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Abstract: The merging of fuzzy model is widely used for reduction of rule number in fuzzy model. The
supernumerosity of rules is mainly caused by grid partition of input domain. In the paper different cause
for model merging is described. It is the need for creation of fuzzy model for large data set. In our solution
the models are build basing data subset and then the submodels are merged into one. This approach enables
quicker elaboration of submodels with relatively good knowledge generalisation ability without waiting for
the whole data set to be processed. With passing time, the subsequent submodels are created and merged to
create the better model.
Keywords: neuro-fuzzy, fuzzy set, rule merging, similarity, annbfis

1. Introduction

Merging of fuzzy models may be encountered in three main situations. The first case
are the large data sets. Extraction of fuzzy models for large data sets may be executed
(for memory reasons) partially for subsets of data and then the elaborated models need
merging to obtain one model. The second one is the incremental input of data. Basing
of recently acquired data a model is created that is later combined with yet existing
one. The third reason is the need for simplification of model (mainly by reducing the
number of rules). The objective of the merge-and-learn stategy is not the optimisation
of precision, but the production of small rule base with reasonable precision [21].

Most papers on rules merging focus on the problem of supernumeruous fuzzy rules
in the model. This is mainly caused by applying grid partition of the input domain while
extracting the rules from the presented data.

In [18] the problem of rule base simplification and reduction is discussed. Two
problems are: simplification of rules (the reductions of attributes in rule premises) and
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reduction of rule base (deleting supernumeruous rules). This effect is done with simi-
larity measure (Eq. 10) with two threshold parameters. In [21] the grid partition of the
input domain is used to extract rules from learning examples. Then greedy algorithm
is applied to merge the premises of the rules (satisfying the precision bounds). In [5]
the Gaussian functions are approximated with triangle or trapezoidal functions and then
merged. The method is developed for reducing the number of fuzzy rules.

In our approach the reduction of the supernumeruous rules the minor aim. Applying
of scatter partition (clustering) [7, 13] or hierarchical partition [17, 19, 20] of the input
domain can prevent from creation of unnecessary rules, thus their reduction is no more
needed. The major aim of our approach is handling of large data sets. Such data sets
cannot be handled in the hitherto existing approaches. The idea of incremental creation
of fuzzy rule model is arisen. The models are created basing on the parts of the data set
and then the elaborated models are merged into one. This approach is also valid when
not all data are available (streaming data from industry measurements) and the model
has to be created basing only on a part of data and when the next part of data is available
has to be refreshed.

2. Measures of rule similarity

The paper [18] describes the procedure of rules merging. This approach is based on
«similarity» notion. It is defined as the degree to which the fuzzy sets are equal. It is
not, as commonly colloquially understood, having characteristics in common, similar in
shape, but in size or position.

For crisp sets the equality is obvious, two sets A and B are equal

A=B & Vous(z) = pup(z). (1)
In [18] the criteria for rule similarity measure S(A, B) are proposed. These are:

1. Nonoverlapping fuzzy sets should be considered totally non equal

S(A,B) =0 pa(z)pp(z) =0, VeeX (2)

2. Overlapping fuzzy sets should have a similarity value

S(A,B) >0 3reX,  pa(@)pp(r) #0 3)

3. Only equal fuzzy sets should have a similarity value

S(A,B) =1< pa(r) = pup(x), Vo e X 4
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4. Similarity between two fuzzy sets should not be influenced by scaling or shifting
the domain on which they are defined

S(A',B') = S(A, B) (5)
par(l+ kx) = pa(z) (6)
(L + ki) = () M

where k,[ € R, k> 0.
Similarity measures can be divided into [18]:

1. Geometric measures handle the similarity as proximity, not as a measure of equal-
ity.

2. Set-theoretical measures are based on union and intersections of sets, not influ-
enced by scaling and ordering of the domain. The similarity of the sets is defined
as an inverse of their distance in metric space. The interpretation of similarity as
approximate equality can better be represented by a set-theoretic approach.

3. Pattern recognition approach [4] each fuzzy set is represented by a limited number
of features, so the distance computation is simplified.

