
1. Introduction

The magnetoelastic Villari effect was described for the 
first time in 1865 by the Italian physicist E. Villari [1]. This 
effect is connected with the changes of flux density B (achieved 
for a given value of the magnetizing field H) in the material 
subjected to mechanical stresses σ. The magnetoelastic Villari 
effect was observed in steel [2, 3, 4], soft ferrites [5] as well 
as amorphous [6, 7] and nanocrystalline [8, 9] soft magnetic 
materials. 

In spite of the fact, that the magnetoelastic Villari effect 
is known for nearly 150 years, quantitative description of 
this effect for soft magnetic materials is still only partial. 
General tendencies of changes of flux density B in material 
under stresses σ are determined by the Le Chatelier’s principle 
[10]. From the qualitative point of view it was experimentally 
proved that the way in which material responds to the influence 
of stresses σ depends on the value of the product λsσ, where 
ls is the saturation magnetostriction. Note that tensile and 
compressive stresses σ are considered positive and negative 
respectively. If the value of this product is significantly 
negative, the decrease of flux density B under stresses σ is 
observed. On the other hand, for positive value of product 
lsσ, the increase of flux density B was observed, up to the 
maximum, called magnetoelastic Villari point [11]. It should 
be indicated, that quantitative explanation of appearance of the 
magnetoelastic Villari point on B(σ) characteristics was not 
presented previously.

The most advanced quantitative descriptions of 
magnetoelastic Villari effect were given by Armstrong model 
[12, 13], ∆E-based models [14] and Jiles-Atherton-Sablik 
model [15, 16, 17]. However,  the Jiles-Atherton model 
was developed for isotropic materials [18, 19], whereas the 

presence of mechanical stresses generates significant stress-
induced anisotropy Kσ in the material. This stress-induced 
anisotropy created in the isotropic material was not considered 
in the original Jiles-Atherton-Sablik model. Filling this gap 
will create possibility of more accurate modelling of influence 
of mechanical stresses on the shape of magnetic hysteresis 
loop. Moreover, it will create possibility of numerical 
determination of experimentally observed [20] changes of 
saturation magnetostriction λs of magnetic material subjected 
to mechanical stresses σ.

2. Principles of the Jiles-Atherton-Sablik model

The Jiles-Atherton-Sablik model of magnetomechanical 
effect is based on analysis of total free energy of a magnetic 
material. In this model, effective magnetization field He in the 
material subjected to mechanical stresses σ generated in the 
direction of the magnetizing field H is given by the following 
equation  [21]:

(1)

where M is the magnetization of the magnetic material and 
m0 is the magnetic constant.  Magnetization dependence 
of magnetostriction in the magnetic material λ(M) covers 
magnetostrictive hysteresis and lift-off phenomenon [22]. 
However, experimental results indicate that for high-
permeability ferrites these phenomena may be neglected [23] 
and λ(M) can be estimated by quadratic equation:

(2)
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where Ms is the saturation magnetization of a magnetic 
material. On the basis of equations (1) and (2), the effective 
magnetization field He  may be calculated as [21]:

(3)

where the stress-sensitive parameter 
The Jiles-Atherton-Sablik model is based on the 

anhysteretic magnetization curve Mah(He). In a general case, for 
anisotropic materials, this curve given by the equation [24, 25]:

(4)

where θ is the integration parameter and E(i), is given by the 
following relationship [24]:

(5)

where a quantifies domain wall density, Kan is the anisotropic 
energy density, ϕ1=ψ -θ and ϕ2=ψ +θ, where ψ is an angle 
between the easy axis of the material and the magnetizing field 
direction. 

It should be indicated, that in the case of anhysteretic 
magnetization of the isotropic magnetic materials Man, where 
Kan=0, equation (4) reduces to the Langevin equation [15]:

(6)

For isotropic materials integral in equation (4) has the 
antiderivative. As a result it can be reduced to the Langevin 
function in equation (6). However, for other values of Kan, 
anhysteretic value of the magnetisation Mah can be calculated 
only using numerical methods.

in the original Jiles-Atherton-Sablik model, the total 
value of anhysteretic magnetization is calculated as a weighted 
sum of isotropic and anisotropic magnetisation [26]. This 
assumption is correct in the case of some magnetic materials 
with anisotropy induced during production processes, such us 
cold rolled electrical steels. However, in the case of isotropic 
materials with stress-induced anisotropy, consideration of 
isotropic phase in anisotropic materials is not necessary.

in the Jiles-Atherton-Sablik model, total magnetization 
in the material is given as a sum of reversible magnetization 
Mrev and irreversible magnetization Mirr [16]:

(7)

Reversible magnetization Mrev in the Jiles-Atherton-Sablik 
model can be calculated from the following equation [16]:

(8)

where the parameter c describes magnetization reversibility 
and is connected with the Globus model [16], where it is 
determined by the average surface energy of the domain wall.

