
l0i
] k0

i −1
1−αD

i k0
i , a2 = k0

i + kL
i − 1,

a3 = k0
i α

D
i + kL

i α
D
i − 1, a4 =

Ni−1 (l0i − x0
i ) (k

L
i − a1 a2)

1 − k0
i

,

a5 = ln
k0
i l

0
i + kL

i l0i − kL
i x0

i

k0
i l

0
i + kL

i l0i
, a6 = (k0

i l
0
i +kL

i l0i −kL
i x0

i ) (α
D
i k0

i −1).

Moreover

l0i =



L0, i = 1;

L0 −
i−1∑
j=1

xmax
j , i = 2, ..., n;

x0
i =



X0, i = 1;

X0 −
i−1∑
j=1

xmax
j , i = 2, ..., n;

(34)

where X0 is the parameter responsible for the arresting of
solidification; the X0 – parameter is equal to x, at which the
solidification is stopped and coating morphology is frozen.

The NDF – redistribution, Fig. 7 is given by the same
function as the NBF– redistribution, (Eq. (31a)), however,
shifted to the new position fixed by the xmin

i – parameter.
So,
a/ for t 6 t0,

NDF
i

(
x; x0

i , α
D
i , l

0
i ,Ni−1, k0

i , F (x)
)

=

=
[
NBF

i

(
x + xi − xmin

i ;αD
i , l

0
i ,Ni−1, k0

i , F (x)
)] (35a)

b/ for t0 < t,

ND
i

(
x; x0

i , α
D
i , l

0
i ,Ni−1, k0

i

)
=

=
[
NB

i

(
x + xi − xmin

i ;αD
i , l

0
i ,Ni−1, k0

i

)] (35b)

Thus, the amount of the peritectic reaction product,(
xmax
1 − xmin

1

)
≡

(
xmax
ζ − xmin

ζ

)
, can be determined, as illustrated

in Fig. 7.
The varying solute concentration can be introduced into

the definition of the amount of peritectic phase such as ζ –
phase, Fig. 7. Thus,

a/ for t 6 t0,

xmax
1 ( x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) =

xmem
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3);

when r1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) > (NM

2 − NM
ζ (x))×

×[xmem
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) − x1(αD

2 , l
0
1 ,N

M
0 ,N

M
2 , k

0
2)]

(36)
with k0

2 ≡ k2 and k0
3 ≡ k3, (Fig. 7 in Ref. [26]).

r1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3 ) = NM

ζ (x) x1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 )−

−
x1∫
0

NB
1 (x, x1, α

D
2 , l

0
1 ,N

M
0 , k

0
2 ) dx

(36a)

xmem
1 ( x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) =

min
{
x0
1;
}

x1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2)+

+[x1(αP
2 , l

0
1 ,N

M
ζ (x),NM

2 , k
0
3) − x1(αP

2 , l
0
1 ,N

M
ζ (x),NM

2 , k
0
2)]×

×[x1(αP
2 , l

0
1 ,N

M
ζ (x),NM

2 , k
0
1) − x1(0, l01 ,N

M
ζ (x),NM

2 , k
0
2)]×

×[x1(1, l01 ,N
M
ζ (x),NM

2 , k
0
2) − x1(0, l01 ,N

M
ζ (x),NM

2 , k
0
1)]

−1}
(36b)

xmax
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) = x1(αD

2 , l
0
1 ,N

M
0 ,N

M
2 , k

0
2)+

r1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3)/(N

M
2 − NM

ζ (x));

when r1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) 6 (NM

2 − NM
ζ (x))×

×[xmem
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3)−x1(αD

2 , l
0
1 ,N

M
0 ,N

M
2 , k

0
2)]

(36c)
with k0

2 ≡ k2 and k0
3 ≡ k3, (Fig. 7 in Ref. [26]).