The geometric similarity measures are best suited for measuring (dis)similarity
among distinct fuzzy sets, while the set-theoretic measures are the most suitable for
capturing similarity among overlapping fuzzy sets [23]. The tuples of data can be in-
terpreted as vectors in space. For high dimensional spaces the metrics used in 3D is no
more useful. Other metrics should be used to better fit the features of high dimensional
spaces. In spaces with more than 15 dimensions the Euclidean metrics has no meaning
[6]. Even in spaces with as few as 5 dimensions some better metrics than Euclidean one
should be used [6, 2]. The dimensional (Minkowski) metrics have been proposed for
handling high dimensional data sets [1, 6]. Generalisation of the Hausdorff distance to
fuzzy sets, Minkowski class of distance functions [10]

n

1
dr(w,y) = [Z i y#] , where > 1, 8)

=1

for various values of r we get various measures:
r=1  city-block model
r =2  Euclidean metric
r=00 doo(,y)=max; |z; — yil
Kacprzyk [11] proposed (dz)? measure.



110

A set-theoretical measure (common in literature) “is consistency index which is the
maximum membership degree of the intersection of two fuzzy sets” [18]

Sc(A, B) = sup panp = max [ua(z) A pp(w)] ©)
J?EX CCEX
where A is minimum operator. The measure does not fulfil the 3 criterion, because it
takes into consideration only one value of the x variable [18].
In paper [18] the set-theoretic criterion from [8] is used:

|AN B| |AN B
S(A,B) = = , 10
A B) = A3 = A+ B~ [4An B (10
where | - | denotes the cardinality of the set, and N and U operators denote intersection
and union respectively. For discrete universe X = {z; : j =1,2,...,m} we get
m
L Alzi) A X
S(A, B) = Z_]_l [na(z;) A ps(x;)] (11

> e [nalwg) vV s ()]

where A stands for minimum and V stands for maximum. Measure of set similarity
introduced in [23]

f(ANnB)
f(ANB) + af(A\B) + 8f(B\A)

S(A,B) = € [0,1], 12)
where o, 3 > 0. Researchers propose various values of parameters, as « = 3 = 1,
a=p0p=1/2,a =1A [ = 0. Typically the f function is taken to be the cardinality
function [23].

Pattern recognition based approach is proposed by Bonissone [4], who extract for
each set four-dimensional vector. The dimensions are:

1. power (cardinality of the fuzzy set)

+oo
|A] :/ pa(z)de, (13)
2. entropy
“+oo
B = [ S (uala) do. (14)
where

Sy) = —ylny — (1 —y)In(1 —y), (15)
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3. first moment (centre of gravity of the membership function)

+oo
zpa(x)de
F(A) = Liooo pa(x) 16)
f_oo pa(z)de
4. skewness of the membership function
+oo
KA) = [ (o= Pt a7

The Euclidean weighted distance between two concepts is used to determine the simi-
larity of the sets.

Wenstgp [22] assigns two dimensional feature vector to each set: location (centre
of gravity) and imprecision (fuzzy scalar cardinality) of the membership function. The
distance is measured with Euclidean metrics. Similar geometrical approach is proposed
by Eshragh and Mamdami [9] and by Kacprzyk [11].

Some further similarity measures are also proposed. Bhattacharya [3] distance is

defined as
+oo
R(A,B) = \/1 —/ \/ Ha(z) -y (z)d, (18)

where 1% () is normalised membership function:

(@) = “ﬁ;‘f}- (19)

Correlation Index proposed in [16] is defined as

_ 1 _ 4 2
CORR(A, B) = 1 ( o XB> (d2)2, (20)

where X 4 is defined as

+o0
X4 :/ (2ua(z) — 1) dz (21)

—00
In [10] the fuzzy measure of similarity of fuzzy sets is presented.
3. Fuzzy models

The neuro-fuzzy system used in this paper is ANNBFIS system proposed in [7].
For the brevity of the paper the ANNBFIS system will not be described in details. For
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further information see [7, 14]. The ANNBFIS system is system with parametrised
consequences and logical interpretation of fuzzy rules. The rule base is composed of
fuzzy rules (fuzzy implications)

R;:xis A, = y; is B; (Bz) , (22)
where x = [x1,Z9,..., T N]T and y; are linguistic variables, N — number of attributes.
A and B are fuzzy linguistic terms and p is the consequence parameter vector. The

variable A represents the region in input domain. The linguistic variable A;j (A, for jth
attribute of 4th rule) is described with the Gaussian membership function:

2
Ti — Cin
pay (2j) = exp <—(j22”)> ) (23)
Co
where c;; is the core location for jth attribute of sth rule and s;; is this attribute Gaussian
bell deviation.
The firing strength F; of the ith rule is defined as T-norm (here product T-norm is

used) of membership function values of all attributes.

