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Abstract 

The method of a phase shift angle measurement using conditional averaging of delayed signal absolute value 

(CAAV) is presented in this paper. The input sinusoidal signal x(t) is without noise. White noise with normal 

distribution and band limited to low frequencies has been applied as disturbance of delayed sinusoidal signal z(t). 

Noise n(t) – N(0, n) is added to the delayed signal - the noised and delayed signal z(t) is obtained. The phase 

angle shift is proportional to time location of  CAAV’s minimum (minimum of the characteristic of conditional 

averaging of delayed signal’s absolute value). The phase angle shift can be determined on the basis of 

conditional averaging value of elaborated algorithm. The characteristics of conditional average of delayed 

signal’s absolute value in the surrounding of the minimum of this function (the results of practical  investigations 

and theoretical calculation) are presented. The experimental variance of characteristic CAAV in surroundings of 

the minimum (obtained from practical investigations and calculation) is illustrated in the paper. The algorithms 

of conditional averaging have been elaborated and practically realized in the LabVIEW environment. 
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1. Introduction 

 

The most common disturbances encountered in the measurements of the phase angle shift 

of two sinusoidal signals result from the noise, harmonics and constants of the signal.  

Electronic phase-meters with the processing of phase angle shift into time intervals are 

susceptible to noise. Random disturbances affect the precision of zero passage of both runs 

and directly affect the measurement precision of the time segment which corresponds to the 

phase shift  of two analysed signals [1]. In  real-world measurements  two cases are observed: 

both signals (input and output) are noised or only the delayed signal z(t) is noised. 

The models with random disturbances occur in the evaluation of the measurement accuracy 

of small angle for example in optical interferometers [2]. A correction of the measurement 

accuracy of the phase shift angle of noisy signals can be obtained by using algorithm methods 

including statistical analysis, e.g. determination of the cross correlation of two signals shifted 

by angle  [1, 3, 4], as well as algorithms which use conditional averaging of signals as 

proposed by the authors of the paper [5, 6, 7, 8]. 

 

2. Models of the estimated characteristics 

 

The signal processing model assumes that the original sinusoidal signal x(t) is free from 

disturbances, while the signal additively disturbed with noise n(t), characterized by the model 

N(0, n), is the secondary signal y(t). The signal available for analysis is the signal 

z(t) = y(t) + n(t). The signal values occur in the moments t1 and t2 (= t2-t1). 
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The description of the signal processing is made with the following denotation: 

    xm11 tcosXtx x   1 , (1) 

    
ym11 tcosYty y   1 , (2) 

      xym2 tcosYtyty y   121 , (3) 

where: xy = x - y is the phase shift angle between signals x(t) and y(t), 

  2tn n2  , (4) 

      222 tntytz z2  .  (5) 

The following relation is right for constant value of phase angle shift between signals  

x(t) and y(t): 
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The conditional probability density for the functional relation (7) is equal to: 
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The conditional probability density for the independent signals n(t) and x(t) is:  
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In such a case the conditional density of signal y(t) as phase-shifted and disturbed by noise 

n(t) can be determined with a conditional density convolution of the constituent signals: 
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When the threshold x1=0, the following occurs: 
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where: ( )0 sinm xyy Y= - w×t + f . 

In order to analyze the non-linear transformation of the signal z20 the following denotations 

are introduced: 

 2002022
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; 2201 wz  ; 2202 wz  . (12) 
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The probability density of the absolute value of conditional signal z20 can be expressed by 

formula: 
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The conditional average value of the absolute value of signal z20 (CAAV) can be derived 

from the following expression: 
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The first integral, I1, can be calculated by introducing an auxiliary variable: 
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The calculations give the following result: 
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where:   




 

de



0

2

0

2
0

2

1
is the Laplace function. 

The integral I2 can be calculated in a similar way: 
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When substituting with (16) and (17) to (14), the following expression for the CAAV is 

obtained: 
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The function (can be represented by a series: 
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where: 
 1231

2




k
T

k

k . 

When the values 0 are low and the only first term of the series is used, the model of linear 

approximation is obtained: 
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Following further reductive transformations of the expression (18) using the formulas (11) 

and (15), the result is the relation for the conditional average value in the direct 

neighbourhood of its minimum: 

    
























 1

2 2

2

2 xy

n

m
n sin

Y
w 





 . (21) 

At the minimum point of the characteristic  2w  for 0 = 0: 
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At the minimum point  2w  for the delay 0  , the variance of the variable w2 is 36% of the 

variance of the sinusoidal signal which transits through the zero value and is additively 

disturbed by noise N(0,n). 

