www.journals.pan.pl

JOURNAL OF PLANT PROTECTION RESEARCH

Vol. 55, No. 4 (2015) DOI: 10.1515/jppr-2015-0055

Appraisal of wheat germplasm for adult plant resistance against stripe rust

Kamran Saleem^{1*}, Hafiz M. Imran Arshad¹, Sajid Shokat², Babar Manzoor Atta²

¹Plant Protection Division, Nuclear Institute for Agriculture and Biology (NIAB), 38000 Faisalabad, Pakistan ²Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), 38000 Faisalabad, Pakistan

Received: June 15, 2015 Accepted: November 4, 2015

Abstract: The resurgence of wheat stripe rust is of great concern for world food security. Owing to resistance breakdown and the appearance of new virulent high-temperature adapted races of Puccinia striiformis f. sp. tritici (Pst), many high yielding commercial varieties in the country lost their yield potential. Searching for new sources of resistance is the best approach to mitigate the problem. Quantitative resistance (partial or adult plant) or durable resistance is reported to be more stable than race specific resistance. In the current perusal, a repertoire of 57 promising wheat lines along with the KLcheck line Morocco, developed through hybridisation and selection of local and international lines with International Maize and Wheat Improvement Center (CIMMYT) origin, were evaluated under natural field conditions at Nuclear Institute for Agriculture and Biology (NIAB) during the 2012-2013 and 2013-2014 time periods. Final rust severity (FRS), the area under the rust progress curve (AURPC), the relative area under the rust progress curve (rAURPC), and the coefficient of infection (CI) were unraveled to infer the level of quantitative resistance. Final rust severity was recorded when the susceptible check exhibited 100% severity. There were 21 lines which were immune (no disease), 16 which were resistant, five moderately resistant, two resistant-to-moderately resistant, one moderately resistant-to-moderately susceptible, 5 moderately susceptible-to-susceptible, one moderately susceptible, and six exhibited a susceptible response. Nevertheless, 51 lines exhibited a high level of partial resistance while the three lines, NW-5--1212-1, NW-7-30-1, and NW-7-5 all showed a moderate level of partial resistance based on FRS, while 54 lines, on the basis of AURPC and rAURPC, were identified as conferring a high level of partial resistance. Moreover, adult plant resistance was conferred by 47 wheat lines, based on CI value. It was striking that, 13 immune lines among 21 were derived from parents of CIMMYT origin. Cluster analysis was executed to determine the diversity among the wheat genotypes based on stripe rust resistance and yield parameters. All genotypes were grouped into nine clusters exhibiting a high level of diversity at a 25% linkage distance. There were 29 wheat lines resistant to stripe rust that were grouped into the first three clusters, while 4 high-yielding lines were in Cluster VIII. The susceptible check, Morocco, was separated from rest of lines and fell in the last cluster i.e. Cluster IX. Based on the results, inter-crossing immune/ resistant lines is recommended, and with high yielding lines - it is also recommended that cultivars with improved disease resistance and yield potential be developed.

Key words: durable resistance, food security, pathogen, stripe rust, wheat

Introduction

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), incurred serious wheat-yield loss around the globe (Singh et al. 2005; Ali et al. 2009a; Hovmoller et al. 2010; Hovmoller et al. 2011; De Vallavieille-Pope et al. 2012). The pathogen is present in wheat growing areas of temperate, moist, and cooler regions of the world, except the Antarctica (Chen 2005). In the case of highly susceptible varieties, loss may escalate up to 80% (Kolmer 1996; Beard et al. 2007). The causal pathogen Pst, reduces the total photosynthetic area, utilises plant assimilates, and interrupts the normal growth of the host, which leads to the shriveling of the grains. Moreover, the physical and biochemical quantitative characteristics of wheat are negatively influenced. Newly spreading, high-temperature adapted races of Pst were reported from many countries which made this pathogen even more notorious (Ali

et al. 2014). Pakistan faced four major stripe rust epidemics. The intensity of the epidemics exceeded 20% in 1973 (35%), 1978 (55%), 1995 (37.5%), and 2003 (20%). Stripe rust intensity has never gone below 8% in the country's history (Ahmad 2004). Pst infects the wheat crop in winter or early spring or at cooler areas. Generally, the temperature for stripe rust urediniospores to geminate and for disease epidemics ranges from 2 to 15° C (Hogg *et al.* 1969). Development of yellow stripes of urediniospores on wheat leaves is the characteristic symptom of Pst in comparison with leaf and stem rust. Once yellow uredinia stripes appear on flag leaf, the uredinia can cover the whole leaf within a short time under favourable weather conditions.

New and more effective fungicides like Tilt[®] (propiconazole), Quadris[®] (azoxystrobin), Stratego[™] (propiconazole + trifloxystrobin), and Quilt[™] (azoxystrobin +

^{*}Corresponding address:

kammmran@hotmail.com

propiconazole) are available to control stripe rust. The use of these fungicides, however, is uneconomical and ecologically unsafe (Chen 2005). Growing wheat cultivars which have resistant genes against Pst, remains the most inexpensive, efficient, environmentally friendly, and sustainable approach to manage the disease. Screening of varieties against stripe rust is a regular activity due to the dynamic evolutionary nature of the pathogen. New races of Pst evolved quickly through mutation and somatic hybridisation (Stubbs 1985). Due to their air-borne dispersal mechanism and rapid multiplication, local races can migrate to other areas and quickly become regionally and often globally predominant. Thus, virulence has been reported for many Yr genes worldwide (Singh et al. 2002). Two types of resistance have been identified in several cereal-rust pathosystems: hypersensitive or qualitative (race specific) and quantitative (race-nonspecific) resistance. Race-specific resistance is highly effective but not durable because cultivars with such a type of resistance often become susceptible within a few years of release either as a consequence of selecting previously rare races or as a consequence of the development of new races (Wellings and McIntosh 1990; Line and Qayoum 1992; Chen 2005, 2007). Conversely, race-nonspecific resistance is mainly polygenic and is known to be long-lasting and more durable (Herrera-Fossel et al. 2007).

Up till now, more than 50 genes for stripe rust resistance have been identified and named while many other genes or quantitative trait loci (QTL) have been tentatively designed (McIntosh et al. 2008; Chen 2013). The majority of these Yr-genes are race specific, though, and become ineffective due to the development of new races. The average lifetime of the genes conferring race specific resistance is estimated to be five years on a global basis (Kilpatrick 1975). Pathogen also keeps its momentum to evolve in rapid ways, therefore there is a dire need to investigate new sources of resistance against Pst. Keeping in mind the role of wheat as a staple food, the present study was conducted to identify the resistance potential in some commercial varieties and promising wheat lines developed at the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.