F=T(1, iz, i)- (24)

The term B in Eq. 22 is represented by an isosceles triangle with the base width
w, the altitude equal to one. The localisation of the core of the triangle fuzzy set is
determined by linear combination of input attribute values:

T
yl:pT [17§T] :[pi07pi1a-'-7piN]'[175517"-733N]T- (25)

L)
The fuzzy output of the system can be written as

I

ne(y,x) = PV (ua, (%), 1p; (4i:%)) (26)
=1

where € denotes the aggregation, ¥ — the fuzzy implication and I — the number of
rules.
The crisp output of the system is calculated using the MICOG method:

g — Ty (Fil),wi) i) o

S g (Fi(x), w;)

where y;(x) stands for the location of the core of the consequent fuzzy set, F; — the firing
strength of the ith rule, w; — the width of the base of the isosceles triangle consequence




113

function of the ith rule. The function g depends on the fuzzy implication, in the system
the Reichenbach one is used, so for the ith rule function g is [7]

9 (x) = 5'F (). (28)

The scatter partition of input domain (clustering) is used for extraction of fuzzy rules
basing on presented train examples. The clustering procedure elaborates the premises
of the rules. The consequences are then determined in tuning process. The tuning of
the rules is done with two methods: the premises of the rules are tuned by gradient
method and consequences (linear coefficients) are calculated with LMSE iterative algo-
rithm [12].

4. Fuzzy model merging

Each rule is characterised by parameters (c,s, p,w), where c; and s; are the the
parametres of the fuzzy set for ¢-th attribute (cf. Eq.i23); p is a vector of linear conse-
quences in the rule’s consequence (cf. Eq. 25) and finally w is the length of the support
of the fuzzy set in the consequence of the rule. For merging only the parameters of the
rule’s premise are used. These parameters describe the Gaussian membership function
(cf. Eq. 23). For two Gaussian functions describing the same parameter in two rules the
set theoretic criterion (Eq. 10) proposed in [8] are applied. The measure fulfils all four
criteria for rule similarity mentioned in Sec. 2.

4.1. Similarity of rules

For two Gaussian sets A and B the value of |A N B| has to be calculated. Each set
is defined with equation

22
g(c,s;x) = exp (—(332526)> , (29)

SO
|ANB| = / min [g(ca, Sa; ), (b, Sp; )] da. (30)

To avoid numerical integration the cumulative distribution function ¢ of standard
normal distribution can be used. Then the integral of function g (Eq. 29) may be ex-
pressed as

Glz) = / g(c, 5:x)dz = sV/3m @ (“/' - C) | 31)

—00

Four cases should be discussed:
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1. co = cp A\ Sq = Sp,
2. cqa = Cp N\ Sq F Sp,
3. cq # Cp A\ Sq = Sp,
4. cq # Ccp N\ Sq F Sp.
The first case is trivial, the similarity .S of the fuzzy sets A and B is maximal:

S(A,B) = 1. (32)

The second case, ¢, = ¢ A Sq # Sps

|AN B| = G(c,min(sq, $p); 00) = min(sq, sp) V271 (33)
S(A,B) = mln(sa,sb)\'/ 27 ’ (34)
SV 2T + spV2m — min(sg, Sp)V 2T
what leads to _
S(A,B) = w (35)

max(8g, Sp)

— D

¢ min X 172 c max

Fig. 1. Intersection of Gaussian functions with unequal core locations (¢, # cp) and the same

fuzzyfication (sq = sp). The gray area denotes |A N B|

The third case (cf. Fig. 1), ¢4 # ¢ A S = Sp = S, is more complicated. Let’a
denote cpax = max(cq, ¢p) and ¢pin = min(cq, ¢p). Then

‘A N B‘ - G<Cmax; 8;1'1/2) + 1 - G<Cmin7 3;[131/2), (36)



where 7/, is solution to the equation g(cq, 8;2) = g(cp, s; ) and is equal
z1/2 = (Ca + ) /2.

