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Abstract

In general, currently employed vehicle classification algorithms based on the magnetic signature can distinguish 

among only a few vehicle classes. The work presents a new approach to this problem. A set of characteristic 

parameters measurable from the magnetic signature and limits of their uncertainty intervals are determined 

independently for each predefined class. The source of information on the vehicle parameters is its magnetic 

signature measured in a system that enables independent measurement of two signals, i.e. changes in the active 

and reactive component of the inductive loop impedance caused by a passing vehicle. These innovations result in 

high selective classification system, which utilizes over a dozen vehicle classes. The evaluation of the proposed 

approach was carried out for good vehicles consisting of 2-axle tractor and a 3-axle semi-trailer.
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1. Introduction 

The inductive-loop detectors (ILD) have become the most utilized sensor in traffic 

detection systems. The ILD has the form of several turns of insulated wire installed in a slot 

sawed in the pavement. It is supplied with alternating current with frequency of several kHz 

to 100 kHz.

Two solutions of detection systems utilizing inductive-loop detectors are used. In the first 

solution the inductive-loop detector is connected in the generator resonant circuit. A change in 

the detector inductance caused by a vehicle passing over the detector results in a change in the 

generated signal frequency. In the second solution the directly measured quantity is the 

change in the detector's impedance due to the same cause. The change in the frequency or in 

the detector's impedance components, as a function of time or the distance travelled by a 

vehicle, is termed the magnetic signature of a vehicle. 

Vehicles categorized into different classes generate in a measuring system employing an 

inductive-loop detector their magnetic signatures that differ in amplitude, duration, frequency 

spectrum and statistical parameters. This signal (signature) is further processed by the vehicle 

classification algorithm. The subject literature presents various algorithms for processing 

magnetic signatures and various vehicle classification algorithms. In consequence they differ 

in their resolution (the capability differentiating among a larger or smaller number of vehicle 

classes) and the classification effectiveness (a relative number of correctly classified 

vehicles). In general, currently employed algorithms can distinguish among only a few 

vehicle classes. 

Publication [1] presents a vehicle classification algorithm based on the vehicle velocity and 

duration of the recorded magnetic signature. The system utilizes two inductive-loop detectors 
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installed a short distance apart. This enables determining the vehicle velocity. The attained 

effectiveness of classification was rather low. 

In [2] a new approach to vehicle classification is proposed; it consists in the magnetic 

signature analysis rather than measuring its duration. Vehicles were categorized into four 

classes: 1) passenger cars, 2) delivery vans, 3) goods vehicles, 4) buses. The classification 

effectiveness achieved in this solution was 0.83. 

Publication [3] employs a self-organizing feature map (SOFM) for the purposes of the 

magnetic signature analysis and vehicle classification. Seven vehicle classes have been 

distinguished: 1) passenger cars, 2) sport utility vehicles (SUVs) and pickups, 3) vans, 4) 

limousines, 5) buses, 6) two-axle trucks, 7) goods vehicles with a number of axles greater 

than two. The average effectiveness of classification was 0.80. 

Publication [4] discusses the influence of the inductive-loop detector length (in the vehicle 

motion direction) on the shape of magnetic signatures obtained for vehicles belonging to 

diverse classes. According to the presented results a signature obtained from a very short loop 

(10cm) allows axle counting and axle spacing measurement. The results show that such loop 

may substitute a system with two load sensors used as axle detectors. 

In publication [5] author utilizes the data fusion method employing fuzzy measures with 

triangular and Gaussian membership function to solve the problem of vehicles classification 

using their magnetic signatures. The input data have been gathered from a road measurement 

site equipped with a single inductive-loop detector and two piezoelectric axle load detectors. 

The vehicle classification algorithm was tested solely with respect to two-axle vehicles. The 

best results were obtained for the Gaussian membership function. The effectiveness of 

classification was 0.94 for passenger cars and 0.92 for delivery vans. 

In [6], using back-propagation neural networks (BPNN), authors have returned to the idea 

of vehicle classification based on the length of magnetic signature using for that purpose a 

single inductive-loop detector. Vehicles were categorized into four classes with respect to 

their length. For each class was designed and configured a specific neural network. The work 

does not provide information about the classification effectiveness. Authors, however, 

conclude that better results were achieved when the neural network was tuned to current 

measurement data in order to take into account changes in traffic at the given measuring 

point. 

