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DISTURBANCES IN SELF-SYNCHRONISATION OF VIBRATORS IN VIBRATORY MACHINES 

ZABURZENIA SAMOSYNCHRONIZACJI WIBRATORÓW W MASZYNACH WIBRACYJNYCH

An influence of elastic support elements arrangements and ratios of elasticity and damping constants 
in vertical and horizontal direction on self-synchronisation accuracy was investigated in the paper. The 
obtained results of the other factors influence on disturbances in self-synchronisation of vibrators in vi-
bratory machines are also presented. Especially, influence of a diversification of driving and anti-torque 
moments, not central direction of the resulting force of the vibrators set , the local flexibility of mounting 
of vibrators to the machine body and influence of collisions with a feed were described.
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W pracy zbadano wpływ rozmieszczenia elementów sprężystych zawieszenia i proporcji pomiędzy 
stałymi sprężystości i tłumienia tych elementów na kierunkach pionowym i poziomym na dokładność  
samosynchronizacji wibratorów. Przytoczono też rezultaty badań autorów nad wpływem innych przyczyn 
na zaburzenia samosynchronizacji wibratorów maszyn wibracyjnych. W szczególności określono wpływ 
na zjawisko samosynchronizacji takich zjawisk jak: zróżnicowanie momentów napędowych i oporowych, 
niecentralne ukierunkowanie wypadkowej siły wymuszającej zespołu wibratorów, lokalna podatność 
zamocowania wibratorów do korpusu maszyny i oddziaływanie zderzeń z nadawą.

Słowa kluczowe: maszyny wibracyjne, samosynchronizacja, niewspółfazowość ruchu wibratorów

1. Self-synchronisation effect

Achieving a synchronous, cophasal vibrators running is the main problem of vibratory 
machines applied in the mining, metal-forming, foundry and building industry. The effect of 
self-synchronisation of vibrators, being a spontaneous equalisation of their rotational speed and 
phases has been known and applied in machines of two or more drives since half of the century 
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(Blechman, 1971). Its essence is based on a creation of additional moments, called vibratory mo-
ments, in elastically supported machines excited for vibrations by inertial vibrators. These moments 
adding themselves to driving moments of motors of soft characteristics cause mutual readjusting 
of rotational speeds and phase angles of driving units. An example of such machine is shown in 
Fig. 1, presenting schematically the vibratory conveyor supported on a set of parallel leaf springs.

Fig. 1. Calculation model of over-resonance vibratory conveyor;
 k, c, kz, cz — elastic and damping constants of the main supporting system and the supporting 

system of the vibrator in their motion direction x and z – respectively
 m, e — mass and eccentric of the vibrator,
 Jo — moment of inertia of a rotor of the electrovibrator calculated in relation to its axis of rotation

The desirable character of counter running vibrators means obtaining equal angles: φ1 = φ2. 
This allows to achieve the resultant excitation force in the perpendicular direction to the conveyor 
springs and limits a dynamic influence of the machine on its foundation. 

 Information whether a system has a self-synchronisation tendency and what type of phase 
dependence exists in between angles φ1,φ2,φ3...φn, can be obtained, relatively simply, by means 
of the I.I.Blechman’s integral criterion (Blechman, 1994), in which the phase angle system is 
considered stable when it minimises the function:
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where E,V and Ew, Vw are the kinetic and potential energy of the linearised basic system and con-
strains between vibrators – respectively. These values are calculated for the steady motion state. 
The application of the above criterion to the system shown in Fig. 1 leads to the conclusion that 
achieving the needed synchronisation: φ1 – φ2 = 0 for the over-resonance tuning of the conveyor 
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requires the degree of freedom z and an over-resonance mass mw tuning on elasticity kz. More 
precisely it means, that the positive sign of the expression under the module in dependence (2) 
is required, (Blechman, 1971).