The area |A N B| is symmetric and can be expressed as

€ — Cmax
|A N B| = 2G(Cma)(7 S;.Tl/Q) =2V27d (1/2#) .

Taking into consideration Eq. 37 we get

|AN B| = 2V2rd (%“2&) .
S

Finally the similarity is expressed as

e

S(A,B) =

s — @ (Cmin_cmax)

2s
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(37

(38)

(39)

(40)

Fig. 2. Intersection of Gaussian functions with unequal core locations (¢, # cp) and fuzzyfication

(sa # sb)- The gray area denotes |A N B|

The fourth case, ¢, # ¢, A Sq # Sp, is the most complicated one. The value of
|A N B can be calculated as (cf. Fig. 2) sum of integrals in intervals [—o0, 2], [z2, x1]
and [z1,00]. The values z1 and x9 are the intersection arguments of both Gaussian

function. There are two solutions to the equation

9(Ca; a3 x) = g(Cb, $p; )

(41)
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oy = SpCa + SaCh 42)
Sp + Sa
and
T = SbCa — SaCh (43)
Sp — Sa

The x; value is the weighted mean of ¢, and ¢, so min(c,, ¢p) < 1 < max(cq, ¢p).

Let’s denote ¢; = min(cy, ), ¢ = max(cq,cp) and s, = s;, where i =
argmin(cq, ¢p), s, = S;, where j = argmax(c,,cp). It means that ¢; i s; apply
to the same function. Of course it is not always valid that s;, = max(sg,sp) and

s; = min(s,, sp). Thus two subcases should be discussed:

1. If s; < sp, then

1 T2
|[ANB| = / g(ch,sh;x)da:—/ g(cp, sp;x)dx +

—0o0 —0o0

9 o0
+ / Q(Cz,Sl;I)dJCJF/ g(a, si;z)dr +

—0o0 —0o0

- / " gl s 2)de = (44)

— 00

S () e ()]
+ sl\/ﬁ[q)(“_q>+1q><xl_cl) -
= var{a o () e ()|
e ale () n-e (200} -

= V21 (U +s) (45)

where ¥ denotes
() ()
Sh Sh
e ale(20) e (250)] )
81 S

47

Similarity measure:
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Because s; < sp,
¥ + Smin

S(A,B) = (48)
( ) Smax — ¥
2. If s; > sy then
T2
|[ANB| = / g(c, sy / g(c, s x)dx +
— 00
Tl
+ / g(chasha d$ +/ g ChySh; T dl‘+
—00 o0
T2
- / g(cn, sp;x)dr = 49)
— 00

palp () o) e
Sh Sh

= V21 (¥ +sy), G

where W is defined by Eq. 46. Similarity measure:

\I’—{—Sh
S(A,B) = . 52
(AB)= =5 52)
Because s; > sy, so
¥ + Smin
S(A,B) = ————. 53)
( ) Smax — ¥

The Eq. 48 and 53 are the same and in both subcases the similarity is calculated with the
same formula.

The considerations above concern only one attribute and the premises of rule are
usually composed of descriptors for more attributes. The firing strength of the rule is
calculated as a T-norm of firing strengths of all attributes of the rule (Eq. 24). Analo-
gously the similarity of the rules R, and R}, is calculated as a T-norm of the similarities
of adequate attributes.

S(Ra7 Rb) =T [S(Ala Bl)a S(A27B2)7 EER) S(ANa BN)} ) (54)

where A; stands for the fuzzy set representing the ith attribute of the R, rule and respec-
tively B; denotes the set representing the ¢th attribute of the Ry, rule.
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4.2. Merging of rules

For each of n(n + 1)/2 pairs of n rules the similarity is calculated in the way pre-
sented in the Sec. 4.1. Then the pairs are sorted in descending order of the similarity
value. Starting from the most similar pair, its similarity value is compared with the merg-
ing threshold (. If the similarity is greater the pair is merged and the rules being merged
are removed from the rule base. Then the next rule pair is checked. If the rule R has
been merged, all next pairs containing this rule are not further analysed.