In [7] authors combined methods employed in former works and proposed a new 

classification algorithm. The average effectiveness of classification was 0.915. 

In [8] authors proposed the use of BPNN with preliminary processing of measurement data. 

The processing consisted in clearing the disturbances from measurement data using discrete 

Fourier transform (DFT). The cleared data were transformed into the principal component 

analysis (PCA) domain. As a result, the classification effectiveness for five initially defined 

vehicle classes was 0.942. 

The above summary of recent research shows that the crucial problem of magnetic 

signature application to vehicle classification is its resolution, which is limited to only a few 

classes. It is therefore purposeful to improve the resolution to the extent that enables even 

recognition of a particular vehicle in traffic stream and, consequently, tracing the vehicle 

route, as well as credible and continuous estimation of the travel time. 

In this work we propose a novel solution for the vehicle classification problem based on 

vehicles magnetic signatures. It provides an opportunity to define a larger number of vehicle 

classes. Achieving this goal requires taking actions in three fields, these are: 

- design and construction in conjunction with seeking for such dimensions of loop detectors 

that allow detecting geometrical details of a vehicle undercarriage, 
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- design and construction related to the conditioning system interoperating with the loop 

detector, 

- seeking algorithms for processing measurement signals that enable to separate information 

about vehicle structure details, useful for the vehicle classification process. 

The work provides research results concerning selection of a loop detector dimensions and 

the proposed classification algorithm. 

The results illustrating the proposed approach have been obtained from magnetic signatures 

recorded at the measurement site installed in the national road Dk 81 in Gardawice, Poland. 

For various vehicles were recorded magnetic signatures from five loop detectors with lengths 

in the vehicle motion direction 0.1m, 0.3m, 0.5m, 1.0m and 3,0m; dimension of all detectors 

in the direction transverse to the traffic lane was the same - 2.0m.  

With each loop-detector was connected a conditioning system designed for this purpose. 

The conditioning system supplies the detector with AC current of selected frequency, filters, 

amplifies signals and works out the measurement signal according to the adopted 

measurement principle. 

Simultaneously the video image, vehicle velocity and number of axles from piezoelectric 

detectors have been recorded. 

The paper is organised as follows: chapter 2 concerns the conditioning systems applied for 

ILD detectors. The system allowing measurement of two independent output signals that are 

proportional to changes in the real part (R component) and imaginary part (X component) of 

the loop detector impedance, respectively, is presented. Chapter 3 presents the analysis of the 

loop detector dimensions influence on the vehicle parameters measurement uncertainty. In 

chapter 4 the proposed approach to the vehicle classification is presented. It should allow to 

distinguish over a dozen vehicle classes. In chapter 5 the evaluation results of the proposed 

approach are presented. This analysis was caried out for good vehicles consisting of 2-axle 

tractor and a 3-axle semi-trailer. Chapter 5 contains the final conclusions.

2. Magnetic signature measurement systems 

The loop detector is supplied with AC sinusoidal current. As a consequence, an alternating 

electromagnetic field is produced around the loop. The interaction of a metal object with the 

electromagnetic field generates eddy currents in the metal object elements. This causes 

observed variation in the detector equivalent parameters, i.e. an increase in the resistance and 

decrease in the inductance. At the same time ferromagnetic components of the object (e.g. 

steel wheel rims that are in the immediate vicinity of the detector) act like a magnetic core 

increasing the detector equivalent inductance. 

The resultant effect of these phenomena is a change in the detector impedance parameters. 

The objective of the sensor circuit, whose component is the loop detector, is to achieve a 

linear dependence between changes in the detector parameters and the voltage signal over a 

possibly wide frequency range [9]. The sensor circuit output signal is amplitude modulated. 

The conditioning system applied by the authors allows measuring the detector impedance 

changes caused by a passing vehicle. Two system solutions, shown in Fig. 1, are used. The 

solution applied by authors in former works [2, 4, 9] employs an AC bridge (Fig. 1a). The 

bridge is automatically balanced when no vehicle is passing over the detector. The occurrence 

of a vehicle unbalances the bridge and a time-varying unbalance signal is regarded as the 

vehicle magnetic signature. 

