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Streszczenie We proposed an efficient and secure digital signature scheme using elliptic curve crypto-
graphy (ECC) and bilinear pairings in this paper. The proposed scheme employs the general cryptographic
hash function (i.e., SHA-1) instead of map-to-point function, because the map-to-point is a cost-intensive
operation and it is usually implemented as a probabilistic algorithm. Further, our scheme is computationally
efficient as one bilinear paring and three elliptic curve scalar point multiplication operations are executed
for signature generation and verification, and thus the scheme requires much lesser computation cost than
other related schemes. In addition, in the random oracle model, our scheme is proven to be existential unfor-
geable against the adaptive chosen message and identity attacks (EUF-CMA) based on a variation of the
collusion attack algorithm with ktraitors (k-CAA3) problem.

Keywords: Elliptic curve cryptography, Bilinear pairing, Map-to-point function, Digital signature,
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1. Introduction

The authenticity, integrity and non-repudiation of the digital documents that are
transmitted over any public network, can be achieved by using the digital signature.
The digital signature is nothing but the string of digital bits and is different from any
hand-written signature. That is, the digital signature of a person is changed if the mes-
sage varies, whereas the handwritten signature computed by a person is fixed for all
documents. The signature scheme can be found useful in many applications of network
security where the detection of forgery or protection of tampering of digital documents
is necessary.
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1.1. Literature Review

The public key cryptography (PKC) was proposed by Diffie and Hellman [1] in
which two keys are used, called private key and public key. The user chooses his private
key that is to be kept secret while the corresponding public key is known to all and
thus, it needs to be authenticated by a trusted third party, named as a certificate authority
(CA). After the pioneer work of Diffie-Hellman, many digital signature schemes have
been proposed [2−5,7−11] based on either the large integer factorization problem (IFP)
or the discrete logarithm problem (DLP). Based on IFP and DLP, Shao [5] proposed a
digital signature scheme and claimed that it is more secure than ElGamal scheme [3]
with similar computation cost. However, Li and Xiao [6] presented a simple attack and
proved that Shao’s scheme is insecure. In the RSA scheme [2], the signature length is
same as the length of the modulus used and in the ElGamal scheme [3], the length of
the signature is twice the length of the modulus used. In order to reduce the signature
length, Schnorr [7] proposed a signature scheme where the length of the signature is
independent of the length of the modulus used.

To enhance the security, Harn [8] in 1994 also developed a new signature scheme
based on two different cryptographic assumptions. He claimed that the security of the
scheme could be compromised if both IFP and DLP assumptions are simultaneously
solvable by a polynomial time-bounded algorithm. The idea of combining more than
one computational problem is good from the security point of view, however, Lee and
Hwang [9] proved that if one of the assumption, say DLP is solvable then Harn’s scheme
is completely breakable with high probabilities. Subsequently, they proposed a modified
scheme based on the hardness assumptions as adopted in the Harn’s scheme to defeat
the problem pointed out by them. In 2000, Nyang and Song [10], proposed an efficient
digital signature scheme using a zero-knowledge based identification (ZKI) scheme and
hash function. The computational performance of the scheme is better than other RSA-
like schemes and other well-known signature schemes also. In 2007, Chung et al. [11]
proposed another ZKI-based signature scheme using ECC, however, the scheme is not
secure as demonstrated by Yang and Chang [12].

1.2. Motivations and Contributions

Recently, ECC [13, 14] and bilinear pairing [15] have been received great attention
due to the following reasons: (1) ECC needs smaller key size, lesser bandwidth, low
computation cost and low storage space. (2) The efficient algorithms to compute the bi-
linear pairing (Weil pairing [15] or Tate pairing [16]) are available in the literature. The
computation cost for signature generation and verification of the previous schemes are
very high since they employed a cost-intensive operation, called modular exponentia-
tion. Besides, most of the previous schemes are insecure against different attacks [6, 9,
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12]. In order to speed up the signature generation and verification, and to provide strong
security, we proposed an efficient and secure digital signature scheme using ECC and bi-
linear pairings, where instead of map-to-point (MTP) function, the general cryptographic
hash function (i.e., SHA-1) is used in our scheme. Because, the MTP is a cost-intensive
operation and it is usually implemented as a probabilistic polynomial time-bounded al-
gorithm. Based on a variation of the collusion attack algorithm with k traitors (k-CAA3)
assumption [17, 18], the proposed scheme is existential unforgeable in the random orac-
le model [19] against the adaptive chosen message and identity adversary. In addition,
the computational performance of the proposed scheme is better than other schemes as
shown in section 4.3.