Materials and Methods

Plant material

Winter wheat germplasm comprising 57 lines, along with the susceptible check Morocco (Table 1) were screened for stripe rust resistance under natural conditions at the field area of NIAB, Faisalabad for two years (2012–2013 and 2013–2014). Each entry was planted in two rows (the rows were 2 m in length) spaced at 30 cm. Morocco was planted as every 10th row and as a spreader border around the nursery to ensure uniform infection. The material was screened in natural conditions at the booting stage and no artificial inoculation was carried out. The experiment was conducted using a randomised complete block design with three replications. Recommended cultural practices were used for trial management.

Disease assessment

Stripe rust was scored four times with one week interval, when leaves of the susceptible check Morocco acquired up to a 50% severity of the disease. Observation of the host response against stripe rust was recorded following Roelfs *et al.* (1992), while severity was recorded as the % of infection on the plants according to modified Cobb's Scale (Peterson *et al.* 1948). The coefficient of infection (CI) was derived by multiplying disease severity (DS) and constant values of infection type (IT). The constant values for infection types were: R = 0.1, MR = 0.25, M = 0.5, MS = 0.75, S = 1 (Pathan and Park 2006).The area under the rust progress curve (AURPC) and the relative area under rust progress curve (rAURPC) was derived through the formula described by Milus and Line (1986):

AURPC =
$$[N_1(X_1 + X_2)/2] + [N_2(X_2 + X_3)/2] + [N_2(X_3 + X_4)/2],$$

where: $X_{1'} X_{2'} X_{3,} X_4$ – the rust intensities recorded on the first, second, third, and fourth dates; N_1 – the interval day between X_1 and $X_{2'}$ and N_2 – the interval day between X_2 and X_3 .

rAURPC = [line AUDPC/susceptible AUDPC] × 100.

Statistical analysis

The mean disease scores were subjected to analysis of variance (ANOVA) in order to detect differences between individual wheat lines. The difference between the mean disease parameters of Morocco and the mean disease scores of the individual wheat lines were calculated using the *t*-test. Cluster analysis of mean data was conducted by using Minitab software, version 16.

Results

Parameters used as criteria to appraise the level of partial resistance in tested germplasm of bread wheat were final rust severity (FRS), AURPC, rAURPC, and CI, which are detailed below.

Final rust severity (FRS)

When the susceptible check showed 100% FRS, all the tested lines were observed for final stripe-rust severity. Significant differences (p = 0.001) were observed among the mean score of 57 wheat lines compared to the check Morocco for FRS (Table 2). The maximum FRS of up to 100% was recorded for Morocco, followed by line 10-C (70%), 5-C (63.3%), NW-7-30-1 (40%), NW-5-1212-1 (40%), and 14-C (40%). Twenty wheat lines (37%) were immune with 0 FRS throughout the season. The evaluated genotypes of wheat were categorised into three groups based on their partial resistance i.e. high, moderate, low level, having 1–30%, 31–50%, and 51–70% FRS, respectively.

	5	1	0	Ĩ	
Wheat germplasm	Parentage/Pedigree	Origin	Wheat germplasm	Parentage/Pedigree	Origin
23-C	SUPER KAUZ/KS94U215// SUPERKAUZ	CIMMYT	NW-1-20	NARC-234/NARC-241-20	Pakistan
NIAB-1	Chirya-3 / Opata // 2 * Parula /3/ Rohtas 90	CIMMYT	15-C	BABAX/LR43//BABAX	CIMMYT
NW-10-4	NARC 241/BHITTAI-4	Pakistan	NW-10-1111-3	NR-241/Bhittai-1111-3	Pakistan
NW-5-1212-1	NARC-234/Bhitaai-3341-7	Pakistan	14-C	SARSABZ/NARC-234-116-1	Pakistan
4-C	NARC-234/SARSABZ-15-1	Pakistan	17-C	PASTOR/KAUZ	CIMMYT
NW-10-1111-7	NACR-241/Bhittai-1111-7	Pakistan	NW-2-8	NARC-234/NESSER-2242-8	CIMMYT
NW-10-18	NARC 241/BHITTAI-18	Pakistan	NW-7-5	NARC-241/NESSER-6123-5	CIMMYT
3-C	NARC-234/NARC-241-11-48	Pakistan	2-C	NARC-234/NARC-241-4-26	Pakistan
19-C	SUNSU	CIMMYT	26-C	W462/WEERY/KOEL/3/PEREGRINE /MAIORAL/BUCKBUCK	CIMMYT
NIAB-2	Weebil /4/ Sabuf *2 / Weebil // Pavon 76 /3/ MH 97	CIMMYT	NW-7-30-1	NARC-241/Nesser-30-1	CIMMYT
5-C	NARC-234/Bhitaai-20-1	Pakistan	11-C	NESSER/BHITTAI-111-3	CIMMYT
NW-10-1111-37	NARC-241/Bhittai-1111-37	Pakistan	1-C	NARC-234/NARC-241-2-21	Pakistan
NW-1-9-47	NARC-234/NR-241-9-47	Pakistan	13-C	NESSER/BHITTAI-115-6	CIMMYT
NW-17-5	SARSABZ/NARC-241-5	Pakistan	NW-1-47	NARC-234/NARC-241-47	Pakistan
NW-1-39	NARC-234/NARC-241-8183-39	Pakistan	NW-1-52	NARC-234/NR-241-8188-52	Pakistan
NW-1-38	NARC-234/NR-241-4343-38	Pakistan	NW-10-45	NARC-241/BHITTAI-45	Pakistan
21-C	SUPER KAUZ*2/ FLYCATCHER	CIMMYT	NW-10-16	NARC-241/BHITTAI-3349-16	Pakistan
10-C	NESSER/SARSABZ-106-13	CIMMYT	28-C	BOBWHITE/MOR/BAGULA	CIMMYT
NW 2-2	NARC-234/NESSER-2247-2	CIMMYT	7-C	NARC-241/BHITTAI-56-1	Pakistan
NW-7-28	NARC-241/NESSER-28	CIMMYT	29-C	SITTA CM77091-14Y-04M-06Y-3B- 1Y-0B	CIMMYT
NW-1-8183-8	NARC-234/NR-241-8183-8	Pakistan	24-C	SIRKKU	CIMMYT
6-C	NARC-241/NESSSER-37-17	CIMMYT	NW-3-3341-7	NARC-234/Sarsabz-3341-7	Pakistan
18-C	TOROCAHUI S2004	CIMMYT	27-C	OTUS	CIMMYT
22-C	KAUZ/PASTOR	CIMMYT	NW-10-1111-5	NARC-241/Bhittai-1111-5	Pakistan
20-C	WEAVER/4/NACOZARI F 76/ TH.ACUTUM//3*PAVON F 76/3/MIRLO/BUCKBUCK	CIMMYT	25-C	IRENA/KAUZ	CIMMYT
NW-1-35	NARC-234/NARC-241-9561-35	Pakistan	NW-10-19	NARC-241/BHITTAI-19	Pakistan
NW-7-14	NARC-241/NESSER-6123-14	CIMMYT	8-C	NARC-241/BHITTAI-57-2	Pakistan
NW-2-4	NARC-234/NESSER-5445-4	CIMMYT	MOROCCO	SUSCEPTIBLE CHECK	Pakistan
NW-1-36	NARC-234/NR-241-8193-36	Pakistan			