The measuring system utilized in this work is shown in Fig. 1b. The sensor circuit is 

supplied with sinusoidal voltage 0U . Its output voltage outU  is applied to two synchronous 
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demodulation circuits while signals controlling demodulators 1D  and 2D  are generated in 

the SIN/COS  block which ensures their phase shift with the supply voltage 0U  is 0o and 90o,

respectively. Therefore from both demodulation paths RU  and XU  are obtained two 

independent output signals that are proportional to changes in the real part (R component) and 

imaginary part (X component) of the loop detector impedance, respectively. 

Changes in both components (combined) as a function of the distance travelled by a 

vehicle are termed the vehicle magnetic signature. 

Separation of the detector impedance components stems from the authors' confidence, 

based on their research, that each component contains information about different vehicle 

features: the R component provides information on the undercarriage geometry, including the 

vehicle length, and the X component provides information on the number of axles and their 

spacing. The separate analysis of both components should, therefore, improve the 

classification process resolution. 

The shape of recorded signal (magnetic signature) depends on a vehicle undercarriage 

dimensions, i.e. distances of the undercarriage components, vehicle axles and wheel rims 

from the detector surface and is characteristic for a given vehicle class. 

Depending on how far the electromagnetic field extends, the decisive influence upon the 

magnetic signature shape have wheel rims and axles or the whole undercarriage of a vehicle. 

In the case of goods vehicles, the information on axles is relatively easily available whereas it 

is much more difficult to acquire details about the undercarriage geometry because of its 

height above the detector. On the other side, only a complete knowledge about the vehicle's 

parameters, including its length, axle spacing and undercarriage geometry, can be the basis for 

a high-resolution vehicle classification. 

Fig. 1. Magnetic signature measuring systems: a) the bridge system, b) the system with separation of the 

detector impedance components. TR – transformer, S.G. – supplying generator, PS – phase shifter, Amp –

amplifier, Filter – low-pass filter, Dem, Dem1, Dem2  – phase-sensitive demodulators, SIN/COS – signal 

generator, R1, L1 – resistance and inductance of the loop. 

3. Analysis of the loop detector dimensions influence on the vehicle parameters 

measurement uncertainty 

The length of a loop detector, measured in the direction of vehicles traffic is one of key 

factors deciding on the detector's electromagnetic field extent. The magnetic field range of 

very short detectors, with length of e.g. 0.1m is 0.2 – 0.3m. As a consequence, such detectors 

are used for axle detection [9]. 

Figure 2 shows changes in both impedance components (R and X) of the ILD detector, 

recorded for the vehicle consisting of a 2-axle tractor and a 3-axle semi-trailer (TT(2+3) class 

vehicle) passing over detectors with lengths of 0.1m and 0.3m. On the basis of magnetic 

signatures shown in Fig. 2 it can be concluded that: 
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- vehicle axles can be clearly distinguished only in the X component of the loop detector with 

length of 0.1m, 

- for both lengths of the detector, the component X does not allow determining the overall 

vehicle length because the signal may assume both positive and negative values, particularly 

for the 0.1m detector, 

- the overall length of a vehicle can be exclusively determined from changes in the R

component using the 0.3m detector. 

Fig. 2. Changes of the imaginary (X) and real (R) components of the ILD detector impedance as a function of 

the distance travelled by a TT(2+3) class vehicle. 

In order to obtain complete information on the vehicle's length and its axles (the number 

and spacing) from X and R components they are processed using algorithms (1) and (2). 

( ) ( ) ( ) ( )xRaxXaxRaaxy_axle 24321 ×+×+×+= , (1) 

( ) ( ) ( )xXbxRbxy_body ×+×= 21 , (2) 

where: 

x - the distance travelled by a vehicle, 

( )xy_axle - model used for axles detection and axle spacing measurement, 

( )xy_body - model used for the vehicle length measurement, 

( ) ( )xX,xR - the real and imaginary component of the loop detector impedance, 

respectively, 

2141 b,b,aa ¸ - models' coefficients, determined individually for each detector. 

