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Abstract 

The paper presents a methodology for parametric fault clustering in analog electronic circuits with the use of a 

self-organizing artificial neural network. The method proposed here allows fast and efficient circuit diagnosis on 

the basis of time and/or frequency response which may lead to higher production yield. A self-organizing map 

(SOM) has been applied in order to cluster all circuit states into possible separate groups. So, it works as a 

feature selector and classifier. SOM can be fed by raw data (data comes from the time or frequency response) or 

some pre-processing is done at first. The author proposes conversion of a circuit response with the use of e.g. 

gradient and differentiation. The main goal of the SOM is to distribute all single faults on a two-dimensional 

map without state overlapping. The method is aimed for the development stage because the tolerances of 

elements are not taken into account, however single but parametric faults are considered. Efficiency analyses of 

fault clustering have been made on several examples e.g. a Sallen-Key BPF and an ECG amplifier. Testing 

procedure is performed in time and frequency domains for the Sallen-Key BPF with limited number of test 

points i.e. it is assumed that only input and output pins are available. A similar procedure has been applied to a 

real ECG amplifier in the frequency domain. Results prove a high efficiency in acceptable time which makes the 

method very convenient (easy and quick) as a first test in the development stage. 
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1. Introduction 

 

Test and diagnosis of analog electronic circuits (AEC) is a difficult problem, which even in 

the face of the expansion of digital circuits cannot be neglected. The obvious link between the 

outside world (which is analog by its nature) and input interface for signal processing leads to 

the use of analog input circuits. The first block in many electronic devices is always analog. 

The next block in the signal processing pipeline is an analog-to-digital converter where the 

analog world becomes a digital one. As the result of such an approach, digital signal 

processing methods can be applied because they are much simpler to implement and control 

(compared with analog signal processing). Turning to the problem of diagnosis and testing, 

we can see a clear disproportion between the methods dedicated to digital and analog circuits  

[1-4]. Standards set for digital circuits are used for many years, while every AEC requires a 

specific, dedicated approach for diagnostic purposes [5]. In case of digital testing, the 

IEEE1149.1 standard is well described and commonly used. For analog systems, there is lack 

of standards. The researchers have proposed a mixed signal boundary path IEEE1149.4 [1] 

however for relatively small circuits it occupies an unacceptably large area on the chip. For 

that reason many methods for testing analog electronic circuits have been proposed including 

e.g. heuristic methods.  
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One of the major problems in the area of diagnosis is design for testability [6], where a test 

point selection [7-10] and an input source function [11-13] are optimized. For test point 

optimization an entropy measure is proposed in [10] and the same problem with use of a 

genetic algorithm is described in [7]. Comparison of the results of both approaches gives 

acceptable results (optimal) but the method described in [10] is faster and it is deterministic. 

The input source optimization can be divided into two domains. An piecewise linear (PWL) 

function can be designed [14, 15] in case of time domain and a multitone signal (sum of a 

limited number of sinewaves) is created in the AC domain [12, 13]. A heuristic algorithm of 

simulated annealing is proposed in [12] for optimal multitone selection. In the case of time 

domain, the output responses are acquired and classification is based on selected features 

(delay time, rise time, etc) [15]. The problem of analog fault diagnosis is very complex due to 

tolerances of elements, and the mainly continuous domain of circuit specification. Other well-

known problems come from the size of the analog part which occupies a much greater area 

than digital components. For a mixed IC, it is estimated that only 10% of the substrate 

consists of the analog part but the diagnosis cost exceeds 80% of the whole validation process 

(both analog and digital tests). Typically, the analog part consists of less than 100 elements 

and is responsible for acquiring information from the surrounding world (e.g. MEMS) or/and 

performing pre-processing operations on the analog signal (e.g. antialiasing filter) [1, 3, 6]. 