 Table 1. Parentage of wheat lines evaluated for adult plant resistance during the 2012–2013 and 2013–2014 time period

Table 2. Mean comparison of final rust severity, infection type, area under rust progress curve, relative area under rust progress curve, and coefficient of infection in promising wheat lines to stripe rust

PA

Wheat lines	FRS [%]	_ IT _	AURPC [%]	rAURPC [%]	CI	
wheat lines	the mean±SE	- 11 -	the mean±SE	the mean±SE	the mean±SE	AFK
23-C	0.0±0.0***	Ι	0.0±0.0***	0.0±0.0***	0.0±0.0***	high
NIAB-1	0.0±0.0***	Ι	0.0±0.0***	0.0±0.0***	0.0±0.0***	high
NW-10-4	5.0±0.0***	R	17.5±0.0***	1.0±0.0***	0.5±0.0***	high
NW-5-1212-1	40.0±0.0***	R-MR	333.7±16.3***	19.9±1.0***	12.0±0.0***	high
4-C	5.0±0.0***	R	38.5±0.0***	2.3±0.0***	0.5±0.0***	high
NW-10-1111-7	5.0±0.0***	R	17.5±0.0***	1.0±0.0***	0.5±0.0***	high
NW-10-18	10.0±0.0***	MR	105.0±0.0***	6.3±0.0***	2.5±0.0***	high
3-C	10.0±0.0***	R	128.3±11.7***	7.6±0.7***	1.0±0.0***	high
19-C	0.0±0.0***	Ι	0.0±0.0***	0.0±0.0***	0.0±0.0***	high
NIAB-2	20.0±0.0***	R	210.0±0.0***	12.5±0.0***	2.0±0.0***	high
5-C	63.3±3.3**	MS	805.0±0.0***	47.9±0.0***	47.5±2.5**	low
NW-10-1111-37	0.0+0.0***	I	0.0+0.0***	0.0+0.0***	0.0+0.0***	high
NW-1-9-47	30.0+0.0***	MR	175 0+0 0***	10 4+0 0***	7 5+0 0***	high
NW-17-5	0.0+0.0***	I	0.0+0.0***	0.0+0.0***	0.0+0.0***	high
NW-1-39	10 0+0 0***	MR	60 7+4 7***	3 6+0 3***	2 5+0 0***	high
NW-1-38	10.0+0.0***	R	105 0+0 0***	6.3+0.0***	1.0+0.0***	high
21-C	0.0+0.0***	I	0.0+0.0***	0.0±0.0***	0.0+0.0***	high
10-C	70.0+2.9**	S	606 7+11 7***	36.1+0.7***	70.0+2.9**	low
NW 2-2	30.0+0.0***	MS-S	119 0+98 0**	7 1+5 8**	29.0+1.0***	moderate
NW-7-28	10.0±0.0***	R	70.0+0.0***	4 2+0 0***	1 0+0 0***	high
NW-1-8183-8	5 0±0 0***	R	52 5+0 0***	3 1+0 0***	0.5+0.0***	high
6-C	0.0±0.0***	I	0.0+0.0***	0.0+0.0***	0.0±0.0***	high
18-C	0.0±0.0***	T	0.0±0.0	0.0±0.0***	0.0±0.0	high
10-C 22-C	0.0±0.0	I	0.0±0.0	0.0±0.0***	0.0±0.0	high
22-C	10.0±0.0***	P	35.0±0.0***	2 1+0 0***	1.0+0.0***	high
20-C	20.0±0.0	MCC	285 0±0.0***	2.1±0.0	25 5+1 5***	moderate
NWA 7 14	30.0±0.0	1013-3	200.0±0.0	22.9±0.0	20.0±1.0	moderate
NWV-7-14	20.5±1.7	5 1	201.2±3.1	10.7±0.5	20.3±1.7	high
NW 1 36	0.0±0.0	I	0.0±0.0	0.0±0.0***	0.0±0.0	high
NW1 20	0.0±0.0 11 7±1 7***	I MP	0.0±0.0	5.0±0.0 5.0±0.2***	0.0±0.0 2 0±0 4***	high
15 C	11.7 ± 1.7 $20.0 \pm 0.0***$	MCC	99.2±3.8	0.9±0.3	2.9±0.4 18 0±0 0***	high
1J-C NW/ 10/1111/2	20.0±0.0	IVIS-5	200.0±0.0	0.0±0.0***	0.0±0.0***	high
14 C	40.0±0.0	MSS	420.0±0.0	25.0±0.0***	36 0±0.0***	modorato
14-C	40.0±0.0	1V13-3	420.010.0	20.0±0.0***	0.0±0.0***	high
NIM 2 8	0.0±0.0	I	0.0±0.0	0.0±0.0	0.0±0.0	high
NWV-2-0	0.0±0.0 26 7±2 2**	I C	0.0±0.0 210 0±0 0***	12 5±0 0***	0.0±0.0 26 7±2 2**	moderate
NW-7-5	0.0+0.0***	Т	210.0±0.0	12.5±0.0	0.0+0.0***	high
2-C	0.0±0.0	I	0.0±0.0	0.0±0.0	0.0±0.0	high
20-C	0.0±0.0 40.0±0.0***	I C	0.0±0.0	0.0±0.0 25.2±0.2***	0.0±0.0 40.0±0.0***	moderate
11 C	40.0±0.0 16 7±2 2***	5	423.3±3.3 140.0±0.0***	20.2±0.2 8 2±0.0***	40.0±0.0 16 7±2 2***	high
10	0.0±0.0***	I	0.0±0.0***	0.0±0.0***	0.0±0.0***	high
1-C	0.0±0.0 20.0±0.0***		0.0±0.0 215 0±0 0***	0.0±0.0 18 8±0 0***	0.0±0.0 27 0±0 0***	moderate
NW 1 47	30.0±0.0	P	245 0±0.0	14.6±0.0***	27.0±0.0	high
NW 1 52	10.0±0.0	R D	240.010.0	4.0±0.0	1.0±0.0***	high
NW 10 45	10.0±0.0 10.0±0.0***	R P	70.0±0.0	4.2±0.0	1.0±0.0 1.0±0.0***	high
NW 10 16	10.0±0.0 20.0±0.0***		33.0±0.0 140.0±0.0***	2.1±0.0 8 2±0 0***	1.0±0.0 12 0±0 0***	high
1N W-10-10	20.0±0.0	IVIIX-IVI3	140.0±0.0	0.0±0.0***	12.0±0.0	high
20-C	0.0±0.0	I D	0.0±0.0	0.0±0.0	0.0±0.0***	high
7-C	0.3±1.7		71.2±1.2	4.2±0.1	0.0±0.2***	high
29-C	50.0±0.0***	K-IVIK	0.0+0.0***	10.0±0.0***	9.0±0.0***	nign 1-: -1-
24-C	0.0±0.0***	I D	0.0±0.0***	0.0±0.0***	0.0±0.0***	nign
INVV-3-3341-7	5.U±U.U***	K	17.5±0.0***	1.U±U.U***	U.5±U.U***	nign
2/-C	5.U±U.U***	K	52.5±0.0***	3.1±0.0***	U.5±U.U***	nigh
INVV-10- 1111-5	10.0±0.0***	K T	56.U±U.U***	3.3±0.0***	1.U±U.U***	nigh
23-C	U.U±U.U***	1 T	U.U±U.U***	U.U±U.U***	U.U±U.U***	high
INW-10-19	U.U±U.U***		U.U±U.U***	U.U±U.U***	0.0±0.0***	high
δ-C	10.0±0.0***	MK	70.0±0.0***	4.2±0.0***	2.5±0.0***	high
MOROCCO	100.0±0.0	5	1680.0±0.0	100±0.0	100.0±0.0	low