The form of algorithms (1) and (2) and their coefficients values are selected individually 

for each pre-defined vehicle class. 

Figure 3 shows the results of processing X and R components of a magnetic signature 

recorded from the 0.3m detector. 

As a result of applying algorithms (1) and (2) were obtained model signals: y_axle and 

y_body, that contain information about the number and spacing of vehicle axles and the 

vehicle length. 

The key advantage of axle detection using the vehicle magnetic signature ― compared 

with the use of axle load detectors, is that it enables detection of axles' positions with respect 

to specific points of a vehicle, e.g. its front (front overhang) or end (rear overhang) and 

detection of lifted retractable axles. 

A set of 244 pairs of X and R signals was processed. The signals were acquired under 

traffic conditions for a class of five-axle goods vehicles: 2-axle tractor + 3-axle semitrailer, 

further designated as TT(2+3), on site equipped with different loop detectors and piezoelectric 
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axle counter. The goal of tests was to determine the measurement uncertainty of various 

parameters that characterize such a vehicle class and are measurable using its magnetic 

signature. 

Fig. 3. Signals of models y_axle and y_body determined for 0.3m detector with illustration of the axle 

counting and vehicle length estimation algorithms. 

The following characteristic parameters have been taken as into account: 

- the number of axles, 

- the overall length of a vehicle, 

- spacings between subsequent axles, 

- the distance between the vehicle's front edge and the first axle (front overhang). 

Fig. 4. The distribution of results of axle counting and vehicle length measurement for the 0.1m detector. 

Fig. 5. The distribution of results of axle counting and vehicle length measurement for the 0.3m detector. 
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Figures 4 and 5 show distribution of results of axle counting and vehicle length 

measurement acquired from 0.1m and 0.3m detectors, respectively. 

Table 1. The mean value and standard deviation of axle spacing 

measurement results obtained for 0.1m and 0.3m detectors and 

of results acquired by the Polish Road Transport Inspection 

(ITD). 

Detector axle 

distance
0.1 [m] 0.3 [m] ITD

mean 

[m]

std 

[m]

mean 

[m]

std 

[m]

mean 

[m]

std 

[m]

1 – 2 3.78 0.17 3.82 0.30 3.70 0.20

2 – 3 5.59 0.23 5.47 0.30 5.04 0.98

3 – 4 1.31 0.06 1.37 0.50 1.31 0.007

4 – 5 1.29 0.06 1.30 0.12 1.31 0.006

Table 1. summarizes the values of statistical parameters that characterize uncertainty of 

axle spacing measurement using detectors with lengths of 0.1m and 0.3m. 

Figure 6 shows the results of the front overhang measurement obtained for 0.1m and 0.3m 

detectors, respectively. 

Fig. 6. Distribution of the front overhang estimation result based on the magnetic signatures acquired from 

different inductive detectors. 

For other detectors, i.e. those with lengths of 0.5m – 3.0m, only the variation of axle 

counting and length measurements have been evaluated. The results are presented in graphic 

form in Fig. 7. Due to high uncertainty of axle counting, observed in the case of these 

detectors, the analysis of axle spacing measurement results is groundless. 

The histograms shown in figures 4 – 6 and the results contained in table 1 and presented in 

figure 7, enable to evaluate uncertainty intervals of chosen parameters for various detectors. 

Knowledge of these intervals is necessary for parameterisation of the vehicle classification 

algorithm operating on these parameters measurement results. 

Conclusions from the above results are explicit: detection and correct counting of vehicle 

axles is exclusively possible using the shortest detectors, i.e. those with lengths of 0.1m or 

0.3m. An increase in the detector length results in significant increase of the axle counting 

measurement bias and the width of the measurement results uncertainty interval. 

The result of the vehicle length measurement obtained using the shortest detector is highly 

uncertain. Other detectors (0.5m to 3.0m) ensure a much lower, and comparable between 

detectors, uncertainty of the measurement result. 
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Where the measurement goals are the number of axles, their position with respect to the 

vehicle body characteristic points and the vehicle length, the use of 0.3m detector is a 

comprise choice. 

Magnetic signatures obtained from 0.3m detector, recorded for different vehicle classes 

were the basis for testing the effectiveness of the developed classification system. 