However, in actual systems several factors – mainly related to not full symmetry of vibratory 
drives or their placement – occur, which cause that their self-synchronisation is not accurate or 
even impossible to be obtained. 

Practical experiments (Lawendel, 1981) indicate ranges of permissible angular differences 
of vibrators running, thus e.g.:

– for conveyors the disphasing angle Δφ should not exceed 12-16°
– for feeders this angle should be within 5-12°,
– for vibrating screens it should not exceed 3-5°.

2. Influence of a diversification of driving and anti-torque 
moments

Criterion (1) does not answer the question, how accurate will be a self-synchronisation 
of vibrators in case of differences in e.g. vibrators resistance to motion or inaccuracy of their 
preparation or assembling.

A qualitative answer for the first question can be obtained by means of the vibratory moments 
method (Lawendel, 1981). Thus, e.g. for the system shown in Fig. 1 – to prevent inaccuracy of 
cophasing exceeding 12 to 16°, which is required for this type of machines, it is enough to fulfil 
the condition: 
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where Mzn means the rated value of the induction motor driving moment.

The problem of the influence of diversification of driving-anti-torque moments on the 
self-synchronisation occurs also in systems supported in a way allowing the machine plane 
motion – Fig. 2

By means of the averaging method (Hayasi, 1964) it was shown, in (Michalczyk, 2010), that 
in case of diversification of driving and anti-torque moments in the system presented in Fig. 2, 
the phase angle Δφ(t), can be determined on the bases of the differential equation:

 1 2( ) sin ( )( )zr el o ust ust el oJ a a K a a             φ.. φ. φ  (3)

where:
ael = 2pMzn /(ωs – ωu), 

 p — motor over-load capacity,
 Mzn — motor rated moment,
 ωs — synchronous angular velocity,
 ωu — stall angular velocity,
 ωust1, ωust2 — natural, generally slightly different, angular velocity of drives 1 and 
 2 — at the motionless machine body.
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 ao ≈ μmeωust d
where: 
 μ — substitutive coefficient of friction for rolling bearings, 
 d — bearing journal diameter,
Remaining notations the same as before. 

A physical interpretation of equation (3) as a pendulum equation, leads to the conclusion 
that obtaining of a synchronous motion is not possible when the following condition is met:

 │ωust1 – ωust2│(ael + ao) > K (4)

where:
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When the condition (4) is not met, the synchronisation depends on initial conditions and 
can be investigated by analysing equation (3).

Fig. 2. Two-vibrator over-resonance vibratory machine in plane motion
 m — unbalanced mass [kg],
 e — eccentric of a rotor unbalance [m],
 Mk — machine body mass [kg],
 M = Mk + 2m — mass of the vibrating part of the machine (body and vibrator) [kg], 
 J — central moment of the body inertia with unbalanced masses brought to the vibrator axis 

of rotation [kgm2],
 Jzr — moment of inertia of the vibrator together with engine, calculated versus the axis 

of rotation [kgm2],
 ω — angular velocity [1/s],
 kx, ky, kξ, kη — coeffi cients of elasticity of the body supporting system, along axes: x, y and ξ, η [N/m] 

– respectively, 
 Ω—z1, Ω

—
z2 — moments exerted to the rotating masses originated from the drive and resistance 

to motion [Nm],
 Ψ — see item 4
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Especially for K > 0:
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3. Influence of not central direction of the resulting force 
of the vibrators set

The influence of not central position of the axis of symmetry of the two-vibrator driving 
system on the accuracy of vibrators self-synchronisation and undesired angular oscillations of 
the machine body (Fig. 3) was considered in paper (Michalczyk, 2012a). 