Classification: IT = infection type; I = immune; R = resistant; MR = moderately resistant; R-MR = resistant to moderately resistant; MR-MS = moderately resistant to moderately susceptible; MS-S = moderately susceptible to susceptible; S = susceptible; FRS = final rust severity; AURPC = area under rust progress curve; rAUPRC = relative area under rust progress curve; CI = coefficient of infection; PR = partial resistance; APR = adult plant resistance

Mean values of disease parameters are significantly different at p = 0.01 (**) and at p = 0.001 (***) from Morocco control

PA

Coefficient of infection (CI)

Wheat lines having CI values of 0–20, 21–40, 41–60 were regarded as possessing high, moderate, and low levels of adult plant resistance (APR). The CI value of the susceptible check Morocco, was maximum (100) which shows high disease pressure. Forty-seven (82%) wheat lines possessed the CI value of 0–20 which conferred a high level of adult plant resistance, while Morocco (100), followed by 10-C (70) and 5-C (47.5), exhibited a low level of APR (Table 2). Only seven tested lines (12%) exhibited a moderate level of APR.

Area under rust progress curve (AURPC)

Wheat germplasm was also categorised into three groups of partial resistance based on AURPC value. Wheat lines having AURPC values up to 500 were grouped as having a high level of partial resistance, while those having AURPC values from 500-800 were categorised as having a moderate level of partial-resistance conferring lines. Similarly, lines having AURPC ranging from 800-1,100, were marked as having a low level of partial resistance. The susceptible check Morocco exhibited the maximum value of AURPC i.e. 1,680 lying at the lowest level of partial resistance followed by line 5-C having AURPC value of 805, while 10-C exhibit moderate level of partial resistance with AURPC values of 607. Fifty-four wheat lines (95%) had high levels of partial resistance (Table 1). Wheat lines falling under a moderate level of partial resistance first showed rust infection and sporulation but the final host reaction was characterized as chlorotic and necrotic strips (MR and/or MS infection types). Subsequently, rust development remained slower and restricted.

Relative area under rust progress curve (rAURPC)

As a parameter of partial resistance of slow stripe rusting, the rAURPC was also elucidated. The evaluated wheat germplasm was categorised into two distinct groups based on rAURPC value. When there were rAURPC values of up to 30% of the susceptible check Morocco, the lines were regarded as better slow rusting lines, while wheat lines having rAURPC values of up to 70% of Morocco, were marked as moderately slow rusting. The two wheat lines 5-C and 10-C, were marked as moderately slow rusting with rAURPC values of 48% and 36%, respectively. The rest of the lines were characterised as better slow rusting. Wheat lines in the first groups were composed of cultivars with varying degrees of slow rusting (Table 1). In lines exhibiting moderate levels of slow rusting, rust initiated and sporulated but the final MR/ MS infection types subsequently led to slow rust development.

Yield potential and partial resistance

Significant variation was observed for yield and yield contributing parameters among the studied wheat germplasm. Maximum yield (kg \cdot ha⁻¹) was recorded for the line NW-10-1111-3 (6,146) followed by NW-1-9-47 (6,125) and 14-C (6,048), having a relative AURPC value of 0, 10.4, and 25%, respectively (Table 3). Nevertheless, NW-1-9-47 and 14-C showed MR and MS-S reaction types. The susceptible check Morocco, having maximum disease severity and relative AURPC, produced the minimum grain yield (1,037) followed by wheat lines 6-C (2,788 kg \cdot ha⁻¹). Yield difference within the repertoire of wheat lines was narrow but broader in comparison with Morocco. In addition to yield, a 1,000 grain weight was also determined to elucidate the effect of disease on the grain weight. NW-1-35 produced the maximum 1,000 grain weight (49.7 g) followed by 2-C (49.6 g) and 17-C (48.3 g) having a rAU-RPC value of 23 and 0%, respectively. The genotypes 2-C and 17-C were immune to stripe rust. Morocco, likewise carried a minimum 1,000 grain weight (21.59 g) followed by 29-C (30.7 g). A very minute difference in the 1,000 grain weight existed within the tested lines but the difference was quite large in comparison to Morocco.