The circuit responses are measured for the selected test nodes in the predefined domain. A DC 

analog fault dictionary determination is proposed in [16]. In order to enhance the accuracy of 

classification, a number of soft computing algorithms can be applied [17-19]. Another reason 

for applying fuzzy logic is the masking effect of analog elements which leads to ambiguity 

regions [1, 20]. Historically, the ambiguity region equals 0.7 V for DC domain circuits, which 

means if the voltage in a particular node for at least two circuit states is less than 0.7 then the 

states are not separable. Nowadays, researchers apply the Monte Carlo analysis [21] more 

frequently in order to determine an ambiguity region for a test point [12, 15]. Diagnosis of 

multiple catastrophic faults with the use of linear programming has been presented in [22]. 

The advantage of the method is components tolerance consideration. A very interesting 

approach to fault diagnosis with the use of sigma-delta modulation and an oscillation test has 

been proposed in [23]. 

There are a number of artificial intelligence (AI) classification methods [1, 17-19] which 

provide significantly better classification results compared with the classical methods [16]. 

Application of wavelet transform is another interesting approach [1, 23]. The wavelet pre-

processing results in better diagnosability of the electronic systems. A wavelet-neural network 

for soft parametric faults has been described in [24-26]. More, a neural network is designated 

for the purpose of diagnosis of a single [1] and global parametric [27] faults. Another 

technique for fault diagnosis has been proposed in [28], where measurements are transformed 

in multi-dimensional space. An algorithm for multiple fault diagnosis has been described in 

[29], the method is based on the very precise measurements at test points. 

A specification driven test (SDT) for field programmable analogue array (FPAA) is 

proposed in [30]. The authors present a diagnosis method with the use of the internal structure 

of the hardware. Hardware implementation of the built-in type test is proposed in [31]. 

Classification of nonlinearity and evaluation of the total harmonic distortion (THD) of the 

signal under test, without expensive automatic test equipment is presented in [32].The tester is 

based on a sigma-delta modulator located on a board and artificial neural networks 

implemented in an attached personal computer. The SVM algorithm [33] is applied to soft 

and hard faults diagnosis in analog electronic circuits. In this article, the time domain 

response for unit step excitation as well as soft- and hard-fault injection are considered. 

The main disadvantage of AI algorithms is non-deterministic behavior, which often leads 

to unacceptable deviation of results (the AI algorithm for exactly the same data creates two 
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different, but almost always good results). Multilayer perceptron (MLP) and feed-forward 

neural network (FF-NN) applications [34] to analog fault diagnosis are not enthusiastically 

invited by test engineers because of the aforementioned problem. Moreover, FF-NN and MLP 

are inefficient for a significant number of data and the first step should reduce this number to 

an acceptable value. Such chosen values within the circuit under test (CUT) response is 

named a feature. There are numbers of methods for features optimization but the PCA 

analysis seems to have results good enough [35]. Nevertheless, the first stage brief test should 

consider the whole response of the CUT and indicate if there is a possibility for fault detection 

and/or localization. For that purpose a special neural network has been investigated in this 

paper, called Kohonen or self-organizing map (SOM). However, there are known Kohonen 

neural network approaches to hard-fault diagnosis of analog circuits based on the observation 

of the power supply current [36, 37]. Another application of SOM has been described in [38] 

where it tries to diagnose ambiguity groups after classification performed by MLP. 

Proposition of circuit diagnosis with the use of multiple frequencies and SOM is shown in 

[39]. Unfortunately, none of the applications introduces initial pre-processing and the 

possibility of detecting soft faults in both time and frequency domains, however the first 

attempt to diagnose an ECG amplifier has been published in [40]. In the next paragraphs the 

application of the self-organizing map (SOM) to analog fault diagnosis is presented. Next, 

two examples of different size are evaluated and compared with a radial basis function neural 

network (RBF-NN), and feed forward neural network (FF-NN).  

 

2. Testing Procedure 

 

Obviously, there are several stages for test application in analog and mixed electronic 

circuits. The development stage is the first place where a test can be applied. New product 

construction (package or chip) is a challenging task even if an assembly or package (final) test 

is not considered at this level. However, design for testability should be taken into account. In 

order to evaluate the project when a single fault occurs, a SOM is proposed as a fast and 

convenient tool for fault isolation on the basis of circuit response. The overall approach for 

diagnosis with the use of SOM is presented in  Fig. 1. 

 

a 
 

Fig. 1. Testing procedure. 

