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JERZY MICHALCZYK*

ANGULAR OSCILLATIONS OF VIBRATORY MACHINES OF INDEPENDENT DRIVING SYSTEMS 
CAUSED BY A NON-CENTRAL DIRECTION OF THE EXCITING FORCE OPERATIONS 

WAHANIA KĄTOWE DWUNAPĘDOWYCH MASZYN WIBRACYJNYCH WYKORZYSTUJĄCYCH 
ZJAWISKO SAMOSYNCHRONIZACJI, WYWOŁANE NIECENTRALNYM KIERUNKIEM DZIAŁANIA 

SIŁY WYMUSZAJĄCEJ

It was proved in the paper that commonly used dependencies determining the angular oscillations 
of the vibratory machine bodies, caused by a non- central force application, lead to significant errors in 
case of machines with self-synchronising driving systems. Phase shifting of vibrators angles of rotation 
caused by a non-central direction of the excitation force was indicated as the reason of such situation. It 
was shown that the real amplitudes values of the body rocking vibrations are – in typical systems – several 
times smaller than the ones determined by the currently used methods.

Keywords: vibratory machines, self-synchronisation, machine bodies oscillations, eccentric direction 
of exciting force

W pracy zbudowano model matematyczny dwunapędowej maszyny wibracyjnej wykorzystującej 
zjawisko samosynchronizacji, obejmujący przypadek gdy oś symetrii zespołu napędowego nie przechodzi 
przez środek masy maszyny. W modelu uwzględniono wpływ zawieszenia sprężystego korpusu maszyny. 
Określono wpływ niecentralnego działania siły na przebieg synchronizacji wibratorów i sformułowano 
przydatne dla praktyki inżynierskiej zależności określające wahania kątowe korpusu maszyny i trajektorie 
dowolnego punktu korpusu maszyny.

Słowa kluczowe: maszyny wibracyjne, samosynchronizacja, niecentralne przyłożenie siły wymusza-
jącej

1. Problem formulation

Utilised in mechanical processing plants of useful minerals and in other industrial branches, 
vibratory machines such as: vibrating screens, conveyers, vibrating tables or self-feeding shak-
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ing grids, require – for the proper functioning – a machine body translatory motion and a linear 
vibration trajectory.

Thus, the condition for the proper operation of such machines is the requirement that the 
vibrator exciting force has a constant direction of operation and that this direction is passing 
through the system mass centre (which protects the body against rocking motion). 

 Such drive is usually obtained by means of the set of two counter-running inertial vibrators, 
which symmetry line passes through the system mass centre, and the cophasal vibrators work is 
obtained by the self-synchronisation (Blechman, 1994).

The scheme of such machine is shown (in the case of w = 0) in Fig. 1.
where:
 m — unbalanced mass [kg],
 e — eccentric of a rotor unbalance [m],
 Mk — machine body mass [kg],

Fig. 1. Two-vibrator over-resonance vibratory machine calculation model

 M = Mk + 2m — mass of the vibrating part of the machine (body and vibrator) [kg], 
 C — centre of mass of the body with unbalanced masses brought to the vibrator 

axis of rotation,
 S — centre of symmetry of the driving system,
 w — eccentricity of the force direction,
 J — central moment of the body inertia with unbalanced masses brought to the 

vibrator axis of rotation [kgm2],
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 Jo — moment of inertia of the vibrator together with engine, calculated versus 
the axis of rotation [kgm2],

 ω — angular velocity [1/s],
 kx, ky , kξ , kη — coeffi cients of elasticity of the body supporting system – correspondingly 

– along axes: x, y and ξ, η [N/m], 
 Ω—z1, Ω

—
z2 — moments exerted to the rotating masses originated from the drive and 

resistance to motion [Nm],

Since due to constructional problems as well as manufacturing errors an accurate passing 
the line of action of the excitation force through the vibration system centre is not always pos-
sible, the need arises of the estimation of the resulting body rockings transferring themselves e.g. 
into a diversification of the vibration trajectory in various places of the body working surface 
and disturbances in the feedstock transportation. This problem is solved in the references (e.g. 
Banaszewski, 1990), however the derived there computational equations are based on the tacit 
assumption, that the deviation of the perpendicular bisector of the driving system from the mass 
centre does not influence the vibrators synchronisation. More adequate approach was proposed 
in (Banaszewski, 2010), where synchronization conditions for vertically oriented, non central 
system of counter-rotating inertial vibrators with independent drive was analysed ,but with not 
taking into considerations influence of elastic suspension system.

The aim of the hereby paper is to formulate mathematical model for the case of vibratory 
machine drive by a system of two independent inertial vibrators that cophasal work is obtained 
by the self-synchronisation, with the non-central application of the exciting force and taking into 
consideration influence of elastic suspension stiffness.

The model shown in Figure 1 was discussed, with taking into account the limited power of 
vibrators driving systems. The location of the mass centre C in the scheme does not correspond with 
the nominal line of action of the driving system but is shifted versus it by a distance CS = w.

2. Analysis of the influence of non-central positioning of 
vibrators on their cophasal running

The analysis of the vibrators running was performed by the averaging method (Hayasi, 1964). 
This allows to write equations of motion of the machine body with singling out slow-changing 
and fast-changing effects. Thus, assuming the equality of angular velocities – for synchronous 
running – of both vibrators φ·1 = φ· 2 and their ‘slow’ variability (ω ≈ const), we can write the body 
equations of motion in the absolute system ξ, η, in a form:

 
2

1 2
[sin sin ]M k me�� � � � �� � �

..
 (1a)

 
2
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where:
 ξ, η — absolute coordinates determining a location of the body mass centre, ξ ||R,
 α — body angle of rotation, 

 
2 2

cos sinx yk k k� 	 	� �  (2a)

 
2 2

cos siny xk k k� 	 	� �  (2b)

– remaining notations as in Figure 1

When calculating moments Ω—ci from excitation forces P–i, i = 1,2 of vibrators versus the body 
mass centre C, shifted versus the driving system centre of symmetry S by a directed segment C

—
S 

of a length w, the following dependence was used:

 ( )i i ici i i i iCO P CS SO P CS P SO P
 � � � � � � � � �  (3)

Denoting: φ1 – φ2 = Δφ = const and assuming: φ2 = ωt, ω = const, equations (1a, 1b, 1c) can 
be presented, after rearrangements, in a form:
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and, as can be easily verified: θ = δ.