Association between partial resistance parameters and yield components

Partial resistance in field conditions was assessed through FRS, AURPC, rAURPC, and CI. The most commonly used parameter to describe this association is CI. The relationship between these partial resistance parameters was elucidated for 57 wheat genotypes in this study, along with the susceptible check, at p = 0.001 (Table 4). A significant positive correlation of CI was observed with FRS (r = 0.93) and with both AURPC (r = 0.92) and rAURPC (r = 0.90). Moreover, a strong positive correlation was observed between FRS and AURPC and rAURPC (r = 0.94). Similarly, AUPRC and rAURPC had a complete correlation (r = 1). On the other hand, a negative correlation was observed between the partial resistance component and yield components. There was a negative correlation for 1,000 grain weight both AURPC and rAURPC (r = 0.39), followed by CI (r = 0.36), and FRS (r = 0.33). Likewise, yield per hectare was also negatively correlated with AURPC (23%) and rAURPC (23%).

Diversity among wheat genotypes

For selecting high yielding lines with disease resistance traits, cluster analysis was carried out. It is evident from the dendrogram (Fig. 1), that a considerable level of diversity was observed for the level of partial resistance and yield components among wheat breeding lines. All of the genotypes were divided into nine clusters at a 25% linkage distance according to their resistance potential (mean values of FRS, AURPC, rAURPC, CI), yield, and 1,000 grain weight. There were 9, 6, 14, 5, 9, 2, 7, 4, and one wheat lines in Cluster I, II, III, IV, V, VI, VII, VIII, and IX, respectively (Table 5). Genotypes with optimum stripe rust resistance were grouped in Cluster I, II, and III while four wheat lines (14-C, NW-10-1111-3, NW-1-35, and NW-7-5) with a maximum yield and grain weight fall in Cluster VIII. Wheat lines in Cluster I, II, and III exhibited the maximum potential for adult plant resistance, while Morocco (the susceptible check) was separated from the rest of the genotypes and grouped in Cluster IX.

Table 3	Analysis of va	riance for vie	ld and 1 (000 grain	weight of	botenleve	wheat lines
lable 5.	Analysis of va	mance for yie	iu anu 1,0	000 gram	weight of a	evaluateu	wheat mies

Wheat germplasm	Yield [kg · ha ⁻¹]	1,000 Grain weight [g]	Wheat germplasm	Yield [kg · ha ⁻¹]	1,000 Grain weight [g]
23-C	4,883 fghi	44.97 defgh	NW-1-20	4,706 hijk	40.1 pqrstu
NIAB-1	3,946 pqr	39.1 rstuv	15-C	5,244 ef	39.9 qrstu
NW-10-4	4,448 klmno	40.2 pqrst	NW-10-1111-3	6,146 a	44.3 efghi
NW-5-1212-1	5,123 fg	42.8 ijklmn	14-C	6,048 abc	40.6 pqrs
4-C	3,906 qrs	41 mnopqr	17-C	4,225 mnopq	48.3 ab
NW-10-1111-7	4,575 ijklm	43 hijklm	NW-2-8	3,485 t	44 fghij
NW-10-18	4,638 hijkl	42.9 ijklmn	NW-7-5	5,256 ef	45.1 defg
3-C	4,869 ghij	45.5 cdef	2-C	3,927 pqrs	49.6 a
19-C	3,881 qrs	38.1 uvwx	26-C	4,169 nopq	35.2 A
NIAB-2	3,675 rst	40.9 nopqr	NW-7-30-1	4,684 hijk	35.3 A
5-C	4,894 fghi	43.4 ghijk	11-C	4,192 nopq	36.4 xyzA
NW-10-1111-37	5,104 fg	42.1 jklmnop	1-C	4,281 lmnop	40.7 opqr
NW-1-9-47	6,125 ab	37.5 vwxyz	13-C	4,933 fghi	35.5 zA
NW-17-5	3,644 rst	35.7 yzA	NW-1-47	5,817 abcd	36.6 wxyzA
NW-1-39	4,165 nopq	46.3 bcde	NW-1-52	4,998 fgh	43.9 fghij
NW-1-38	5,169 fg	46.3 bcde	NW-10-45	5,181 fg	40.2 pqrst
21-C	3,562 st	34.9 A	NW-10-16	3,887 qrs	43.4 ghijk
10-C	3,596 rst	36.57 wxyzA	28-C	3,469 t	35 A
NW 2-2	5,169 fg	38.3 tuvwx	7-C	5,188 efg	44.2 fghi
NW-7-28	3,656 rst	32.5 B	29-C	3,496 t	30.7 B
NW-1-8183-8	4,500 jklmn	41.4 klmnopq	24-C	5,744 cd	41.3 lmnopq
6-C	2,788 u	37.7 vwxy	NW-3-3341-7	5,556 de	47.3 bc
18-C	3,887 qrs	32.5 B	27-C	5,758 bcd	37.7 vwxy
22-C	3,656 rst	35.4 A	NW-10-1111-5	4,977 fgh	42.7 ijklmno
20-C	4,169 nopq	34.8 A	25-C	4,394 klmno	38.6 stuvw
NW-1-35	5,177 fg	49.7 a	NW-10-19	5,669 d	46.9 bcd
NW-7-14	3,467 t	38.3 tuvwx	8-C	4,087 opq	41.3 lmnopq
NW-2-4	3,475 t	43.1 ghijkl	MOROCCO	1,037 v	21.59 C
NW-1-36	4,396 klmno	46.7 bcd			

The mean experimental values within the same columns are significant (p < 0.05) if they do not share the same letter (due to minute difference between values after the "yz" the capital letters were used)

Table 4. Linear correlation coefficients between partial resistance parameters and yield components for stripe rust among 57 lines and a susceptible check

		Yield	1,000 gw	AURPC	rAURPC	FRS	CI
Yield	1	_					
1,000 gw	2	0.50**	_				
AURPC	3	-0.23	-0.39**	-			
rAURPC	4	-0.23	-0.39**	1**	-		
FRS	5	-0.07	-0.33**	0.94**	0.94**	_	
CI	6	-0.20	-0.36**	0.92**	0.92**	0.93**	_