The xmin
1 – parameter is determined from the mass bal-

ance, Fig. 5a

xmin
1∫
0

[NB
1 (x + x1 − xmin

1 , x1, α
D
2 , l

0
1 ,N

M
0 , k

0
2)−

−NB
1 (x, x1, α

D
2 , l

0
1 ,N

M
0 , k

0
2)] dx+

x1∫
xmin
1

[NM
ζ (−x) − NB

1 (x, x1, α
D
2 , l

0
1 ,N

M
0 , k

0
2)] dx =

(NM
2 −NM

ζ (x)) [xmax
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3)−

−x1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2)]

(37)

b/ for t0 < t,

xmax
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) =

= xmem
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3);

when r1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) > (NM

2 − k3 NM
2 ) ×

×[xmem
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3)−

−x1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2)]

(38)

with k0
2 ≡ k2 and k0

3 ≡ k3, Fig. 7 in Ref. [26].
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r1 ( αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) = k3 NM

2 x1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2)−

−
x1∫
0

NB
1 (x, x1, α

D
2 , l

0
1 ,N

M
0 , k

0
2) dx

(38a)

xmem
1 ( x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) =

= min
{
x0
1;

}
x1(αD

2 , l
0
1 ,N

M
0 ,N

M
2 , k

0
2)+

+[x1(αP
2 , l

0
1 ,N

M
2 ,N

M
2 , k

0
3) − x1(αP

2 , l
0
1 ,N

M
2 ,N

M
2 , k

0
2)] ×

×[x1(αP
2 , l

0
1 ,N

M
2 ,N

M
2 , k

0
1) − x1(0, l01 ,N

M
2 ,N

M
2 , k

0
2)] ×

×[x1(1, l01 ,N
M
2 ,N

M
2 , k

0
2) − x1(0, l01 ,N

M
2 ,N

M
2 , k

0
1)]

−1}
(38b)

xmax
1 ( x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) = x1(αD

2 , l
0
1 ,N

M
0 ,N

M
2 , k

0
2)+

r1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3)/(N

M
2 − k3 NM

2 );

when r1(αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) 6 (NM

2 − k3 NM
2 )×

×[xmem
1 (x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3) − x1(αD

2 , l
0
1 ,N

M
0 ,N

M
2 , k

0
2)]

(38c)
with k0

2 ≡ k2 and k0
3 ≡ k3, (Fig. 7 in Ref. [26]).

The xmin
1 - parameter is determined from the mass bal-

ance, Fig. 5b.

xmin
1∫
0

[NB
1 (x + x1−

−xmin
1 , x1, α

D
2 , l

0
1 ,N

M
0 , k

0
2) − NB

1 (x, x1, α
D
2 , l

0
1 ,N

M
0 , k

0
2)] dx+

x1∫
xmin
1

[k3 NM
2 − NB

1 (x, x1, α
D
2 , l

0
1 ,N

M
0 , k

0
2)] dx =

(NM
2 − k3NM

2 ) [xmax
1 ( x0

1, α
D
2 , α

P
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2 , k

0
3)−

−x1 ( αD
2 , l

0
1 ,N

M
0 ,N

M
2 , k

0
2)]

(39)

xi (αD
i , l

0
i ,Ni−1,Ni, ki) =

= l0i [ 1 − αD
i ki ]−1 [ 1 − ( Ni/Ni−1)

1−αD
i ki

ki−1 ] , i = 1,...n
(40)

where, ki, is varying partition ratio, Eq. (29); αD
i is the

back-diffusion parameter for the phenomenon of partitioning
which occurs during the xi – primary phase formation, Eq.
(40), [18]; αP

i is the back-diffusion parameter introduced in-
to the description of peritectic reaction (precipitation of the
inter-metallic phase).

The competition between stable and meta-stable solidifi-
cation seems to influence upon the Zn – solute redistribution
revealed across a given sub-layer. Such kind of observation
is shown in Fig. 10. A hypothetical localization of the tS/M –
time is visible (bright green point on the redistribution curve),
Fig. 10.