Fig. 7. Standard deviation and mean value of the results of axle counting and standard deviation of vehicle’s 

length estimation as a function of inductive detector length. 

4. Classification system 

The vehicle classification system has been developed basing on the analysis of vehicle 

magnetic signatures and a certain number of vehicle classes predefined depending on the 

classification process goal. The idea of this system consists in that for each predefined vehicle 

class is developed a separate algorithm, which decides whether a vehicle should be 

categorized into a given class or not. The decision-making scheme may be different for each 

of these algorithms. Each algorithm utilizes a different set of parameters and different ranges 

of their variability, and different vehicle features determined from its magnetic signature. 

Execution of each algorithm is ended either by classification a vehicle into the class 

"supported" by this algorithm or a vehicle remains unclassified by the algorithm. Signatures 

of vehicles unclassified by one algorithm are processed according to algorithms developed for 

subsequent classes. The vehicle that was not classified by any algorithm is considered as 

unclassified. The idea of the developed classification system is illustrated in Fig. 8. 

Such classification system differs considerably from those being currently in use, in which 

signatures of all vehicles are processed by one algorithm, the same set of characteristic 

features is taken into account, and the result of classification depends exclusively on the fact 

whether these parameters and features fall into intervals with limits that have been defined 

individually for each class. 

The advantage of the proposed new approach to the problem of vehicle classification is 

that it enables to define a much greater number of classes than the traditional approach 

allowed. One has now at disposal not only the variability intervals of parameters (though the 

number of these intervals is limited by the measurement uncertainty of each parameter) but 

for each class can be considered a different set of vehicle parameters. 

Fig. 9 shows an example of classification algorithm developed for the goods vehicles class 

TT(2+3). The algorithm utilizes vehicle parameters and characteristic features that are 

measurable with a satisfactorily low uncertainty level on the basis of magnetic signature 

acquired from inductive loop detector with length of 0.3m, and can be regarded as 

characteristic for the vehicle class TT(2+3). 
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Fig. 8. Block diagram of the classification system. 

Fig. 9. Classification algorithm for TT(2+3) vehicle class. 

The vehicle classification algorithm contains three parallel decision-making paths. Each of 

these paths utilizes knowledge about different vehicle parameters. If the number of axles 
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equals 5 the decision on classification a vehicle into to the goods vehicles class TT(2+3) is 

made on the basis of measured spacings between successive axles (the left path in the diagram 

in Fig. 9). For each pair of axles has been defined the uncertainty interval resulting from 

characteristics shown in table 1. A vehicle will only be categorized into class TT(2+3) when 

results of measurement of all distances fall into uncertainty intervals defined for them. 

However the execution of the magnetic signature based algorithm for axle detection and 

counting is not error-free. If the number of detected axles differs from 5, the decision on 

classification result is made in the middle path. Classification in this path is based on 

measurements of the vehicle length and the distance between the vehicle's front and the first 

axle (front overhang). If both measurement results fall simultaneously into uncertainty 

intervals defined for them, the decision on categorizing the vehicle into class TT(2+3) is 

made. 

In some vehicles of the TT(2+3) class a front bumper support structure causes that the loop 

detector generates an artefact, which is interpreted as an additional axle (Fig. 10). In the case 

of this class the number of counted vehicle axles is 6, assuming the other axles were correctly 

counted, but the first axle (the false one) is evidently closer to the vehicle front edge (c.a. 

0.9m) the actual first axle (c.a. 2.2m). The decision on classification the vehicle into TT(2+3) 

class is made on the basis of the axles number, vehicle length and the false first axle distance 

from the vehicle front edge (the right path in the diagram in Fig. 9). 

Fig. 10. An artefact caused by front bumper as a reason of incorrect axle counting. 

5. Evaluation of classification effectiveness 

The evaluation of effectiveness of road vehicles classification based on their magnetic 

signatures has been carried out for goods vehicle class TT(2+3). The classification utilizes 

both components (R and X) of magnetic signatures obtained from a loop detector with length 

of 0.3m in the vehicle motion direction, processed according to algorithms (1) and (2). 