During the rule merging the core location and the fuzzyfication of the new set con-
stituting the merged rule are elaborated. The core location c is calculated as a weighted
mean of all data examples presented in this step of merging. For each data example
the firing strength F and F5 of both parent rules (that are to be merged) are calculated
(Eq. 24). The weight of the kth example is elaborated with the formula 55:

Nk = max (my1 Fy(k), moFs(k)) (55)

where F; stands for the firing strength if the ¢th rule and m; is the number of data exam-
ples that participated in the creation of the ¢th rule. If the rule is created in the merging
process, its m value is sum of the m values of the parent rules. Otherwise when the rule
has no parent rules (ie. is not a result of merging) the m value is the number of learning
examples in the data set used in extraction of the rule.

Having calculated the data examples weights the core location of the fuzzy set in the
new rule is elaborated with the formula:

K
. Zk:1 NeXg

Zk:l Nk
The fuzzification of the fuzzy set in question is calculated with formula:
1 K
2
Smo= | = > (X — €)Mk (57)
D k1 Tk =y

The new rule base (with new rules and no merged rules) is then tuned in order to bet-
ter fit the parameters of rules to the presented data and to elaborate the linear coefficients
p in the consequences of rules (cf. Eq. 25).

"~ One more question needs discussing. The important parameter in rule merging is
the merging parameter ( (it is the threshold value for merging). The value of this para-
meter is determined in dynamic way. The initial value (y is determined in the follow-
ing procedure. Having created two models for the first two data sets these models are
merged with several values of ¢ = [1.00 - 107°,3.59 - 1075,1.29 - 10™%,4.64 - 107%,
1.67-1073,5.99-1073,2.15-1072,7.74 - 1072,2.78 - 107!, 1.00]. These values form
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train 1
train | train 2

merging
train | frain | train 3

train | frain | train | train | train fruin n
train annbfis

Fig. 3. The scheme of experiments. The data set is divided for merging. First the model is elaborated for

the first subset, the second subset is used as test data. Then for the second data set the second model is
created. Both models are then merged and the third set is used for evaluation of the model. In general in
1th step ¢ models were created and merged and (¢ + 1)st data set is used for evaluation. For comparison the
model is created by annbfis basing on the train data being the sum of all subsets except for the ultimate set

that is used for test and evaluation of the created model

the logarithmic sequence. The higher values of ( means that it is more difficult to merge
rules and consequently the model contains more rules. The initial value (y of the thresh-
old parameter is chosen the one at which the number of rules in the model increases
for the second time. In this way the initial value (j of the threshold parameter is elab-
orated. The experiments show that further merging with (; = const leads to faster of
slower multiplication of rules when the new model is merged with the previous one. This
makes the model highly illegible what is in the conflict with the idea of fuzzy systems.
This disadvantageous feature can be avoided in the following way. After the initial value
(o is determined, the temporary value of the threshold parameter (; is calculated as

G = o (”) , (58)

To

where (j is the initial value of the threshold, ¢ is the number of rules in the first model
and finally 7; is the number of rules in the model merged in the previous merging step.
Such approach protects against uncontrollable incrementation of number of rules in the
model’s rule base and keeps the model intelligible.
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5. Experiments

5.1. Data sets

The experiments were conducted for the datasets generated with Mackey-Glass dif-
ferential equation [15]
oz(t)  ax(t—r7)
ot 1+ [z(t—7)"°

— ba(t), (59)

where z(t) is the density of leukocytes, and a, b, 7 are constants. The initial conditions
are a = 0.2, b = 0.1, 7 = 17. The equation is solved with Runge-Kutta method (order
4) with sampling step 0.1 and initial condition (0) = 0.1. The generated data enable
preparing data tuples with template

x(k) = [z(k — 18), 2(k — 12), 2(k — 6), z(k), z(k + 6)] . (60)

The last value z(k + 6) is the prediction attribute value.