Fig. 3. Two-vibrator over-resonance vibratory machine calculation model.
 C — mass centre of the body with unbalanced masses brought to the vibrator axis of rotation,
 S — centre of symmetry of the driving system,
 w — eccentricity of the force direction, 
 M = Mk + 2m — mass of the vibrating part of the machine (body and vibrator) [kg], 
 Mk — machine body mass [kg],
 m — unbalanced mass of the vibrator,
 e — eccentric of the rotor unbalance [m],
 J — central moment of the body inertia with unbalanced masses brought to the vibrator axis 

of rotation [kgm2],
 Jo — moment of inertia of the vibrator, calculated versus the axis of rotation [kgm2],
 Jw — moment of inertia of the engine rotor, reduced versus the vibrator axis of rotation [kgm2],

Jzr = Jo +Jw [kgm2],
 ω — angular velocity of vibrators [1/s],
 kx, ky , kξ ,kη — coeffi cients of elasticity of the body supporting system k – along axes: x, y and ξ, η [N/m] 

– respectively, 
 Ω—z1, Ω

—
z2 — moments exerted to the rotating masses originated from the drive and resistance 

to motion [Nm].
Remaining notations the same as before
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It was found, that the deviation of the nominal direction of the excitation force from the 
system mass centre by w causes an occurrence of the disphasing angle of vibrators, Δφ, deter-
mined by the equation:
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Non-zero value of the disphasing angle leads – in the system shown in Fig. 3 – to angular 
oscillations of the body in the machine symmetry plane. The amplitude of these oscillations is 
as follows:
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The way of determining the trajectory of an arbitrary body point performing motion com-
bined of the desired translatory motion and of the harmful angular body oscillations was also 
indicated in the quoted paper. 

4. Influence of the local flexibility of mounting vibrators 
to the machine body.

The scheme of the two-vibrator vibratory machine shown in Fig. 2, can be also used for 
analysing systems in which vibrators are not sufficiently stiffly mounted to the machine body. 
Such cases can be found in industrial structures (Banaszewski, 1990), where they are often reasons 
of an improper synchronisation of vibrators. Ψ – in Fig. 2 – marks the direction, along which the 
stiffness of the drive mounting to the machine body is not sufficient. 

Such cases were theoretically analysed (Michalczyk, 2012b) and it was found that:
1° A self-synchronisation character is not changing in case of an individual flexibility of 

vibrators mounting to the machine body. 
2° In case when the mutually stiff system of two vibrators is not sufficiently mounted to 

the machine body in direction ψ (Fig. 2), the disphasing angle, Δφ, of vibrators can be 
determined from the equation: 
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 where kψ denotes the coefficient of elasticity of mounting this set in the direction ψ. 
3° When the vibrators set – apart from the elasticity of mounting in the direction ψ – has 

the identical elasticity in the direction ψ + π/2, equation (9) obtains the identical form as 
for the stiff mounting, which means that the set is not sensitive to this type of elasticity.
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4° When the vibrators set is mounted to the machine body with rotational flexibility 
ko [Nm/rad], in such a way that it can perform angular oscillations versus its centre of 
symmetry, the equation for the vibrators disphasing angle, Δφ, obtains the form:
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 Since the sign of the coefficient in square bracket in equation (10) decides on the synchro-
nisation character, as it is seen from this dependence form, too small rotational stiffness of the 
vibrators set placement ko can lead to the change of the stable value of the vibrators phase angle 
Δφ from 0 (desired value) into ±π. This would cause the vibrations decay in the working direc-
tion and undesirable movement in the transverse direction. 

Thus, the condition for the proper synchronisation has in this case the form:
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5. Influence of collisions with a feed

It was shown in paper (Michalczyk & Czubak, 2010), that the collision of the vibratory 
machine with the transported material (feed), can also lead to dissynchronising of vibrators. For 
the system corresponding with the one shown in Fig. 2, the disphasing angle Δφ, can be deter-
mined from the equation:
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where: g — acceleration of gravity, φo = ωt3 + π, while t3 — time of the feed collision with the 
machine body, calculated in relation to the initial moment t = 0 assumed in the instant of obtaining 
the maximum speed by the machine body (Michalczyk, 1995), mn — mass of a material feed. 