1.3. Roadmap of the Paper

The rest of the paper is organized as follows. Section 2 provides the necessary tech-
nical details required throughout the paper and in Section 3, we present our digital si-
gnature scheme. The analyses in terms security and performance of the proposed scheme
are given in Section 4. Finally, Section 5 gives the concluding remarks.

2. Preliminaries

In this section, we briefly introduced the concepts of elliptic curve-based bilinear
pairings and some hard mathematical problems.

2.1. Bilinear Pairings

Let Gq be a cyclic additive group, which is generated by P, with prime order q, and
Gm is a cyclic multiplicative group with the same order q. Let ê:Gq×Gq →Gm be
an admissible bilinear mapping with the following properties:

• Bilinearity: ê(aP,bQ)=ê(P,Q)ab for all P,Q∈ Gq and a,b∈RZ∗q .

• Non-degeneracy: There exists P,Q∈Gq such that ê(P,Q)6=1m, where 1m is
an identity element in the group Gm, where P is a generator of Gq and ê(P,P)
is a generator of Gm.

• Computability: There is an efficient polynomial time-bounded algorithm that can
compute ê(P,Q) for all P,Q∈Gq.

2.2. Computational Problems

Definition 1. Collision Attack Assumption 1 (k-CAA1) [17, 18]: For an integer k,

given {h,P,rP,(h1 ,
1

r + h1
P), (h2,

1
r + h2

P), · · · , (hk, 1
r + hk

P)}, where P∈ Gq,
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r,h,hi ∈R Z∗q for 1 ≤ i ≤ k but h /∈ {h1, h2, · · · , hk}, then the computation of
(h, 1

r+hP ) is impossible by a polynomial time-bounded algorithm.
Definition 2. Collision Attack Assumption 2 (k-CAA2) [17, 18]: For an integer k,

given {h, P, (h1,
1

r+h1
P ), (h2,

1
r+h2

P ), · · · , (hk, 1
r+hk

P )}, whereP ∈ Gq, r, h, hi ∈R
Z∗q for 1 ≤ i ≤ k buth /∈ {h1, h2, · · · , hk}, then the computation of (h, 1

r+hP ) is im-
possible by a polynomial time-bounded algorithm.

Definition 3. Strong CAA (k-sCAA1) [17, 18]: For an integer k, r ∈R Z∗q ,P ∈
Gq, given {P, rP, (h1,

1
r+h1

P ), (h2,
1

r+h2
P ), · · · , (hk, 1

r+hk
P )}, where hi ∈R Z∗q are

distinct for 1 ≤ i ≤ k, then the computation of (h, 1
r+hP ) for some h ∈R Z∗q , where

h /∈ {h1, h2, · · · , hk} , is impossible by a polynomial time-bounded algorithm.
Definition 4. Collision Attack Assumption 3 (k-CAA3): For an integer k, gi-

ven {h, rP, aP, (h1,
1

r+ah1
P ), (h2,

1
r+ah2

P ), · · · , (hk, 1
r+ahk

P )}, whereP ∈ Gq and
a, r, h, hi ∈R Z∗q for 1 ≤ i ≤ k and h /∈ {h1, h2, · · · , hk}, then the computation of the
pair (h, 1

r+ahP ) is impossible by a polynomial time-bounded algorithm.
Note: The problem k-CAA2 suffers from a linear attack as proven by Tô et al. [20]

as if the value of h is known, then the problem k-CAA2 is not hard. Since the order of
the group Gq is a prime number q, so for any x ∈ Z∗q satisfies x = (r + h)−1 mod q
for some h and provides the possbility of the attack. To prevent this attack, the k-sCAA1
problem was proposed in [21], which assumes that h is also unknown. However, the
problem k-CAA3 is hard to break by any polynomial time-bounded algorithm even ifh is
known. This is because, x = (r+ah)−1 mod q is a linear equation with two unknowns
r and a and thus, the probability for finding a number x ∈ Z∗q that satisfies the above
equation is 1

q(q−1) .