An important part of the Jiles-Atherton-Sablik model is 
the irreversible magnetization Mirr given by the differential 
equation [16]:  

(9)

where the parameter δ is connected with changes of the 

magnetizing field H and is equal to +1 and -1 for
 

 and 

 respectively. The parameter k of this model quantifies 
average energy required to break the pining site, and in the 
original Jiles-Atherton-Sablik model it is considered as a 
constant for a given sample of the magnetic material. 

The parameter δM is necessary for avoidance of unphysical 
stages of the Jiles-Atherton-Sablik model for minor loops, 
where incremental susceptibility often becomes negative [27, 

28]. This parameter is equal to 0 either when
 

 and Man 

– M >0, or when  and Man – M <0. In the other cases δM 

= 1 and can be neglected. 
Finally, the total flux density B in the magnetic material 

is equal to M×μ0.
From the practical point of view, total magnetization M in 

the material may be calculated from the following equation [13]:

(10)

which is the result of differential forms of equations (7) and 
(8) together with equation (9). It should be noted that , that 
in equation (10) the irreversible magnetization Mirr is reduced 
and does not have to be calculated separately to obtain the total 
magnetization M in the magnetic material.

3. Proposed extension of the Jiles-Atherton-Sablik model 
by considering the stress-induced anisotropy

in the original Jiles-Atherton-Sablik model, mechanical 
stresses σ affect the shape of M(H) hysteresis loop only through 
effective magnetizing field He (equation (1)). However, in 
the magnetic sample subjected to mechanical stresses σ, the 
stress-induced anisotropy Kσ occurs. Energy density of the 
stress induced anisotropy Kσ for given mechanical stresses σ 
(oriented parallel to the magnetizing field H) is given by the 
following equation [10]:

(11)

As a result, even isotropic magnetic materials such as 
high-permeability Mn-zn ferrites, subjected to mechanical 
stresses became anisotropic. For this reason, the anhysterestic 
magnetisation of such materials subjected to mechanical 
stresses cannot be calculated from Langevin equation (6). It 
should be calculated from equation (4) suitable for magnetic 
materials with the given anisotropy energy density Kan = Kσ.

It should be indicated that for the stress dependence 
modelling of the hysteresis loop B(H), direct determination 
of the stress-induced anisotropy Kσ is not necessary. Both 
the stress-induced anisotropy Ks and changes of the effective 
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magnetizing field He are determined by the stress dependence 
of saturation magnetostriction λs(σ). As a result, the knowledge 
of λs(σ) characteristic is sufficient for modelling the stress 
dependence of the magnetic hysteresis loop of isotropic 
materials, such as Mn-zn ferrites. On the other hand, as 
far as the proposed extension of the Jiles-Atherton-Sablik 
model is concerned, the stress dependence of saturation 
magnetostriction λs(σ) can be determined on the basis of the 
series of B(H) magnetic hysteresis loops measured for different 
values of stresses σ. 

4. method of experiment

during the experiment the influence of compressive 
stresses σ on the shape of hysteresis loops of the 
Mn0.51zn0.44Fe2.05O4 ferrite was tested. Frame-shaped cores were 
used for the experiment. The compressive stress was applied 
to the columns of the frame-shaped core by the oil press. 
A schematic block diagram of the mechanical system for testing 
magnetoelastic properties of frame-shaped samples is presented 
in figure 1. Compressive stresses F are applied to the frame-
shaped sample (1) by non-magnetic backings (5) and ball-
joints (6). It should be highlighted that uniform compressive 
stresses generated in the columns of the frame-shaped core are 
in line with direction of the magnetizing field H [29]. due to 
the fact, that Mn0.51zn0.44Fe2.05O4 ferrite is a ceramic material, 
under compressive stresses of magnitudes up to 15 MPa no 
plastic deformation was observed. The hysteresis under 
stresses was measured using digitally controlled hysteresis 
graph for the frequency of the magnetizing field strength 
equal to 0.1 Hz. details of this method of measurements of 
magnetoelastic properties of frame-shaped ferrite cores were 
presented previously [29, 30]. 