Before test stage: 

Testing field (AC, DC, time); 

Universe of discourse; 

Fault type assumption and inject appropriate models; 

Input stimuli: 

AC:  MMinp UfUfUfU ,,...,,,, 1100  

Time:  MMinp UtUtUtU ,,...,,,, 1100  

Simulate CUT for all assumed faults S 

Acquire output response: 

AC:  MM

S

out UfUfUfU i ,,...,,,, 1100  

Time:  MM

S

out UtUtUtU i ,,...,,,, 1100  

Evaluate responses for all considered states with the use of 

SOM neural network.  
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It has been assumed that input stimulus and the output response are composed of equal 

number of points. In the following next two subsections the before-test stage and SOM are 

described. 

 

2.1. Before-Test Stage 

 

Let us assume a CUT with N parameters which have to be considered (very often it is N 

elements). The number of all states in the circuit with respect to upper and lower deviation of 

each parameter is 2N+1 which leads to circuit state set:  

 NSSSS 2210 ,...,,,S , where S0 is the healthy state.  

The main goal of the method is to isolate S0 and then all other states under the following 

assumptions:  

- upper and lower deviations are to be assumed by the test engineer and can be defined 

for parametric or catastrophic faults, i.e.  


 
  n

k

upperupper

k

n

k

lowerlower

k

EdevE

EdevE





1

1
 

where n

kE is the nominal value of k
th

 element, 

dev
lower

 and dev
upper

 – depends on fault type, i.e. commonly for a parametric fault it is 

within the range <0.1;0.6> but for catastrophic faults dev
lower

=0.999 and dev
upper

=1E6. 

- Only a single fault occurs at a time, 

- Healthy parameters may vary within the tolerance range. The tolerance value depends 

on circuit functionality and the technological process. 

The main goals for the evaluation algorithm are: 

- The output results should be obtained relatively fast, however the method belongs to 

SBT techniques and the time consumption is not crucial at the before-test stage.  

- Output data should be analyzed without any pre-processing, i.e. lack of feature 

extraction block from the CUT is an advantage. The step of feature extraction is not a 

trivial task but it must be very often introduced in order to reduce input data. In other 

words, if an algorithm takes all data and reduces it into lower dimension then  feature 

extraction is pointless.  

- There must be a measure (or graphical visualization) which indicates clusters (circuit 

states) close to other circuit states. Such measure helps the test engineer to pay 

attention to neighbor states. The visualisation should help in assessing a circuit state, 

may cause a problem during the final test on a production assembly line.  

Hence, the method should be independent of field testing, i.e. it allows for testing in the time-, 

AC, and DC domains. One of artificial intelligence methods which can be applied in the area 

of analogue fault diagnosis is the Kohonen neural network. The application of such a network 

and interpretation of results  will be given in the next paragraph. 

 

2.2. Self-Organizing Map  

 

A self-organizing map (SOM) is a type of neural network which is trained without an 

output pattern (called unsupervised learning). The learning algorithm was proposed by 

Kohonen in 1981 [41, 42]. The purpose of these networks is to group or classify input data, 

where similar inputs should be classified as belonging to the same category. These categories 

are determined by the same network based on the correlation of the input. An important 

feature of SOM is transformation of a large amount of input data into low-dimension map 

(typically two-dimensional) at the output.  
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Fig. 2. SOM architecture. 

 

A SOM is built with neurons in the form of a matrix and all of them are excited by the 

input signal. An important part of the network is a mechanism that for each neuron determines 

the degree of similarity between its weights to the input signal and calculates the neuron with 

the best match – the winner. Finally, the network has the ability to adapt to the winner neuron 

and its neighbors in order to carry out self-organization. So, the network topology depends on 

strength with which it responded to the input data. Then it can be assumed that the network is 

arranged, if the topological relationships between input signals and their images are the same. 

As aforementioned before, SOM has ability for reducing (converting) a large number of input 

data into a lower number of output data (clusters) which leads to a network architecture of 

two layers: input and output. Input units are fully connected with weights to output units 

which have been illustrated in Fig. 2. 