Fig. 10. Zn – redistribution as measured (EDS technique) across the
Γ1, δC phase sub-layers solidified for t = 100[s]

The white point on the curve defines the boundary be-
tween Γ1 – phase sub-layer and δC – phase sub-layer. The
yellow point on the same curve shows the δC /δP - boundary
recorded for the t0 – time. The steep redistribution gradient can
be referred to the period of stable solidification (tδB < t < tS/M)
(white dashed line) and moderate redistribution gradient to
the period of meta-stable solidification (tS/M < t < t0) (yellow
dashed line). On the other side the δC – phase is the product
of peritectic reaction, when tδB < t < tS/M , Fig. 9, whereas the
same δC – phase is the result of partitioning, Fig. 11, with a
decaying activity of flux, when tS/M < t < t0.

The phenomenon of segregation (redistribution) is well
known in the hot dip coating formation, [13]. However, the
current model explains the difference in segregation (re-
distribution) for two distinguished periods of solidification,
Fig. 10. The distinguished periods of solidification (stable /
meta-stable) have already been discussed for the hot dip tech-
nology, [19], but some transient phases were predicted in the
mentioned study. The current model shows the enlarged phase
field for the δ – phase existence in the Fe-Zn phase diagram,
Fig. 4. So, there are no two different δ – phase fields as it was
suggested in Ref. [20].

It seems that the redistribution curvature, Fig. 10, corre-
sponds well with the curvature of the supposed function for
the flux decay, Fig. 3.

The phases solidification in the coating (or joint) is al-
ways preceded by dissolution, [21]. Therefore, the localization
of the dissolution zone, d, is predicted, Fig. 10. Moreover, the
d – dissolution zone (distinguished in the substrate) is always
accompanied by the ss – super-saturation zone, and the s –
saturation zone, Fig. 10. The Zn – solute concentration in the
d, ss and s – zones is determined due to the superposition of
the phase diagram for dissolution over the phase diagram for
meta-stable solidification, (Fig. 20 in Ref. [26]).

The d – zone and ss – zone are so small that cannot be
revealed by the EDS – measurement. However, both zones are
predicted theoretically, (Fig. 20 in Ref. [26]).

The d – zone, Fig. 9, evinces the NS
0 – solute concentra-

tion for the stable solidification while the d – zone, Fig. 11,
evinces the NM

0 – solute concentration for the meta-stable
solidification. The NS

0 ≈ 0.91 [at.%] – solute concentration
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is associated with the Γ1 + δC + δP + ζ – sub-layers and
NM

0 ≈ 0.925 [at.%] with the δC +δP +ζ – sub-layers formation.
Both parameters (NS

0 ≈ 0.91 [at.%], NM
0 ≈ 0.925 [at.%]) are

determined experimentally due to the mass balance calculation
(average solute concentration within a given coating).

Fig. 11. The Fe-Zn phase diagram for meta-stable equilibrium calcu-
lated due to the data delivered in Ref. [15] with the localization of
the NM

0 – nominal concentration of the Zn – solute

The transition from stable into meta-stable solidification
is justified by the criterion of the higher temperature of the s/l
interface, delivered in Ref. [22] and subsequently developed
for the Ni/Al system, [23].

The boundary diffusion is assumed for the flow of the
NF – liquid solution (diffusion between neighboring cells in
a given sub-layer) in the current model of dissolution, Fig.
12. According to the current model of solidification, the bulk
diffusion is predicted for NS

0 or NM
0 – liquid solutions formed

in the d – zone, Fig. 12. Both flows (yellow and red arrows) are
equal to each other in the current model for the ideal coating
formation, Fig. 12.

Fig. 12. Model for the ideal growth of the coating: a/ substrate dis-
solution employs the boundary diffusion (the liquid solution diffuses
along the channels between cells), b/ sub-layers thickening occurs
due to the bulk diffusion through the cells (the liquid solution comes
from the d – zone) and subsequent solidification accompanied by the
undercooled peritectic reactions (the model shows an initial transient
stable solidification with the Γ1 – phase sub-layer formation)

The NS
0 – solute concentration is localized at the begin-

ning of the NS
0 ÷ N1 solidification range, Fig. 9. Analogously,

the NM
0 – solute concentration localization is thermodynami-

cally selected just at the beginning of the NM
0 ÷ NM

2 solidifi-
cation range, Fig. 11.