At the characteristic points  2w , which are significantly distant from the minimum point 

 02 w  for ≥ 3, based on (18): 

   022 yww  . (25) 

The mean-square value of the variable w2 can be expressed with the following relation: 
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while the variance is: 

   22
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2 2 nw wwVar   . (27) 

The variance of the variable w2 is the disturbance variance. 

When the values of ±  are low in the neighbourhood of the point 0 which determines 

the minimum of the function  2w , it is possible to further reduce the relation (21) to the 

following: 
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The expected value is: 

     0202  wŵE  . (29) 
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The characteristic variance is: 
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With the distribution model for the deviations  from 0 in the form of N(0,t) the 

following is obtained: 

   44 3  E . (31) 

The relative uncertainty square is: 
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This allows one to calculate the deviation  from the following relation: 
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The resulting calculations (22) and (24) also imply that: 
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Taking the expressions (33) and (34) into account gives an approximate theoretical relation 

for the standard deviation of the estimate 0̂ : 
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It can be proven that the standard deviation of the moment of the sinusoidal signal 

transiting through the zero level (2) and additively disturbed by the noise N(0,n) is 

formulated as follows: 
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The comparison of the expressions (35) and (36) shows a decrease in the standard 

deviation of the CAAV minimum location by approximately 34%.  

The experimental characteristic of the CAAV is obtained by conditional averaging of 

delayed signal z(t): 
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with the experimental variance for the argument 0 based on (24) and equal to: 
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where: K is the number of the CAAV values calculated in this point. As for the characteristic 

points which are significantly distant from the minimum point (for ≥ 3): 
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The argument of the minimum of the CAAV characteristic (0), allows determination of the 

sought phase shift from the following relation: 

   0
ˆˆ

xy . (40) 

with the standard uncertainty of: 
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3. Practical analysis 

 

The measurements were performed using a laboratory stand equipped with a digital 

generator for sinusoidal voltage signals with input phase shift, random voltage signal 

generators, models of disturbing systems, a data acquisition system with statistical analysis 

software and a digital oscilloscope. The measurements included the analysis of the following 

signals: x(t) (disturbance-free) with the amplitude Xm = 1 V and the frequency fx=100 Hz; and 

the signal z(t) delayed by 1.046(6) rad (and disturbed at the SNR = Xm
2
/2n

2 
= 294). The 

signals x(t) and z(t) were sampled with the frequency fp=240 kHz [9].  

Figure 1 presents the runs of the conditional average value characteristics of the delayed 

and noisy signal absolute value (CAAV): both practical and approximated based on the 

expression (28). Both characteristics are consistent in the direct neighborhood of the 

minimum points. 

 
Fig. 1. The characteristics of conditional averaging of absolute value of the delayed signal surrounding its 

minimum. 

 

The relation between the experimental (practical) variance of the CAAV characteristics in 

the minimum neighborhood is presented in Fig. 2. The calculations were based on M = 90 of 

the performance of the conditional averaging of the signal z(t) and K =100 of the CAAV 

characteristic calculations at every point. The sinusoidal signals had the amplitude  

Xm = Ym =1 V, while the standard deviation of the noise was n = 0,0418 V. The consistency of 

the practical characteristic with the theoretical calculations of values can be observed: 

- In the direct neighborhood of the minimum – expression (38) (lower broken line); 

- At the points significantly distant from the minimum – expression (39) (upper broken line). 
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Fig. 2. The experimental variance of characteristic CAAV close to the minimum. 

 

 

4. Conclusion 

 

The application of conditional averaging of the absolute value of the delayed sinusoidal 

signal disturbed by normal noise allows the variance to be reduced by the characteristic delay 

time 0  proportional to the phase shift between the signals in relation to the zero-transition 

moment variance of the sinusoidal signal on the same disturbance – using a traditional 

measurement method. 

The precision of the estimate 
0̂  based on the CAAV characteristic minimum is determined 

by the form (rate of rise) and variance of the characteristic itself. The study shows the 

consistency of the theoretical and practical parameters of the CAAV characteristic at the 

minima. 

The decrease in the variance 2

0
 ˆ  by 56 % may have  practical use in the measurements of 

voltage phase shifts at infra-low frequencies (for f < 1 Hz) due to the benefit of shortening the 

length of the time for the analysis at the assumed measurement precision. 

Further improvement of the precision of the estimated value 0̂   proportional to the 

measured phase shift can be obtained by using a modified method of multi-level conditional 

averaging of the delayed signal absolute value. 
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