Gw = grain weight; AURPC = area under rust progress curve; rAURPC = relative area under rust progress curve; FRS = final rust severity; CI = coefficient of infection

**significant at p = 0.01 level of probability

Dendrogram

Fig. 1. Cluster analysis of 57 wheat lines based on stripe-rust parameters and yield components among 57 lines and a susceptible check

Table 5. Grouping of wheat genotypes based on the dissimilarity between the means of the disease and the yield parameters

Groups	Wheat genotypes	AURPC	rAURPC	FRS	CI	TSW	GY
Cluster I	1, 9, 16, 22, 26, 28, 37, 38, 48	21.8	1.3	3.3	0.5	40.4	4,224
Cluster II	7, 10, 42, 51, 52, 57	10.1	0.6	1.7	0.4	46.3	3,946
Cluster III	14, 15, 18, 21, 25, 32, 33, 34, 41, 44, 46, 47, 49, 56	52.8	3.1	6.4	0.9	43.3	5,174
Cluster IV	3, 20, 29, 45, 53	217.2	12.9	23.0	13.6	37.9	3,743
Cluster V	8, 11, 12, 13, 17, 19, 24, 50, 54	11.7	0.7	2.2	0.2	34.9	3,667
Cluster VI	2, 23	705.9	42.0	66.7	58.8	40.0	4,245
Cluster VII	4, 6, 30, 31, 36, 39, 43	270.2	16.1	31.4	19.5	38.0	5,299
Cluster VIII	5, 35, 40, 55	393.8	23.4	39.2	32.0	44.9	5,657
Cluster IX	27	1,680	100	100	100	21.593	1,037

AURPC = area under rust progress curve; rAURPC = relative area under rust progress curve; FRS = final rust severity;

CI = coefficient of infection; TSW = thousand seed weight; GY = grain yield

Discussion

The use of resistant varieties not only ensures protection against disease but also saves time, energy, and money compared to the chemical control of rust which is expensive and impractical. Dominant or major resistance genes are deployed to confer vertical resistance against one or a few races of the pathogen. However, because resistance is based on recognition of a single pathogen-derived molecular pattern, these narrow spectrum genes are usually readily overcome by evolving virulent races of the pathogen. In contrast, horizontal resistance, also known as adult plant resistance, partial, durable, and quantitative resistance, in which more than one gene; usually minor genes, are deployed to reduce the rate of sporulation and infection. Quantitative resistance to stripe rust hampered the fungus development at different stages of the infection cycle. The extent to which fungus is hampered at the adult plant stage can be accessed through the study of the FRS, CI, AURPC, and rAURPC components of resistance.

To ascertain resistance potential against stripe rust at the adult plant stage, the current investigation was carried out at the experimental area of NIAB, Faisalabad, for two years. Fifty-seven selected wheat lines along with Morocco, were accessed for partial or quantitative resistance under natural stripe rust epidemic conditions. Diversity in the germplasm response was observed from immune to highly susceptible with the FRS range of 0 (immune) to 100 (susceptible). Twenty-one wheat lines (37%) were immune and exhibited the race specific resistance against the local stripe rust race with epidemic disease conditions in Morocco. These immune lines were obtained through hybridisation in NIAB and performed well for two years. Among the immune lines, 13 were de-

412 Journal of Plant Protection Research 55 (4), 2015

rived from crossingwhich included one or more parent of CIMMYT origin, postulated to contain major resistant genes against stripe rust. Based on the categorisation of these lines through AURPC, rAURPC, and CI, a high level of adult plant resistance was observed in the previous studied lines (Ali et al. 2007; Rizwan et al. 2010; Shah et al. 2010). At the adult plant stage, rAURPC denotes the disease progress at a given time and provides a clue of the resistance level in the host germplasm. In 21 immune lines, the rAURPC remained zero throughout the season, which is well in agreement with previous studies (Ma et al. 1995; Shah et al. 2010). Based on the infection type, diversity was observed in germplasm with a variable number of R (resistant), MR (moderately resistant), R-MR (resistant to moderately resistant), MR-MS (moderately resistant to moderately susceptible), MS-S (moderately susceptible to susceptible), and S (susceptible) reactions. Nineteen wheat lines with a R-type reaction exhibited the acceptable level of AURPC, rAURPC, and CI, and conferred a high level of partial resistance, while twelve wheat lines with a MR, R-MR, and MR-MS reaction also exhibited a high level of partial resistance and it can be postulated that they contain Yr18 or unknown partial resistance genes. In most of Pakistani wheat cultivars, Yr18 is well documented to confer partial resistance (Bux et al. 2011; Qamar et al. 2012). Rust appears on these lines but with an increase in temperature and maturity, rust stops or ends with a MR or MS type of infection. Such a kind of resistance is durable and controlled by minor or a combination of major and minor genes for resistance (Brown et al. 2001; Singh et al. 2005).

Wheat lines NW-7-13, NW-2-2, NW-7-14, NW-1-35, 15-C, 14-C, NN-7-30-1, and 13-C behaved as moderately susceptible to susceptible lines but their FRS values were 30, 30, 50, 30, 20, 40, 40, and 30, respectively. While observing the partial resistance parameters of these lines, all the lines conferred high levels of partial resistance, except NW-7-14, 14-C, and NN-45, which incurred low and moderate levels of partial resistance, respectively. Such lines are believed to contain slow rusting or high temperature adult plant resistance (HTAP) genes and these lines are recommended to be utilised in achieving durable resistance because the acceptable degree of slow rusting restricts the evolution of new virulent races. These results are in agreement with the results of Singh et al. (2005). Consequently, the reaction of NW-5-1212-1, NW-3-2, and NW-10-1111-3 is resistant to moderately resistant or moderately susceptible but the level of partial resistance is of a moderate to low level. The presence of the major resistance genes can be hypothesised in these lines. The two wheat lines, evaluated in this study, 5-C and 10-C, were most susceptible after Morocco, and marked as having a low level of quantitative resistance (FRS, AURPC, rAURPC, and CI). These lines may not be used in a future breeding program. The high level of diversity in these wheat lines was observed regarding the response against stripe rust. An immune to susceptible reaction was observed in investigations by many researchers (Ahmad et al. 2006; Afzal et al. 2008; Ali et al. 2009b).