For that purpose 14 groups of vehicles were selected, among them 4 groups (table 2, rows 1 

- 4) comprised vehicles belonging to the selected class. The classification result should be 

unambiguously positive, i.e. an ideally working classification algorithm should classify 

vehicles from these 4 groups as class TT(2+3) vehicles. In that case the relative number of 

correctly classified vehicles, that expresses the classification effectiveness, should equal 1.0. 

As can be seen from table 2, the result of classification obtained using the tested algorithm 

is not an ideal one. The achieved classification effectiveness is contained within the interval 

0.78 - 0.93, depending on the vehicle group. The resultant classification effectiveness for 

these four vehicle groups is 0.90. That means 10% of vehicles that actually belong to class 

TT(2+3) have not been categorized into this class by the tested algorithm.
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Table 2. Estimation of the classification effectiveness. 

No. Vehicle group

Relative number of 

vehicles classified 

as belonging to 

TT(2+3)

1 Two-axle tractor with three-axle semi-trailer - TT(2+3) class 0.93

2 Two-axle tractor with three-axle semi-trailer, one axle lifted - TT(2+3) 

class
0.78

3 Two-axle tractor with three-axle semi-trailer and additional cabinet 

mounted under the carriage - TT(2+3) 
0.89

4 Two-axle tractor with three-axle semi-trailer and additional cabinet 

mounted under the carriage, one axle lifted - TT(2+3) class 
0.83

Total TT(2+3) class 0.90

5 Two-axle tractor with three-axle semi-trailer for sand transportation 0.02

6 Two-axle tractor with three-axle semi-trailer for sand transportation, 

one axle lifted 
0.0

7 Two-axle tractor with three-axle tank 0.33

8 Two-axle tractor with three-axle tank, one axle lifted 0.25

9 Two-axle tractor with three-axle tank for granular substances 

transportation
0.05

10 Two-axle tractor with three-axle tank for granular substances 

transportation, one axle lifted
0.0

11 Heavy Good Vehicle (HGV) 0.0

12 HGV with trailer 0.07

13 Two-axle bus 0.0

14 Three-axle bus 0.0

Total Buses, HGV and tractors with different trailer types 0.03

The purpose of these tests was to determine also the second type of classification error, 

which consists in classifying to the selected class vehicles that actually do not belong to that 

class. In order to do that were selected 10 groups of very similar vehicles with comparable 

structures, number of axles or lengths (table 2, rows 5 - 14). Due to high similarity of these 

parameters this type of error is more probable than in the case of other vehicles. From the 

summary results provided in table 2 it can be concluded that mean level of this type 

classification error is 0.03. The highest value the error attains for tanker trucks. Vehicles in 

this group are most similar to class TT(2+3) vehicles (similar length, the same number of 

axles and their spacing). 

In case of groups No. 1 – 4 (Table 2), the mean value 0.90 means the total number of 

vehicles classified as belonging to TT(2+3) class, referred to the total number of vehicles 

included in these four groups, which actually belong to the TT(2+3) class. In case of groups 

No. 5 – 14, the mean value 0.03 means the total number of vehicles classified as belonging to 

TT(2+3) class, referred to the total number of vehicles included in these 10 groups, which 

actually do not belong to this class. 

6. Conclusions 

The proposed new approach to the vehicle classification problem is based on vehicle 

parameters that are measurable from magnetic signature. In order to extend the information 

resource acquired from vehicle's magnetic signature has been employed an independent 

measurement of both components of the loop detector impedance and the influence of the 
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detector length on uncertainty of acquired measurement information has been analysed. 

The proposed approach allows defining a larger number of vehicle classes and therefore 

improving the classification resolution that depends on uncertainty of individual parameters 

and the number of vehicle characteristic features acquired from its magnetic signature. Hence 

seeking for new, more advanced algorithms enabling magnetic signatures analysis becomes 

particularly significant. 

It also seems that the population of a vehicle parameters set can be increased by means of 

appropriate design of a loop detector, i.e. its shape and dimensions, and adequate selection of 

algorithm for preliminary processing of recorded magnetic signatures (filtering, sharpening). 

The proposed approach to the vehicle classification problem was tested on the 14 highly 

similar vehicle groups. The obtained results are promising. The future works will be focused 

on design of full classification system, considering all vehicle classes observed in traffic 

stream. 
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