The undercooled peritectic reaction is introduced into the
current model according to some investigations delivered in
Ref. [24]). The peritectic reaction is as follows δM

(
k2 NM

2

)
+

liquid
(
NF

0 (x;α)→ NM
2

)
⇒ ζ

(
k3

(
NF

0 (x;α)
)
→ k3 NM

2

)
, Fig.

11, tS/M < t 6 t0. On the other side the δ – phase (the δM

– phase in fact) is formed due to the partitioning (along the
red liquidus surface /line). The ζ – phase (formed as a result
of the above peritectic reaction) is growing additionally due
to the partitioning which takes place along the blue liquidus
surface / line.

In the case of the (Al) – coating formation on the Ni –
substrate, [25], the stable solidification is of very short dura-
tion, so that the AlNi phase sub-layer does not exist in the
coating (the appeared primary AlNi phase is completely con-
sumed by the Al3Ni2 – phase during the stable solidification).
However, the Γ1 – phase sub-layer is visible in the (Zn) –
coating as a result of the stable solidification, Fig. 1.

4. Concluding remarks

Since the (Zn) – coating formation is 1D solidification
process, therefore the ratio of the measured sub-layers thick-
ness is equal to the phases amount ratio calculated due to the
current model relationships:
a/ for the stable solidification, t ∈ [

0, tS/M
]
, Fig. 9,

λΓ1/λδ/λζ = xΓ1
(
N1, xmin

δ

)
/
[
xmax
δ − xmin

δ

]
/
[
xmax
ζ − xmin

ζ + xζ
(
NF

)]

b/ for the meta-stable solidification, tS/M < t 6 tK , Fig. 11,

λδ/λζ = xδ
(
NM

2 , x
min
ζ

)
/
[
xmax
ζ − xmin

ζ + xζ
(
NF

)]

The presence of the flux at the δC – interface makes the
growth of the δC – phase more difficult. Thus, the bulk diffu-
sion is not sufficiently intensive. So, the m – power index in
the kinetics law (λ j = k j tm) is m = 0.606 for the δC – phase
growth. It is obvious that the channels are exploited to some
extent in the δC – phase growth, Eq. (6b) whereas m = 0.530
for the δP – phase kinetics law, Eq. (6c). Thus, m = 0.580 for
the [δC + δP] – phases growth, Eq. (6d′).

Since the δ – phase formation is split into two sub-phases
growth as the result of the use of flux in the hot dip galva-
nizing technology, therefore, only one, δP – phase appears in
the coating when the flux evaporation is completed at the t0
– time.

The growth of the ζ – phase sub-layer is not perturbed
by the presence of flux in the bath, Eq. (6e). The thickening
of the ζ – phase sub-layer is the result of the bulk diffusion,
(m ≈ 0.5), as predicted by the model for the ideal coating
formation, Fig. 12.

The presence of the flux in the zinc bath influences the δC

– phase sub-layer morphology. The δC – sub-layer is monolith-
ic rather in comparison with the δP – phase sub-layer, Fig. 1.

The transition from the stable into the meta-stable so-
lidification which yields the subtle transition from NS

0 ≈
0.91 [at.%] into NM

0 ≈ 0.925 [at.%] – solute concentration,
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results in the significant changes in the coating morphology
because the Γ1 – phase sub-layer formation disappears at the
tS/M – time.

At the tS/M – time the first peritectic reaction, Fig. 9 is
substituted by the partitioning, Fig. 11, to form the δM – phases
instead of the δS – phases, as justified in Fig. 4, due to the
thermodynamic calculations. Additionally, it is illustrated by
the scheme shown in Fig. 23a, [26], where δS → δC + δP and
in Fig. 23b, [26]), where δM → δC + δP.

The kinetics of the occurring phenomena: ideal dissolu-
tion, (Fig. 23 in Ref. [26]) and ideal solidification is continu-
ously delayed during the sub-layers thickening (the diffusion
distance becomes longer).

The ideal diffusion itineraries (bulk diffusion for solidifi-
cation and boundary diffusion for dissolution) shown schemat-
ically in Fig. 12, overlap one another in the real process of
the coating formation. Therefore, the m – power index differs
slightly from the 0.5 – value for the phases growth in their
kinetics laws, Eq. (6).