Fig 1. Schematic block diagram of the system for testing the 
magnetoelastic properties of frame-shaped samples: 1 – sample 
under investigation, 2 – magnetizing winding, 3 – detection winding,  
4 – elastic spacer, 5 – non-magnetic backing, 6 – ball joint, F – applied 
compressive force

Figure 2 presents the influence of compressive stresses σ 
on the shape of the B(H) hysteresis loop. It should be indicated 
that compressive stresses σ exhibit significant influence on 
both coercive force and on maximal flux density in the core 
[29, 30]. 

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-40 -20 0 20 40

σ = 0 MPaB(T)

H (A/m)

-7.5 MPa
-15 MPa

Fig. 2. The influence of compressive stresses on the shape of magnetic 
B(H) hysteresis loops for the Mn0.51zn0.44Fe2.05O4 ferrite

Figure 3 presents B(σ)Hm magnetoelastic characteristics. 
These characteristics indicate the value of maximal flux density 
B in materials subjected to stresses σ achieved for a given value 
of amplitude of the magnetizing field Hm. It should be noted, 
that value of the flux density B under compressive stresses 
σ first increases and then decreases. Maximum  of the B(σ)
Hm characteristics is known as the Villari point or the Villari 
reversal. In the case of Mn0.51zn0.44Fe2.05O4 ferrite, the Villari 
reversal was observed for compressive stresses of about 1.5 
MPa.
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Fig. 3. Compressive stress σ dependence of the maximal flux density 
Bmax achieved in the core for a given amplitude of the magnetizing 
field strength Hm 

5. method of modelling

According to the Jiles-Atherton-Sablik model, the 
magnetic hysteresis loop M(H) can be calculated from equation 
(10). However, previously presented methods [31, 32] of 
solving of equation (10) with simple assumption of the small 
time step dt may be risky due to the accumulation of numerical 
errors. As a result, in such case the value of numerical errors 
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during solving of equation (10) has to be carefully observed.
The most accurate solution of equation (10) may be given 

by the adaptive sampling explicit Runge-kutta (2,3) pair of 
Bogacki and Shampine method [33] with relative numerical 
error lower than 10-4. This method is implemented in 
MATlAB and open-source OcTAVE with “odepkg” package 
as the “ode23” ordinary differential equation solver. However, 
in such a case, long time of calculation may be a problem, 
if parameters of the Jiles-Atherton-Sablik model are near its 
instability region [34]. Then, the fixed step fourth-order Runge-
kutta method for solving equation (10) is more calculation-
time effective and generates relatively small numerical errors. 

Numerical integration of equation (4) by the trapezoid 
method is calculation time effective and generates moderate 
numerical errors. However, to guarantee the required accuracy 
level (such as relative error lower than 10-8), the adaptive 
gauss-kronrod quadrature [35] should be used. This method 
is implemented in both MATlAB and OcTAVE as a “quadgk” 
numerical integration function.

Solution of equation (10) requires also numerical 

differentiation of . For this numerical differentiation the 
spline extrapolation to zero of the series of gradients was used.

Previously, there were presented different methods 
of direct determination of the Jiles-Atherton-Sablik model 
parameters [36, 37]. However, from the practical point of view, 
determination of the Jiles-Atherton-Sablik model parameters 
requires optimisation process. In this process the parameters 
are determined on the basis of minimisation of the following 
target function:

(12)

where Bmodel(Hi) were the results of the modelling,  and 
Bmeas(Hi) were the results of the measurements, both for the 
same Hi value of the magnetizing field. The target function F 
was calculated simultaneously for 4 hysteresis loops measured 
for different values of the magnetizing field amplitude. As a 
result, optimisation focused on finding the model parameters 
representing wide range of the magnetizing fields.

Presented simulations were made in the following three 
steps.

in the first step, the evolutionary strategies (µ+λ) [38] 
were used to determine five Jiles-Atherton-Sablik model 
parameters (a, k, c, Ms, α) required for isotropic materials 
not subjected to stresses (Kan = 0). To increase the speed of 
calculations, this step was carried out with reduced numerical 
accuracy. in this case, fixed-step fourth-order Runge-kutta 
method (50 steps) was used for solving differential equation 
(10), as well as 90 fixed-step trapezoid method was used for 
integration of equation (4).