The form of equation (12) indicates the possibility of avoiding the vibrators dissynchronisa-
tion and angular oscillations of the machine body. Thus, it is enough to ensure that sinφo = 0 in the 
moment when the feed is colliding with the machine body. For the single-stroke motion it occurs 

when 3t



  or 3
2t 


 , it means when the collision occurs in the moment of the machine body 

passing through the balance point. On the bases of the analysis of the feed motion (Michalczyk, 
1995) it can be stated, that this case occurs for the coefficients of throw: kp = 1.14 and kp = 2.97. 
Since the value kp = 1.14 is the most often insufficient for the efficient technological process, 
assuming kp = 2.97 can be recommended for avoiding the machine body oscillations causing 
uneven amplitudes distribution along the body.

However, the simulation investigations (Michalczyk & Czubak 2010) indicate, that for the 
loose material feed the minimum of the influence of the collisions with the feed material on 
disphasing of vibrators occurs for slightly lower value kp = 2.7. The maximum of this influence 
occurs for kp = 1.75.
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6. Influence of not central position of the elasticity centre 
of the supporting system

An influence on drives self-synchronisations the way of arrangement of elements of elastic 
machine supports with respect to the machine body mass centre, as well as an influence of the 
elasticity ratio on vertical and horizontal directions of these elements, constitute problems not 
investigated until now. Usually, due to the necessity of ensuring equal values of static deflections 
of elastic elements under the machine load and due to benefits resulting from uncoupling of equa-
tions of motion, the symmetrical arrangement of supporting elements distributed in the horizontal 
plane versus the central vertical axis, is applied. However, in consideration of constructional 
reasons, this plane not always crosses the machine body mass centre – Fig. 4.

Fig. 4. Dynamic scheme of the vibratory machine.

 Mk — machine body mass, without rotating elements of vibrators,
 Ck — mass centre of Mk,
 JCk — moment of inertia of the machine body versus the central axis,
 me — static moment of vibrator unbalance,
 Jm — central inertial moment of rotating parts of a vibrator,
 Ω—z1, Ω

—
z2 — sum of driving and resistance moments,

 k, b — elasticity and damping coeffi cients of the machine body suspension

Due to the necessity of taking into account the damping influence in the suspension system, 
the digital simulation was applied.

The mathematical model applied for the system description, after utilising the fact that the 
vibration amplitude is significantly smaller than the linear dimensions of the machine, is of the 
form:

 1 2 ( ) ( )k x x x xM x P P k x h b x h          (13)
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The equations, shown above, allow to determine time-histories of coordinates: x,y,α,φ1,φ2  
and components of forces: Px1, Py1, Px2, Py2 in vibrators bearings and moments: Ωz1, Ωz2.
where:

Jzr = Jm + Jw
 Jw — moment of inertia of the motor rotor reduced to a vibrator shaft, 
 Mzn — rated moment of the induction driving motor, 
 p — over-load capacity of the motor,
 ωs — synchronous angular velocity,
 ωu — stall angular velocity,
 ρ — constant of vibrator bearings resistance,
 kx,y, bx,y — elasticity and viscous damping constants of elastic elements along corresponding 

axes.

Damping constants were assumed as:

 1,22 ( 2 )kb M m k 

where ξ1,2 are coefficients of a relative damping for suspensions on springs (1) or on rubbers (2). 
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Simulations were performed for the following parameters values:

Mk = 2000 [kg],
JCk = 2667 [kgm2],
me = 25 [kgm], 
Jzr = 0.5 [kgm2],
l = 1 [m],
β = 30 [°],
γ = 14 [°],
D = 0.8 [m],
h = variable,
kx,y = variable,
ξ1 = 0.01,
ξ2 = 0.07,
Mzn = 40 [Nm], 
p = 2.5,
ωs = 157.1 [1/s],
ωu = 126[1/s].