3. Proposed Digital Signature Scheme

In this section, the proposed efficient digital signature scheme using ECC and bi-
linear pairings is given. It employs the general cryptographic hash function instead of
map-to-point function so that our scheme is ease-to-use and becomes computationally
efficient. The proposed scheme consists of the following algorithms:

• Setup: This algorithm takes a security parameter as input, and returns a list of
system’s parameter. For a given security parameter k∈Z+, this algorithm works
as follows:

(a) Choose a k-bit prime number q and determine the tuple {Gq, Gm, q,ê,
P}, where ê is an admissible bilinear map and P is the generator of Gq.

(b) Compute g = ê(P, P)∈Gm.
(c) Choose a general cryptographic hash function H:{0,1}∗× Gq→ Z∗q .
(d) Publish the system’s parameterΩ = {Gq, Gm, q, ê, g , P, H}.
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• KeyGen: This algorithm takes the system parameter Ω as input and returns the
private key of the user. For the user ID, the algorithm select a random number
dID∈RZ∗q and computes QID = dIDP∈ Gq. The public/private key pair is of
the user ID is (dID, QID).

• Sign: To sign a message m∈{0,1}∗ , the signer ID with private key dID chooses
a number r∈RZ∗q and then computes the signature as follows:

(a) Compute R=rP and h=H(m,R).

(b) Compute V=(r+ hdID)−1P.

(c) Output the signature (R,V) for the message m and sends it to the verifier
for verification.

• Verify: To verify the signature (R, V) on a message m, the verifier uses the
public key QID of the signer ID and then performs the following steps:

(a) Compute h=H(m,R) and σ = ê(V,R+hQID).

(b) Checks whether the equation σ= g holds. If so, the verifier accepts the
signature (R,V); otherwise rejects it.

4. Analysis of the Proposed Scheme

In this section, the security and the performance of the proposed scheme are ana-
lyzed. As stated earlier, the proposed scheme is existential unforgeability against the
adaptive chosen message and identity attacks based on the variation of Collusion Attack
Algorithm with k traitors (k-CAA3) assumption, which is addressed now.

4.1. Correctness of the Proposed Scheme

Since QID = dIDP ,R =rP, h = H(m,R) andV = (r+hdID)−1P , we have

σ = ê(V,R+ hQID)
= ê((r + hdID)−1P, rP + hdIDP )
= ê((r + hdID)−1P, (r + hdID)P )
= ê(P, P ) = g

Therefore, σ = g is satisfied and it proves the correctness of the proposed scheme.
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4.2. Security Analysis of the Proposed Scheme

Theorem (Existential Unforgeability). If there exists an adaptively chosen messa-
ge and identity adversary A who can breach the security of the proposed scheme in
polynomial time t with success probability ε, then there exists an algorithm C that can

solve the k-CAA3 problem using A with probability ε′ ≥ ε
(
qS
qH

)
qS and within the

time-bound t’=t, where A can make at most qS queries to the Sign-oracle, qV queries
to the Verify-oracle and qH queries to the H-oracle.

Proof. Assume that the forger A (ε , t,qH , qS , qV ) tries to breach the security
of the proposed scheme. Then we show that there exist a polynomial time-bounded al-
gorithms C that can solve the k-CAA3 problem by using A as a black box. To solve
the k-CAA3 problem, C randomly selects an identity ID∗ as the challenged identity,
sets the signer’s private/public key as (dID=a, QID=aP) and then sends the system’s
parameter Ω = {Gq, Gm, q, ê, g , P, H, QID=aP} to A , where a∈RZ∗q is
unknown.

• KeyGen Queries: If ID=ID∗, C stops the simulation, otherwise C selects a
number dID ∈RZq, sets QID=dIDP and returns dID as a private key of the
user ID.

• Hash Queries to H: Here, we assume that the output of the H-oracle is uniformly
distributed over Z∗q and the H-oracle will give the correct answer for any hash
query. To replay quickly and to avoid the inconsistency, C maintains an H-oracle
list Llist

H that contains the tuple of the form (m,R,h). If A asks a hash query
to H-oracle on (m,R), C outputs the previous h if a tuple (m,R,h) is found
in Llist

H , otherwise, chooses a number h∈RZq, outputs it and then adds the tuple
(m,R,h) to the list Llist

H .

• Sign Queries: When A submits a Sign query on (ID,m), C then replies as
follows:

(a) If ID=ID∗, C chooses a number h∈RZq and computes the signature as
follows:

• Set R←(P–haP) and H(m,R)←h.
• Set V←P and output the signature (R,V).

(b) If ID=ID∗, C chooses a number r∈RZq and computes the signature as
follows:

• Compute R=rP and h=H(m, R).
• Compute V=(r+hdID)−1P and then output the signature (R,V).