Disease always has a negative impact on crop yield, so control measures need to be adopted. Owing to the

devastating nature of the stripe rust pathogen, the yield per hectare and 1,000 grain weight was determined and compared with Morocco. There was a variation in the yield and the 1,000 grain weight, and both of these parameters were negatively correlated with disease. The shriveling of grains and ayield reduction was well-documented in many previous studies (Afzal et al. 2007, 2008; Safavi and Afshari 2012). Moreover, the correlation between FRS, CI, AURPC, and rAURPC was determined and found positive at p = 0.01 which is in agreement with the results of other researchers on cereal-rust pathosystems (Sandoval-Islas et al. 2007; Safavi et al. 2010; Shah et al. 2010). The significant correlation of rAURPC with quantitative resistance components i.e. latent period and infection frequency, was also reported by Sandoval-Islas et al. (2007) while a negative correlation between rAURPC and yield loss was also documented (Ochoa and Parlevliet 2007). A low rAURPC value along with a low CI is the preferred criteria in field selection of lines, conferring partial resistance among the repertories of germplasm, in situations where greenhouse facilities are inadequate (Singh et al. 2007). Due to a strong negative correlation of rAURPC with the yield and 1,000 grain weight, it is suggested that rAURPC may be preferred to monitor the influence of disease on yield as compared to other epidemiological parameters. All the partial resistance components are positively correlated with each other, therefore we used FRS, CI, and high yield potential for the selection of durable resistance wheat lines. The most appropriate parameters to identify partial resistance were FRS and CI (Safavi and Afshari 2012), while FRS increase the yield loss proportionally against leaf rust (Salman et al. 2006).

Cluster analysis was executed to determine diversity among wheat lines. Based on partial resistance parameters, yield, and grain weight, nine groups/clusters were formed. Wheat lines in Cluster I, II, and III exhibited optimum adult plant resistance while lines in Cluster VIII attained the maximum yield and 1,000 grain weight. Keeping in mind that the objective was to improve the wheat group at NIAB, wheat genotypes from Cluster I, II, and III may be inter-crossed with each other and also with the genotypes in Cluster VIII to get stripe rust resistance and high yielding varieties. Previously, the presence of varying degrees of partial resistance to stripe rust in breeding lines from Pakistan was reported by Ali et al. (2007). In another study, on the basis of overall host reaction, 38 varieties were clustered into six groups (Ali et al. 2009), although this finding was different from our study because yield parameters were also considered in the current study. Some wheat lines producing maximum yield under high disease pressure may have less grain weight, as observed in this study. We found that the NW-10-1111-3 line produced the maximum yield but the 1,000 grain weight was maximum for NW-1-35. Both the yield and grain weight are positively correlated but a reduction in the grain weight in some lines is less - even under high disease pressure. It was the same case with NW-1-35, which exhibited a MS-S reaction type with a FRS of 30% but with the maximum grain weight, and was the 13th highest yielding line. Attaining different grain weights in different lines may be due to different genes

PA

controlling this trait independently from stripe rust resistance. In spite of the infection type, NW-1-35 conferred a high level of partial resistance which is most probably due to minor or a combination of minor and major resistance genes with high yield potential. Similarly, in a previous work oncultivars, the inqulab-91 variety exhibited a minimum reduction in the 1,000 grain weight in spite of a maximum disease severity (Afzal *et al.* 2008).

Conclusion

Durability and effectiveness of resistance against stripe rust was demonstrated by growing wheat cultivars for adult plant resistance. Targeted lines were identified phenotypically by necrotic stripes under relatively high temperature, in comparison with susceptible plants. In this investigation, those immune, resistant, and moderately resistant wheat lines conferring a high level of partial and adult plant resistance, need to be utilized for the development of rust-resistant wheat varieties so that farmers can play a part in the uphill battle of feeding an ever-increasing world population. A high level of diversity was observed which helped to select the genotypes with striperust resistance and better yield. However, further studies for the development of diagnostic molecular markers to assess the APR gene are still needed for genotypic characterization and field evaluations in the current era. Wheat lines, selected on the basis of resistance and yield parameters, could be used in a hybridization program to develop new rust resistant and high yielding cultivars and may also be evaluated at multiple locations to fulfill the requirements for the direct release of wheat cultivars.

References

- Afzal S.N., Haque M.I., Ahmedani M.S., Bashir S., Rattu A.R. 2007. Assessment of yield losses caused by *Puccinia striiformis* triggering stripe rust in the most common wheat varieties. Pakistan Journal of Botany 39 (6): 2127–2134.
- Afzal S.N., Haque M.I., Ahmedani M.S. 2008. Impact of stripe rust on kernel weight of wheat varieties sown in rainfed areas of Pakistan. Pakistan Journal of Botany 40 (2): 923–929.
- Ahmad I. 2004. Wheat Rust Scenario 2003–2004. In: Multimedia Presentation during Second Regional Stripe Rust Conference for Central and West Asia and North Africa, Islamabad, Pakistan, 22–26 March 2004, 18 pp.
- Ahmad M., Alam S.S., Alam S., Khan I.A., Ahmad N. 2006. Evaluation of wheat germplasm against stripe rust (*Puccinia striiformis* f. sp. *tritici*) under natural conditions. Sarhad Journal of Agriculture 22: 62–65.
- Ali S., Shah S.J.A., Ibrahim M. 2007. Assessment of wheat breeding lines for slow stripe rusting (*Puccinia striiformis* West. *tritici*). Pakistan Journal of Biological Sciences 10 (19): 3440–3444.
- Ali S., Shah S.J.A., Khalil I.H., Raman H., Maqboo K., Ullah W. 2009a. Partial resistance to stripe rust in introduced winter wheat germplasm at the north of Pakistan. Australian Journal of Crop Sciences 3 (1): 37–43.
- Ali S., Shah S.J.A., Rahman H. 2009b. Multi-locations variability in Pakistan for partial resistance in wheat to *Puccinia*

striiformis f. sp. *tritici*. Phytopathologia Mediterranea 48: 269–279.