 The learning algorithm is based on feature presentation (e.g. signals) at the input of the 

SOM and it can be found in [42-45] and may be briefly cited in the following way: 

- Select the topology for the output layer (initialize the current neighborhood distance, G(0) 

to a positive value. The output map dimension is the first important parameter describing 

the SOM structure. The neural network map must have enough space in order to 

distribute all states uniformly, i.e. the number of neurons must not be smaller than the 

number of states. Based on author’s experiments, the number of a map should not exceed 

10 times more clusters then states. 

- Initialize weights from inputs to outputs to small random values; 

- Let n=1 (iteration variable – discrete time index) 

- While (computational bounds are not exceeded) do 

1. Select an input sample u to the network, where  luuu ,...,, 21u  

2. Compute the square of the Euclidean distance of u from the weight vector (wj) 

associated with each output node. 

3. Select the output node Nj* with minimum value from pt. 2. Choose the winning neuron 

which fits the input vector the best [40] with an appropriate distance metric. 

4. Update weights to all nodes within a topological distance of G(n) from Nj*, using the 

update rule: 

           nnjGnnn jjjj wuuww  )(,1   (2) 

where  is the learning rate (coefficient) generally decreases with time n (in our 

approach linearly, but it can be decreased exponentially): 

     110  nn jj   (3) 

  where n=1,2,…no_epochs; j=1,…, no_features l=1,…, no_states; 
 and G(j,u) is neighborhood function of  the j

th
 neuron. 

5. Increment n 

- Endwhile 

The neighbor function G(j,u) is defined as a Gaussian function: 

U0 Ui UM 

Y0 Yi YK 

Inputs 

Outputs (output clusters) >2N+1 
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where *jj   is the Euclidean distance between the weight vector of j
th

 neuron and winner 

j*,  is the neighborhood parameter, decreasing in time.  

The main goal of SOM is to distribute all states evenly in the predefined map.  

 

3. Time domain testing  

 

For the purpose of correct interpretation of a SOM network let us consider the BPF 

from Fig. 3. The CUT is driven by a unit step function and time domain responses are 

gathered at the out point. The response consists of 101 data points distributed evenly over the 

range (0;1ms]: 

 1001001100 ,,...,,,, UtUtUtU iS

out   for all circuit states S={S0,S1,…,S14}={Healthy, R1(-),  

R2(-), R3(-), R4(-), R5(-), C1(-), C2(-), R1(+), R2(+), R3(+), R4(+), R5(+), C1(+), C2(+)}, where 

(-) indicates the value of the element for dev
lower

=0.1 and (+) means dev
upper

=0.1 according to 

eq. (1). All responses are presented in Fig. 4. Each response has been transformed with the use 

of the following formulas:  

1. Gradient: 
t
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out
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2. Laplacian: 
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Fig. 3. Sallen-Key band pass filter. 

 

Hence, correlations between the healthy state and fault responses have been calculated. It has 

been done for clarification of the method and better understanding of the SOM outputs, 

however this step is not mandatory and can be neglected.  
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Fig. 4. Time domain circuit responses for all investigated states. 

 

Pearson’s correlation coefficient has been utilized as a parameter to assess the response of Si 

relative to the state S0:   

 

0
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where   )()()()()(),(cov 000 tutututututu iii S

j

S

j

S

j

S

j

S

j

S

j   is covariance, )(tu iS

out  is the expected 

circuit response for state Si (and corresponding fault); )( iS is standard deviation of state Si. 

Correlation values between the nominal response and all other states under consideration are 

depicted in Table 1. 
 

Table 1. Correlation values between state S0 and other states. 