Two series of data have been prepared. The former contains the data sets with 1200,
2000, 5000, 10 000, 20 000, 100 000, 10¢ and 107 tuples. The data sets where divided
into subsets with 500 tuples (the only exception is 1200-tuple data set, which has split
into 200-tuple sets). The last subsets may contain less than 500 tuples. The latter series
is prepared basing on the 100 000-tuple data set, but each data set is divided into different
number of data examples in the subsets. This series contains the same number of data in
each data set but divided into various number of subsets: 1000 (100 subsets), 2000 (50
subsets), 5000 (20 subsets), 10 000 (10 subsets) and 20 000 (5 subsets).

For elaboration of fuzzy model the ANNBFIS algorithm [7], briefly described in
Sec. 3, has been used. The experiments have been conducted in the following way. The
model for the first data subset is tested with the second data subset. Then the model for
the second subsets is elaborated, merged with first model and the merged model is tested
with the third data subset. In each step the (i 4+ 1)st subset is used to test the model
created in merging of ¢ previous models. Then the comparatory experiment without
merging of models where conducted. In this part the last nth subset was used to test
the model elaborated for the set containing all data from n — 1 subsets. Fig. 3 presents
the experiment paradigm in graphical way. This paradigm serves for testing knowledge
generalisation (KG) ability. Also the data approximation (DA) ability was tested. In this
case the train set are the same as in KG and the train set is simultaneously used as the
test set.

5.2. Results

The results of experiments are gathered in tables.
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no. of time [s] ¢ RMSE (-107?)
data in M A M DA KG no. of
subset tm ta tm/ta M A M A rules
200 3124 2309 1.35 0.00828 1.68 1.95 33.65 1.86 13
500 3467 2440 1.42 0.02977 3.07 1.95 4.00 1.90 13
1000 5634 4699 1.20 0.06323 1.33 1.14 1.35 1.20 20
2000 3933 2701 1.46 0.08695 1.43 1.95 3.03 2.00 15
5000 2979 2417 1.23 0.09937 1.38 1.88 1.40 1.83 14
10000 2348 1849 1.27 0.09937 2.14 2.31 2.20 2.25 12
20000 1665 1150 1.45 0.27825 2.53 3.48 2.60 3.44 10

Table 1: The same data (100 000 tuples in each set) divided into subsets with various data numbers.
Abbreviations: M — merging procedure, A — annbfis (simple) procedure, DA — data approximation, KG — knowledge
generalisation, ¢, — time consumed by merging procedure, ¢, — time consumed by simple (annbfis) procedure.

Table 1 presents the results of knowledge generalisation (KG) and data approxima-
tion (DA) for merging (M) and annbfis (A). In this data series there are 100 000 tuples
split into various numbers of tuples in data subsets (from 200 to 20 000). In all cases
here the merging approach takes more time to handle the whole data set (with all sub-
sets), the ratio of time consumed by merging and simple approach is from 1.20 to 1.46.
The number of rules is stabilised on 10 — 20 rules. The knowledge generalisation and
data approximation ability seems better in merging approach with larger subsets.

Table 2 presents the results elaborated for second data series. In this series the num-
ber of data tuples in data subset is 200, 500 and 10 000 whereas the number of all tuples
in the data set is various. In this data series the time needed by merging approach is
longer then by simple one, but the difference drops with growth of the data set. Also the
results of KG and DA are similar in both approaches with one exception: for the data
set with 2 million tuples the simple approach failed to create the model, whereas the
merging approach managed to elaborate fuzzy model.

The merging approach can create models with reasonable accuracy using only some
subsets with no need of handling the whole data set (cf. Fig. 4).