- Ali S., Gladieu P., Lecont M., Gautier A., Justesen A.F. 2014. Origin, migration routes and worldwide population genetic structure of the wheat stripe rust pathogen *Puccinia striiformis* f. sp. *tritici*. PLoS Pathogens 10 (1): e1003903.
- Beard C., Thomas G., Loughman R., Jayasena K. 2007. Managing stripe rust and leaf rust of wheat. Farmnote No. 43/2005. Department of Agriculture, Government of Western Australia.
- Brown W.M.J., Hill J.P., Velasco V.R. 2001. Barley stripe rust in North America. Annual Review of Phytopathology 39: 367–384.
- Bux H., Ashraf M., Chen X.M., Mumtaz A.S. 2011. Effective genes for resistance to stripe rust and virulence of *Puccinia striiformis* f. sp. *tritici* in Pakistan. African Journal of Biotechnology 10 (28): 5489–5495.
- Chen X.M. 2005. Epidemiology and control of stripe rust [*Puc-cinia striiformis* f. sp. *tritici*] on wheat. Canadian Journal of Plant Pathology 27 (3): 314–337.
- Chen X.M. 2007. Challenges and solutions for stripe rust control in the United States. Australian Journal of Agriculture Research 58 (6): 648–655.
- Chen X.M. 2013. Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences 4: 608–627.
- De Vallavieille-Pope C., Ali S., Leconte M., Enjalbert J., Delos M. 2012. Virulence dynamics and regional structuring of *Puccinia striiformis* f. sp. *tritici* in France between 1984 and 2009. Plant Disease 96 (1): 131–140.
- Herrera-Foessel S.A., Singh R.P., Huerta-Espino J., Crossa J., Djurle A., Yuen J. 2007. Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155 (3): 361–369.
- Hogg W.H., Hounam C.E., Mallik A.K., Zadoks J.C. 1969. Meteorological factors affecting the epidemiology of wheat rusts. Technical Note 99, World Meteorological Organization, 143 pp.
- Hovmøller M.S., Sørensen C.K., Walter S., Justesen A.F. 2011. Diversity of *Puccinia striiformis* on cereals and grasses. Annual Review of Phytopathology 49: 197–217.
- Hovmøller M.S., Walter S., Justesen A.F. 2010. Escalating threat of wheat rusts. Science 329 (5990): 369.
- Kilpatrick R.A. 1975. New cultivars and longevity of rust resistance, 1971–1975. U.S. Agriculture Research Service, North East Region 64 (ARS-NE-64).
- Kolmer J.A. 1996. Genetics of resistance to leaf rust. Annual Review of Phytopathology 34: 435–455.
- Line R.F., Qayoum A. 1992. Virulence, aggressiveness, evolution, and distribution of races of *Puccinia striiformis* (the cause of stripe rust of wheat) in North America, 1968–87. United States Department of Agriculture, Technical Bulletin 1788: 44.
- Ma H., Singh R.P., Mujeeb-Kazi A. 1995. Resistance to stripe rust in *Triticum turgidum*, *T. tauschii* and their synthetic hexaploids. Euphytica 82 (2): 117–124.
- McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Somers D.J., Appels R., Devos K.M. 2008. Catalogue of gene symbols for wheat. In: Proc. 11th International Wheat Genetics Symposium (R. Appels, R. Eastwood, E. Lagudah, P. Langridge, M. Mackay, L. McIntyre, P. Sharp,

eds.). Brisbane, Australia, 24–29 August 2008. Available on: http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/ [Accessed: May 5, 2013]

- Milus E.A., Line R.F. 1986. Gene action for inheritance of durable, high – temperature, adult plant resistances to stripe rust in wheat. Phytopathology 76: 435-441.
- Ochoa J., Parlevliet J.E. 2007. Effect of partial resistance to barley leaf rust, *Puccinia hordei*, on the yield three barley cultivars. Euphytica 153 (3): 309–312.
- Pathan A.K., Park R.F. 2006. Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica 149 (3): 327–342.
- Peterson R.F., Campbell A.B., Hannah A.E. 1948. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Canadian Journal of Research 26c (5): 496–500.
- Qamar M., Ahmad S.D., Asif M. 2012. Determination of levels of resistance in Pakistani bread wheat cultivars against stripe rust (*Puccinia striiformis*) under field conditions. African Journal of Agriculture Research 7 (44): 5887–5897.
- Rizwan S., Iftikhar A., Qazi A.M., Sahi G.M., Mirza J.I., Rehman A.R., Ashraf M. 2010. Virulence variation of *Puccinia striiformis* Westend. f. sp. *tritici* in Pakistan. Archive of Phytopathology and Plant Protection 43 (9): 875–882.
- Roelfs A.P., Singh R.P., Saari E.E. 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. D.F. CIM-MYT, Mexico, 81 pp.
- Safavi S.A., Afshari F. 2012. Identification of resistance to *Puccinia striiformis* f. sp. *tritici* in some elite wheat lines. Journal of Crop Protection 1 (4): 293–302.
- Safavi S.A., Ahari A.B., Afshari F., Arzanlou M. 2010. Slow rusting resistance in 19 promising wheat lines to stripe rust in Ardabil, Iran. Pakistan Journal of Biological Sciences 13: 240–244.

- Salman A., Khan M.A., Hussain M. 2006. Prediction of yield losses in wheat varieties/lines due to leaf rust in Faisalabad. Pakistan Journal of Phytopathology 18 (2): 178–182.
- Sandoval-Islas J.S., Broers L.H.M., Mora-Aguilera G., Parlevliet J.E., Osada K.S., Vivar H.E. 2007. Quatitative resistance and its components in 16 barley cultivars to stripe rust, *Puccinia striiformis* f. sp. *hordei*. Euphytica 153 (3): 295–308.
- Shah S.J.A., Imtiaz M., Hussain S. 2010. Phenotypic and molecular characterization of wheat for slow rusting resistance against *Puccinia striiformis* Westend. f. sp. *tritici*. Journal of Phytopathology 158 (6): 393–402.
- Singh R.P., Huerta-Espino J., Roelfs A.P. 2002. The wheat rusts. In: "Bread Wheat: Improvement and Production" (B. Curtis, S. Rajaram, H. Macpherson, eds.). FAO Plant Production and Protection Series No. 30., Rome, Italy, 565 pp.
- Singh R.P., Huerta-Espino J., William H.M. 2005. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry 29: 121–127.
- Singh D., Park R.F., McIntosh R.A. 2007. Characterization of wheat leaf rust resistance gene *Lr*34 in Australian wheat using components of resistance and the molecular marker csLV34. Australian Journal of Agriculture Research 58: 1106–1114.
- Stubbs R.W. 1985. Stripe rust. p. 61–101. In: "Disease, Distribution, Epidemiology, and Control. Cereal Rusts". Vol. II. (A.P. Roelfs, W.R. Bushnell, eds.). Academic Press, Inc., Orlando, FL, USA, 606 pp.
- Wellings C.R., McIntosh R.A. 1990. Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathology 39 (2): 316–325.