In the second step, 20 best solutions of the evolutionary 
strategy was subjected to the nelder-Mead simplex optimisation 
method [39] implemented in both MATlAB and OcTAVE as 
a “fminsearch” function. The best solution was chosen as a 
result of this step. To enhance the accuracy in this and the next 
step, the adaptive sampling explicit Runge-kutta (2,3) pair of 
Bogacki and Shampine method was used for solving equation 
(10) together with adaptive gauss-kronrod quadrature for 
solving equation (4).

Finally in the third step, stress dependence of saturation 
magnetostriction λs(σ) was calculated on the basis of 
experimental results. In this step, parameters a, k, c, Ms were 
the same as for the stress-free sample. However, influence of 
stresses was incorporated by consideration of the effective 
magnetizing field He stress dependence, and the anhysteretic 
magnetization , influencing the results of 
modelling by equations (1) and (4) together with (11). It should 
be indicated that calculations in this step were also made 
simultaneously for 4 hysteresis loops measured for different 
magnetizing field amplitudes.

6. results

during modelling the following parameters of the Jiles-
Atherton-Sablik model were determined for the unstressed 
sample: a = 7.402 A/m, c = 0.6308, Ms = 2.704∙105 A/m, 
α = 1.411∙10 -13. These parameters were considered not 
sensitive to compressive stresses. 

Figure 4 presents the value of R2 coefficient of 
determination calculated for results of measurements of 
hysteresis loops and the results of simulation. It can be 
observed that the quality of modelling decreases for higher 
values of compressive stresses. This is caused by the fact that 
for higher value of stresses, stress-induced changes of the 
shape of hysteresis loop are caused also by phenomena not 
connected with stress-induced anisotropy and changes of the 
energy required to break the pinning site, which are not taken 
into account by the values of parameters Kan and k of the model.  
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Fig. 4. Compressive stress σ dependence of quality of modelling 
using the Jiles-Atherton-Sablik model described by R2 determination 
coefficient

Figure 5a presents the results of modelling the 
compressive stress-induced changes of the average anisotropy 
energy density Kan, whereas figure 5b presents changes of 
the parameter k under these stresses. It should be indicated 
that the average anisotropy energy density Kan first increases 
under compressive stresses, and then, near the Villari point, it 
starts to decrease. On the other hand, value of the parameter 
k, describing in the model the average energy required to 
break the pinning site, monotonically increases under the 
compressive stresses. This effect is caused by the fact that 
mechanical stress increases the number of dislocations in the 
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crystalline materials which leads to increase of energy required 
to start domain wall movement (break the pining site).
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Fig. 5. Results of calculation of the compressive stresses σ dependence 
of the Jiles-Atherton-Sablik model parameters: (a) average anisotropy 
energy density Kan, (b) parameter k describing energy required to 
break the pinning site.

Figure 6 presents the results of calculation of changes 
of saturation magnetostriction ls in the material subjected to 
compressive stresses σ. For these calculations, the equation 
(11) was used. It may be observed that negative saturation 
magnetostriction increases under compressive stresses to change 
its sign near the Villari point. For higher values of compressive 
stresses, saturation magnetostriction ls of the Mn0.51zn0.44Fe2.05O4 
ferrite is positive. The phenomenon of sign change of 
magnetostriction was previously observed experimentally 
[20], but was never modelled quantitatively. Moreover, the 
extrapolated value of saturation magnetostriction 0.1 mm/m for 
unstressed material is in accordance with typical values measured 
experimentally for high-permeability Mn-zn ferrites.
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Fig. 6. Results of calculation of the compressive stresses σ dependence 

of saturation magnetostriction ls in the Mn0.51zn0.44Fe2.05O4 ferrite 
calculated on the base of the Jiles-Atherton-Sablik model 

7. conclusions

Presented results confirm that mechanical stresses 
have significant influence on the shape of hysteresis loop of 
isotropic magnetic materials, such as the high-permeability 
Mn0.51zn0.44Fe2.05O4 ferrite. in the Jiles-Atherton-Sablik 
model this influence may be explained by considering the 
stress-induced anisotropy as well as stress dependence of the 
parameter k describing the average energy required to break 
the pinning site in the magnetic material.

Moreover, on the basis of quantitative analysis of stress 
dependence of the magnetic hysteresis loop, the value of 
stress-induced anisotropy for the given value of mechanical 
stresses may be estimated. This estimation creates the novel 
possibility of modelling the stress dependence of saturation 
magnetostriction λs of magnetic materials. Such stress 
dependence was observed during the measurement, however 
it was previously not explained and not modelled qualitatively.
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