 
State Differentiate Gradient Laplacian 

S0 1.0000 1.0000 1.0000 

S1 0.9972 0.2797 0.9724 

S2 0.9596 0.3575 0.7142 

S3 0.8738 -0.0766 0.8898 

S4 0.9842 -0.2881 0.5470 

S5 0.9439 0.3184 0.9634 

S6 0.9523 0.1293 0.6606 

S7 0.9430 -0.5787 0.9411 

S8 0.9982 -0.5142 0.8725 

S9 0.8891 0.1299 0.8368 

S10 0.9613 0.5285 0.4956 

S11 0.9321 0.5883 0.9568 

S12 0.9822 -0.4872 0.5683 

S13 0.9494 -0.6759 0.8990 

S14 0.9669 0.5666 0.8954 

 

Correlation coefficients are going to SOM and the network should cluster the data into 

separate groups. 
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3.1. Interpretation and description of results  

 

The Matlab environment has been utilized for method implementation and SOM neural 

network construction. According to the procedure from subsection 2.2 and the number of 

input data, the SOM architecture is presented in Fig. 5. The output topology must consist of 

much more neurons then states under consideration which has been inferred from many 

simulations and experience. Therefore, the output matrix is a map 7x6=42 neurons.  

 
Fig. 5. Network architecture. 

 

Fig. 6 presents SOM neighbour weight distances, where a dark color indicates relatively 

large weight (long distance) and light color means small weight. Fig. 7 present visualizations 

of the weights that connect each input to each of the output neurons (dark color = large 

weight), i.e. if the connection patterns of two inputs are very similar, the inputs were highly. 

In the example none of inputs are the same so it suggests low correlation between inputs 

which is much more suitable.  

 

 
 

Fig. 6. SOM Neighbor Weight Distances. 
 

Figs. 6 and 7 can be utilized for results evaluation in the case of any optimization 

process. Nevertheless, the main aim of the method is to cluster data (CUT state) into separate 

groups, then the most important is Fig. 8 (left). It tells how many data points are associated 

with each neuron, i.e. for 100% correct location of fault states each neuron should be linked 

with one input. 

 

 
 

 Fig. 7.Weights from SOM inputs. 

 

The left subplot in Fig. 8 is the output map with the number of samples belonging to 

each neuron. The right subplot shows interpretation of sample hits with labelled circuit faults 

associated with a particular neuron.  
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Fig. 8. Sample hits – raw data from SOM (left) and state interpretation (right). 

 

Now, it is quite easy to draw a conclusion because a healthy state is far from other states 

(no neighbor state bordering with it), whereas R4(1.1) is close to 4 states: C2(1.1), C1(0.9), 

R2(0.9) and R2(1.1). It means that the test engineer must take into consideration a possibility 

of incorrect localization under tolerance distribution and different soft fault deviations. 

However, soft fault has been set to 10% which is very low deviation from the nominal value. 

 

4. Frequency domain testing  

 

In this section two examples with larger number of states have been investigated. The goal is 

to apply the method in the frequency domain without any feature extraction and calculation 

before data entering the SOM network. As mentioned before, the method should be fast in 

implementation, hence the pre-processing is assumed to be needless. 

 

4.1. Sallen-Key Band Pass Filter 

 

The filter from Fig. 4 has been evaluated again, but in the frequency domain. Again, all 

elements have been checked S={S0,S1,…,S14}={Healthy, R1(-), R2(-), R3(-), R4(-), R5(-), C1(-), 

C2(-), R1(+), R2(+), R3(+), R4(+), R5(+), C1(+), C2(+)}, where (-) indicates the value of the 

element for dev
lower

=0.3 and (+) means dev
upper

=0.3 according to eq. (1). The frequency 

responses for all states are drawn in Fig. 9 between 1 kHz and 500 kHz in the semi-

logarithmic scale. 

 

 
Fig. 9. Frequency responses in test point [out] for all faults. 
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The number of input data is 190 whereas the output map is constructed from 9x8=72 neurons.  
 

 
 

Fig. 10. Network architecture. 

 

After 200 epochs of the learning process, the output map looks like that in Fig. 11 where all 

states are isolated unequivocally. Comparing with the time domain, the healthy state is again 

far enough from other states but e.g. R2(0.7) is close to C1(0.7) and R1(0.7) which may be 

caused by other deviation and the frequency domain. 
 

 
 

Fig. 11. State clustering results for BPF (Fig. 4). 

 

The results obtained from SOM have been compared with other well-known methods, i.e. 

feed-forward neural network and radial basis function neural network. The comparison was 

made on several levels like: detection and localization rate, ambiguity regions and time 

consumption. Summary results are in Table 2. 
 