Particular integrals of these equations, describing the steady state, are of a form:
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Dynamic equations, analysed so far, described body vibrations at the assumption that the 
vibrators angular motion in the steady state can be considered to be uniform. Such assumption 
is equivalent to omitting the body vibrations influence on the vibrators running. Presently, we 
will write vibrators equations of motion taking into account these couplings, it means in a not 
inertial system related to the machine body.

Then, applying moments from forces of transportation to vibrators, their equations of mo-
tion obtain the following forms:

 0 1 1 1 1 1 1cos sinzJ me me� � � � �� 
 � �
.. .. ..

 (6a)

 0 2 2 2 2 2 2
cos sin

z
J me me� � � � �� 
 � �

.. .. ..  (6b)

where:
 Ωz1,2 — external moments (difference between the driving moment and anti-torque),
 J0 — as in Figure 1.

Let us denote as vibratory moments Ωw i, i –1,2, the following expressions:

 1 1 1 1 1( cos sin )w me � � � �
 � � �
.. ..

 (7a)

 2 2 2 2 2
( cos sin )

w
me � � � �
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.. ..
 (7b)

On the basis of the previously determined solutions of the machine body motion (not taking 
into account influence of vibratory moments on the vibrators running) we will determine compo-
nents of acceleration of both vibrators axes. Axis acceleration a–i of an individual vibrator equals:
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where: i–, j–, n– — versors of axis ξ,η,ζ of the central reference system, respectively.

Omitting – in the above given formula – expressions containing α· 2 and the component with 
C
—

S, as being at the lower order than the remaining ones, it is possible to calculate components 
of the acceleration vectors of axes of both vibrators: 

 ξ··1 ≈ ξ·· – α·· · r (9a)

 η··1 ≈ η·· – α·· · R (9b)

 ξ··2 ≈ ξ·· – α·· · r (9c)

 η··2 ≈ η·· – α·· · R (9d)
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After substituting the second derivatives of dependence (5) into (9), it is possible to calculate 
the vibratory moments values acc. to (7) and obtain :
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By averaging the vibratory moments value for the period: T = 2π /ω the following is obtained:
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After calculating the integrals, utilising the dependence (4), which determines values of 
angles λ,κ,δ,θ and after performing certain transformations, the following was obtained:
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Acting in a similar fashion in reference to the vibratory moment of the second vibrator the 
analogous equation was obtained:
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The equality Ω
~

w1 = Ω
~

w2 is the condition that both vibrators will be running with the same 
rotational velocity.

This equality, after reduction and trigonometric transformations leads to the equation:
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The above equation allows to determine the difference, Δφ, of angles of rotation of both vibra-
tors, and then to determine – on the basis of (5c) – angular oscillations of the machine body.

A simpler, but sufficiently accurate, version of the dependence of the body angular oscil-
lations amplitude can be recommended for the engineering practice. Taking advantage of the 
fact that usually:

 wR << D2 (14)

and omitting – for over-resonance machines – elements: kξ, kη and ky respectively versus Mω2 
and Jω2, we obtain equation (13) in a form:

 2
2

D

wR
�
�  (15)

As the author’s investigations indicate (Michalczyk, 2010), (Michalczyk, Czubak, 2010), the 
similar disphasing effect occurs also in systems with the central direction of the exciting force, 
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but at the asymmetry of vibrators resistance to motion or at the asymmetric influence of forces 
resulting from collisions with feedstock materials.

Presently the amplitude of the body angular oscillations will be determined, on the basis 
of (5c). In order to do that the approximate values, for w << R,D, of trigonometric functions of 
angles Δφ, λ, θ occurring in (5c), were determined on the basis of (4):
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After substituting (16) into (5c) and carrying out several trigonometric transformations 
and simplifications (discussed above), it is possible to obtain the following dependence for the 
amplitude Aα of the body angular oscillations:
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If, in addition, w << r, the simpler version of this dependence can be applied:
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It should be noticed, that – as can be easily proved on the basis of the analysis of (5c) – for 
the case of cophasal running of vibrators Δφ = 0, and the classic solution of the body rocking 
motion is described by the following expression:
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Thus, finally:

 ( 0)

r
A A

D
� � �
 �� �  (19)

The dependences (13) and (5) with constants values (4) enable one to establish shape of 
trajectory for any point (xio, yio) of machine body:

 ( ) ( ) cos ( ) sin ( )i iox t t t y t� 	 � 	 �� � � � � �  (20a)

 ( ) ( ) sin ( ) cos ( )i ioy t t t x t� 	 � 	 �� � � � � �  (20b)
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3. Conclusions 

1. It was proved in the paper, that the analysis of the machine body rocking vibrations caused 
by the non-central application of the exciting force, carried out at assuming the vibrators 
cophasal running, leads to a significant over-estimation of real amplitudes.

2. In systems of independent drives the vibrators are disphased by an angle 
2

2
wR

D
�
 � , 

which leads to the resulting body rocking amplitude given by the equation (17).

3. Such amplitude is smaller, in approximation at the ratio r

D
 versus the amplitude estimated 

without taking into consideration this effect.
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