115

• Verify Queries: Upon receiving a Verify query on (R,V) with (ID,m), C then
does as follows:

(a) If ID=ID∗, holds, C then quits the simulation.

(b) Else, verify the signature (R,V) using the public key QID of ID according
to the proposed Verify algorithm.

• Forgery: Finally, A outputs a valid and forged signature (R∗,V∗)
on (m∗,ID∗) if ID=ID∗ holds. Otherwise, A outputs failure
and quits the execution. Since (R∗,V∗) is valid signature, so that
ê(V∗,R∗+h∗QID) holds, i.e., V∗=(r∗+h∗a)−1P. Thus, C computes
ê(V∗,R∗+h∗QID)=ê((r∗+h∗a)−1P,(r∗+h∗a)P)=ê(P,P)=g . Therefo-
re, C solves an instance of k-CAA3 problem.

• Probability Assessment: The hash function H behaves as a random oracle thus,
A ’s simulation and the real simulation of the proposed scheme cannot be distingu-
ishable by C . Hence, A ’s execution time is equal to the running time of C i.e.,
t’=t. When A executes a Sign-oracle query for each hi (1≤i≤ qH), C then

returns V i=(r+ahi)−1P to A with probability
(
qS
qH

)
. Here, each hi (1≤i≤ qH)

is the answer of the H-oracle queries on the messages mi for 1≤i≤ qH . In order
to break the security of the proposed signature scheme, A must output a forged
signature (R∗,V∗) on (ID∗,m∗), which gives Verify(ID∗,m∗,Q∗ID,R∗)=1, and for

which A must compute V∗=(r∗+h∗a)−1P with probability
(
qS
qH

)qS
, where

a,h,r,hi∈R Z∗q for 1≤i≤qH but h/∈ {h1, h2, · · · hqH}. Thus, the success

probability of the adversary A to break the security of the proposed scheme is

ε′ ≥ ε
(
qS
qH

)qS
.

4.3. Efficiency Analysis of the Proposed Scheme

In order to evaluate the efficiency of the proposed scheme, we compare different
schemes [8−11] with ours in terms of the computation cost. According to [11, 22], the
Table 1 includes the various time complexities and their conversion to the time complexi-
ty for executing the modular multiplication (TML). The Table 2 compares the proposed
scheme with other existing schemes [8−11], and it can be noted that our scheme is com-
putationally efficient than [8−10]. It can be seen that the proposed scheme increases
the computational cost slightly with respect to the scheme [11], however, none of the
schemes [8−11] are secure as shown in [6, 9, 12] whereas our scheme is existential
unforgeable against the adaptive chosen message and identity attacks based on k-CAA3
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assumption in the random oracle model. Hence, our scheme in all respect is more effi-
cient than other schemes.

Notations Definition and Conversion
TML Time complexity for executing the modular multiplication
TEX Time complexity for executing the modular exponentiation, 1TEX ≈ 240TML [11]
TEM Time complexity for executing elliptic curve scalar point multiplication, 1TEM ≈ 29TML [11]
TBP Time complexity for executing the bilinear pairing operation, 1TBP ≈ 87TML [22]
TIN Time complexity for executing the modular inversion operation in Zq∗, 1TIN ≈ 11.6TML [22]

Tab 1. Definition and conversion of various operation units

Protocol/Phases Signature Generation Signature Verification Total Cost
Harn [8] 2TEX 3TEX 5TEX ≈ 1200TML

Lee-Hwang [9] 2TEX 2TEX 4TEX ≈960TML

Nyang-Song [10] 2TEX 2TEX 4TEX ≈ 960TML

Chung et al. [11] 2TEM 3TEM 5TEM ≈ 145TML

Proposed 2TEM+1TIN 1TEM+1TBP 3TEM+1TIN+1TBP ≈ 185TML

Tab 2. Performance comparison of the proposed scheme with others

5. Concluding Remarks

In this paper, an efficient and provably-secure digital signature scheme, which is ba-
sed on ECC and bilinear pairings and without using map-to-point function, is designed.
We proved that our scheme is existential unforgeable against the adaptive chosen mes-
sage and identity attacks based on the variation of Collusion Attack Algorithm with k
traitors (k-CAA3) assumption in the random oracle model. The comparative study signi-
fies that the proposed scheme has low computation cost than almost all previous schemes
(except one), however, all are not well secured. Thus, our scheme is efficient and can be
applied in real applications.
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