Table 2. Comparison of fault diagnosis for different types of neural networks. 
 

Type of Classifier 
Input data 

per state 

Output 

structure 
Detection Localization Ambiguity set Time [s] 

SOM 190 9x8 Yes 15 0 5.35 

Neural Network FF 

190 3 layers 

(20, 15, 10 

neurons) 

Yes 5 4 93.5 

Neural Network RBF 190 15 Yes 15 0 5.75 

 

Table 2 shows correct detection rate for all neural networks, however only RBF and SOM 

allow for 100% localization of all faults. More, time consumption necessary for learning is 

almost 20 times greater for FF-NN. It flows from the number of input data and this is the 

reason for feature extraction in case of FF-NN. The fastest learning time is for SOM and 

besides the output map gives visualisation of circuit states, what is difficult to obtain for other 

networks. 

 

4.2. ECG amplifier circuit 

 

Next example is the output stage of an ECG amplifier (Fig. 12) [46] which may be applied 

for real signal acquisition. The input stage of the ECG amplifier together with e.g. input 
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drivers is composed of an instrumentation amplifier (e.g. INA128) and it is not presented 

here,  however it plays an important role in ECG acquisition. 
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Fig. 12. ECG amplifier. 

 

All elements have been checked S={S0,S1,…,S24}={Healthy, R11(-), R12(-), R20(-), R21(-), 

R22(-), R23(-), C7(-), C12(-), C13(-), C14(-), C15(-), R11(+), R12(+), R20(+), R21(+), R22(+), R23(+), 

C7(+), C12(+), C13(+), C14(+), C15(+),}, where (-) indicates the value of the element for 

dev
lower

=0.5 and (+) means dev
upper

=0.5 according to eq. (1). The frequency responses for all 

states are drawn in Fig. 9 between 1 Hz and 10 kHz. Each characteristic is composed of 162 

points within the aforementioned range. Hence, the input layer equals 162 neurons what is 

seen in Fig. 14. The output map is a 10x10 neuron matrix. Overall the learning process has 

taken approximately 6 seconds for 200 epochs and after all the classifier can recognize 

unequivocal 20 states out of 25. Similar results are gathered from the RBF neural network in 

comparable time. The worst results have been obtained for a typical feed-forward neural 

network  whose training process is time-consuming and localization is on a very low level. 

Hence, FF-NN does not give appropriate diagnostic information and the application to analog 

fault localization is questionable.  

 

 
 

Fig. 13. ECG amplifier frequency responses for all faults in the test point [out]. 

 

Let us look closer at the circuit schematic in Fig. 12. Resistor R19 is connected in series with 

the positive input of U5A operational amplifier. Without any doubt the deviation of R19 

could not be detected without information about current in this branch.  
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Fig. 14. Network architecture. 

 

If such a brief conclusion is drawn then the undamaged circuit is also detected (there is word 

“yes” in brackets in Table 3). 
 

 
 

Fig. 15. Clustering results for the ECG amplifier. 

 

Table 3. Comparison of fault diagnosis for different types of neural networks. 
 

Type of Classifier 
Input data 

per state 

Output 

structure 
Detection Localization Ambiguity set Time [s] 

SOM 162 10x10 No(yes) 20 2 6.16 

Neural Network FF 

162 3 layers 

(20, 15, 10 

neurons) 

No(yes) 7 6 284.44 

Neural Network RBF 162 25 No(yes) 20 2 7.26 

 

5. Conclusions 

 

A new approach to analogue circuit fault localization has been proposed in this paper. The 

method belongs to SBT techniques and the primary use of the method is at the development 

stage i.e. before the production stage. The method gives information about detection and 

localization relatively fast comparing to FF-NN and the time is comparable with RBF-NN. 

The main advantage of SOM is visualisation of results. All similar (“neighbor”) faults can be 

recognized on the basis of the output map. Hence, the test engineer can pay much more 

attention  to such elements in the circuit. Comparison with other neural networks and results 

shows that the use of the SOM neural network is giving a fast and reliable answer to the 

question whether the response (or selected features) provide detection and/or location of faults 

at the appropriate assumed level. 
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