When the system obtained the steady state, the disphasing angle Δφ and amplitude of 
angular oscillations of the machine body Aα, were estimated. The results obtained for various 
combinations of parameters are listed in Table 1, while the time-history of steadying of Δφ and 
Aα for various parameters of the machine body suspension system are shown in Figures: 5, 6, 7 
and 8.

TABLE 1

Number kx [N/m] ky [N/m] bx [Ns/m] by [Ns/m] h [m] α [rad] Δφ [rad]
ξ = 0.07

1 7.46E+05 2.07E+06 782.2 1303.7 0.0 3.5E-05 0.047
2 7.46E+05 2.07E+06 782.2 1303.7 0.5 3.71E-05 0.027
3 2.07E+06 2.07E+06 1303.7 1303.7 0.0 0.00 0.000
4 2.07E+06 2.07E+06 1303.7 1303.7 0.5 1.52E-05 -0.052

ξ = 0.01
5 7.46E+05 2.07E+06 782.2 1303.7 0.0 3.55E-05 0.048
6 7.46E+05 2.07E+06 782.2 1303.7 0.5 3.58E-05 0.031
7 2.07E+06 2.07E+06 1303.7 1303.7 0.0 0.0 0.0
8 2.07E+06 2.07E+06 1303.7 1303.7 0.5 0.51E-05 0.046
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Fig. 5. Time-history of disphasing angle of vibrators Δφ (a) and angular coordinate α 
(b) for suspension parameters presented in Table 1 – 1

Fig. 6. Time-history of disphasing angle of vibrators Δφ (a) and angular coordinate α 
(b) for suspension parameters presented in Table 1 – 2

Fig. 7. Time-history of disphasing angle of vibrators Δφ (a) and angular coordinate α 
(b) for suspension parameters presented in Table 1 – 3

a)

a)

a)

b)

b)

b)
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7. Conclusions

Classic and new results concerning disturbances of self-synchronisations, achieved in the last 
years, among others by the authors, are presented in the paper. Especially the way of determining 
disphasing angles of vibrators for the cases of: asymmetry of driving and resistance moments, 
geometrical asymmetry of driving systems, flexible mounting of vibrators to the machine body 
and influence of collisions between the feed material and the machine body – are given. 

In the original part of the work the influence of the elastic machine support arrangement 
and the elasticity ratio in vertical and horizontal directions of these elements on the drives self-
synchronisation were investigated. 

It was found, that in order to obtain the accurate self-synchronisation (Δφ = 0) of vibra-
tors the elastic elements should be symmetrically arranged versus the machine mass centre 
both in the vertical and horizontal direction ,maintaining the same values of elasticity and 
damping constants in both directions, e.g. this way as in (Cieplok 2009).

Frequent, in practice, shifting of the supporting plane down or up – versus the mass centre – in 
a similar way as a diversification of elasticity and damping constants in a vertical and horizontal 
direction leads to a certain unconformity of phases of both vibrators and – in consequence – to 
angular oscillations of the machine body, which are disturbing the amplitude distribution along 
the working surface. 

The phase incompatibility angle recorded in simulations, for the typical deviation values 
from the symmetric state, was of the order of Δφ ≈ 0.027÷0.052 [rad], which corresponds 
to values from 1.55 to 2.98°.

Angular oscillations of the machine body – caused by disphasing – were in simulation 
investigations of the order of (1.5÷3.7) ·10–5 [rad], which can be considered permissible for 
the typical machines. 

It should be noticed that, in some cases, machine body oscillations related to disphasing 
of vibrators can be significantly compensated by means of the proper dynamic scheme of the 
machine, e.g. by increasing its degree of freedom number (Czubak, 2013).

Fig. 8. Time-history of disphasing angle of vibrators Δφ (a) and angular coordinate α 
(b) for suspension parameters presented in Table 1 – 4

a) b)
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