The Fig. 5 presents the membership functions for the first attribute before and after
the last merge. The A plot shows these functions for the model merged of N — 1 sub-
models, the B one — the last submodel. The C plot depicts the membership functions of
the final model (after last merge). Some membership function are similar because the
whole rule with all attributes was taken into account in merging process. And similarity
of one attribute may not lead to merging of whole rules.
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time [s] RMSE (-107%)
no. of data in M A DA KG no. of
set subset tm ta tm/ta M A M A rules
1200 200 22 12 1.87 | 0336 4478 | 5039  4.102 9
2k 500 30 12 272 | 5460 4301 | 8340 4410 6
5k 500 102 60 1.69 | 4829 3462 | 5434 3579 11
10k 500 241 172 140 | 1305 1994 | 4467  1.808 13
20k 500 561 408 137 | 2071 1935 | 4.663  1.832 14
100k 10k 2142 1744 123 | 2147 2316 | 2208 2254 12
200k 10k 5196 4180 124 | 1.689 1912 | 1.696  1.838 13
500k 10k | 14922 12758 117 | 1913 1.872 | 1911 1855 13
M 10k | 37595 37123 1.01 | 1.653 1548 | 1.653 1531 15
2M 10k | 92164 - - | 1645 - | 1653 - 20

Table 2: The comparison of results elaborated for the second data series. The number of tuples in data subset is constant
and the number of data tuples in data set growth. The abbreviations used are the same as in Table 1.

RMSE no. of rules threshold

0008 (+ 25 — 10

" threshold no. of rules
0.007 (|

T RMSE for KG
I 08

0.006 | 20

0.005 H !
06

0.004 | 15

0.003

0.002 ~W 0 J\
v RMSE for KG
W /\x B
\ Wty /M

0.001 —

b
i threshold
PR S IR A AN e o e
OO -— no. of rules
0.000 | ! I |
0 50 100 150 200

no. of subsets

Fig. 4. The results elaborated for 2 mil. tuples split into 200 subsets (each containing 10 000 tuples). The
figure presents the root mean square error (RMSE) for knowledge generalisation (KG), number of rules

and merging threshold ¢ in function of merged subsets
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Fig. 5. The membership functions for the first attribute in the last merging. The A figure presents the
functions in the models before last merge, the B — the last submodel and finally C — the functions of the

merged final model. The figure drawn for the data set split into 10 subsets each with 10000 tuples

6. Summary

Merging of fuzzy model may be helpful in some situations. One of them is elabo-
rating of fuzzy models for large data sets. The solution proposed in the paper is suitable
for data set neuro-fuzzy systems with parametrised consequences. This method enables
creating model for big data sets in reasonable time. Although the elaboration of fuzzy
model for whole data set takes more time, but quite good model can be achieved after
merging of models created for a few data subsets. The precision of the model elaborated
in merging approach is similar to that achieved in simple approach.

In short:

1. The merging approach to elaborating the model needs more time to create model
for whole data set than creating model with all data tuples at once. But the larger
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the dataset, the less is the difference between both approaches. When the dataset
is too large, only the merging paradigm can afford the task.

Although creation of model for whole data set in merging approach takes more
time, but quite reasonable model can be elaborated basing only on a few data
subset, so the first model is achieved in shorter time (Fig. 4).

. The results of data approximation (DA) and knowledge generalisation (KG) are

similar. Two phenomena can be noticed:

(a) The bigger the data set the smaller the advantage of the simple paradigm
(Tab. 2).

(b) The bigger the data subset the bigger the advantage of the merging paradigm
(Tab. 1).
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Scalanie modeli rozmytych w systemach neuronowo-rozmytych
Streszczenie

Artykut opisuje scalanie modeli rozmytych w systemach neuronowo-rozmytych
wykorzystywane przy tworzeniu modeli dla duzych zbioréw danych. Nieraz zbiory
danych sa tak duze, ze nie jest mozliwe wypracowanie modelu od razu dla catego zbioru.
Tworzy si¢ zatem modele dla podzbioréw zbioru danych. Uzyskane w ten sposéb mo-
dele sa nastgpnie scalane, by wypracowac jeden model. Podejscie to jest takze korzystne,
gdy wszystkie dane nie sa dostegpne, ale sa dostarczane partiami. Wtedy wstepny model
jest wypracowany zanim wszystkie dane zostana dostarczone do systemu. Artykut
przedstawia sposéb wyznaczania podobienistwa regut w modelu rozmytym oraz opisuje
system neuronowo-rozmyty budujacy i scalajacy modele wypracowane dla podzbioréw.