The current model predicts the varying Zn – solute re-
distribution across the peritectic phase sub-layer; NM

ζ (t) ≡
NM
ζ (x), Fig. 7. The function which describes the varying re-

distribution is introduced into both Eq. (36) and Eq. (37),
(0 < t 6 t0). The Eq. (36) reduces to Eq. (38) and Eq. (37)
reduces to Eq. (39) for the t0 < t < tK – period of time. Si-
multaneously, the varying Zn – solute redistribution becomes
a constant Zn – solute concentration at the t = t0 – time,
NM
ζ (x) → k3 NM

2 , where k3 NM
2 – solute concentration is the

asymptote, Fig. 10.
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entstenden 1p und 1k schichten, Metall 26, 1026-1030 (1972)
(in German).

[8] P.J. G e l l i i n g s, E.W. B r e e, G. G i e r m a n, Synthe-
sis and characterization of homogeneous intermetallic Fe-Zn
compounds. Part 1. Zeitschrift für Metallkunde 70, 312-314
(1979).

[9] P.J. G e l l i i n g s, E.W. B r e e, G. G i e r m a n, Synthe-
sis and characterization of homogeneous intermetallic Fe-Zn
compounds. Part 2. Zeitschrift für Metallkunde 70, 315-317
(1979).

[10] C.E. J o r d a n, A.R. M a r d e r, Morphology development in
hot-dip galvanneal coatings. Metallurgical and Materials Trans-
actions 25A, 937-947 (1994).

[11] C.R. X a v i e r, U.R. S e i x a s, P.R. R i o s, Further experi-
mental evidence to support a simple model for iron enrichment
in hot-dip galvanneal coatings on IF steel sheets. ISIJ Interna-
tional 36, 1316-1317 (1996).

[12] M. D a n i e l e w s k i, Diffusion in multicomponent systems,
Archives of Metallurgy and Materials 49, 189-200 (2004).

[13] M. Z a p p o n i, A. Q u i r o g a, T. P e r e z, Segregation
of alloying elements during the hot-dip coating solidification
process, Surface and Coatings Technology 122, 18-20 (1999).

[14] J. M a ć k o w i a k, N.R. S h o r t, Metallurgy of galvanized
coatings, International Metals Reviews 237, 1-19 (1979).

[15] W. X i o n g, Y. K o n g, Y. D u b, L. Z i k u i, M. S e l l e b y,
S. W e i h u a, Thermodynamic investigation of the galvanizing
systems, I: Refinement of the thermodynamic description for
the Fe-Zn system, CALPHAD: Computer Coupling of Phase
Diagrams and Thermo-Chemistry 33, 433-440 (2009).

[16] W. W o ł c z y ń s k i, Back-diffusion phenomenon during the
crystal growth by the Bridgman method, Chapter 2. In the book:
Modelling of Transport Phenomena in Crystal Growth, p.19-59,
WIT Press, Southampton–Boston), 2000, eds. J. Szmyd & K.
Suzuki.

[17] W. W o ł c z y ń s k i, J. J a n c z a k - R u s c h, J. K l o c h, T.
R u t t i, T. O k a n e, A model for solidification of intermetal-
lic phases from Ni-Al system and its application to diffusion
soldering, Archives of Metallurgy and Materials 50, 1055-1068
(2005).

[18] W. W o ł c z y ń s k i, E. G u z i k, D. K o p y c i ń s k i, T.
H i m e m i y a, J. J a n c z a k - R u s c h, Mass transport dur-
ing diffusion soldering or brazing at constant temperature, Pro-
ceedings of the 13th International Heat Transfer Conference,
Sydney 2006, ed. begell house, inc. publishers, eds G. de Vahl
& E. Leonardi, CD, MST-11, 12 (2006).

[19] P. P e r r o t, J.C. T i s s i e r, J.Y. D a u p h i n, Stable
and metastable equilibria in the Fe-Zn-Al system at 450◦C,
Zeitschrift für Metallkunde 83, 786-790 (1992).
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